Diversity, Ecology, and Systematics of Smut Fungi - Meike Piepenbring
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biological Control of Two Ageratina Species (Asteraceae: Eupatorieae) in South Africa
Biological control of two Ageratina species (Asteraceae: Eupatorieae) in South Africa F. Heystek1*, A.R. Wood2, S. Neser1 & Y. Kistensamy1 1Agricultural Research Council-Plant Protection Research Institute, Private Bag X134, Queenswood, 0121 South Africa 2Agricultural Research Council-Plant Protection Research Institute, Private Bag X5017, Stellenbosch, 7599 South Africa Ageratina adenophora (Spreng.) R.M.King & H.Rob. and Ageratina riparia (Regel) R.M.King & H.Rob. (Asteraceae: Eupatorieae), originally from Mexico, are invasive in many countries. These plants produce thousands of wind- and water-dispersed seeds which enable them to spread rapidly and invade stream banks and moist habitats in areas with high rainfall. Two biological control agents, a shoot-galling fly, Procecidochares utilis Stone (Diptera: Tephri- tidae), and a leaf-spot fungus, Passalora ageratinae Crous & A.R. Wood (Mycosphaerellales: Mycosphaerellaceae), were introduced against A. adenophora in South Africa in 1984 and 1987, respectively. Both established but their impact is considered insufficient. Exploratory trips to Mexico between 2007 and 2009 to search for additional agents on A. adenophora produced a gregarious leaf-feeding moth, Lophoceramica sp. (Lepidoptera: Noctuidae), a stem-boring moth, probably Eugnosta medioxima (Razowski) (Lepidoptera: Tortricidae), a leaf-mining beetle, Pentispa fairmairei (Chapuis) (Coleoptera: Chrysomelidae: Cassidinae), and a leaf-rust, Baeodromus eupatorii (Arthur) Arthur (Pucciniales: Pucciniosiraceae) all of which have been subjected to preliminary investigations. Following its success in Hawaii, the white smut fungus, Entyloma ageratinae R.W. Barreto & H.C. Evans (Entylomatales: Entylomataceae), was introduced in 1989 to South Africa against A. riparia. Its impact has not been evaluated since its establishment in 1990 in South Africa. By 2009, however, A. -
Exobasidium Darwinii, a New Hawaiian Species Infecting Endemic Vaccinium Reticulatum in Haleakala National Park
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Mycol Progress (2012) 11:361–371 DOI 10.1007/s11557-011-0751-4 ORIGINAL ARTICLE Exobasidium darwinii, a new Hawaiian species infecting endemic Vaccinium reticulatum in Haleakala National Park Marcin Piątek & Matthias Lutz & Patti Welton Received: 4 November 2010 /Revised: 26 February 2011 /Accepted: 2 March 2011 /Published online: 8 April 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Hawaii is one of the most isolated archipelagos Exobasidium darwinii is proposed for this novel taxon. This in the world, situated about 4,000 km from the nearest species is characterized among others by the production of continent, and never connected with continental land peculiar witches’ brooms with bright red leaves on the masses. Two Hawaiian endemic blueberries, Vaccinium infected branches of Vaccinium reticulatum. Relevant char- calycinum and V. reticulatum, are infected by Exobasidium acters of Exobasidium darwinii are described and illustrated, species previously recognized as Exobasidium vaccinii. additionally phylogenetic relationships of the new species are However, because of the high host-specificity of Exobasidium, discussed. it seems unlikely that the species infecting Vaccinium calycinum and V. reticulatum belongs to Exobasidium Keywords Exobasidiomycetes . ITS . LSU . vaccinii, which in the current circumscription is restricted to Molecular phylogeny. Ustilaginomycotina -
The Distribution and Host Range of Thecaphora Melandrii, with First Records for Britain
KEW BULLETIN (2020) 75:39 ISSN: 0075-5974 (print) DOI 10.1007/S12225-020-09895-3 ISSN: 1874-933X (electronic) The distribution and host range of Thecaphora melandrii, with first records for Britain Paul A. Smith1 , Matthias Lutz2 & Marcin Piątek3 Summary. Thecaphora melandrii (Syd.) Vánky & M.Lutz infects species in the Caryophyllacaeae forming sori with spore balls in the floral organs. We report new finds from Britain, supported by phylogenetic analysis, that confirm its occurrence on Silene uniflora Roth. We review published and web accessible records and note the relatively few records of this smut, its sparse distribution, confined to Europe but scattered predominantly from central to eastern Europe. Analysis of the rDNA ITS and 28S sequences demonstrates little variability among specimens, even those parasitising different host genera, which suggests that the species has evolved relatively recently. Some Microbotryum species infect the same host plants, and we found two species, M. lagerheimii Denchev and M. silenes- inflatae (DC. ex Liro) G.Deml & Oberw., in the same locations as T. melandrii, identified by morphology and molecular phylogenetic analysis. These species may form a stable multi-species community of parasites of Silene uniflora. Key Words. Caryophyllaceae, gall, Glomosporiaceae, Microbotryum, Silene uniflora, smut. Introduction Caryophyllaceae, and specifically on T. melandrii (Syd.) The Caryophyllaceae is a large family of dicotyledonous Vánky & M.Lutz. Vánky (2012) lists five species of plants (Greenberg & Donoghue 2011), and its species Thecaphora with hosts in this family, all destroying the are hosts for many plant-parasitic microfungi, among inner floral organs; most remain within the outer floral them at least 38 species of smut fungi assigned to the envelope (the calyx), but T. -
Axpcoords & Parallel Axparafit: Statistical Co-Phylogenetic Analyses
BMC Bioinformatics BioMed Central Software Open Access AxPcoords & parallel AxParafit: statistical co-phylogenetic analyses on thousands of taxa Alexandros Stamatakis*1,2, Alexander F Auch3, Jan Meier-Kolthoff3 and Markus Göker4 Address: 1École Polytechnique Fédérale de Lausanne, School of Computer & Communication Sciences, Laboratory for Computational Biology and Bioinformatics STATION 14, CH-1015 Lausanne, Switzerland, 2Swiss Institute of Bioinformatics, 3Center for Bioinformatics (ZBIT), Sand 14, Tübingen, University of Tübingen, Germany and 4Organismic Botany/Mycology, Auf der Morgenstelle 1, Tübingen, University of Tübingen, Germany Email: Alexandros Stamatakis* - [email protected]; Alexander F Auch - [email protected]; Jan Meier- Kolthoff - [email protected]; Markus Göker - [email protected] * Corresponding author Published: 22 October 2007 Received: 26 June 2007 Accepted: 22 October 2007 BMC Bioinformatics 2007, 8:405 doi:10.1186/1471-2105-8-405 This article is available from: http://www.biomedcentral.com/1471-2105/8/405 © 2007 Stamatakis et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Current tools for Co-phylogenetic analyses are not able to cope with the continuous accumulation of phylogenetic data. The sophisticated statistical test for host-parasite co-phylogenetic analyses implemented in Parafit does not allow it to handle large datasets in reasonable times. The Parafit and DistPCoA programs are the by far most compute-intensive components of the Parafit analysis pipeline. -
Anther Smuts of Caryophyllaceae: Molecular Characters Indicate Host-Dependent Species Delimitation+
Mycological Progress 4(3): 225–238, August 2005 225 Anther smuts of Caryophyllaceae: molecular characters indicate host-dependent species delimitation+ Matthias LUTZ1,*, Markus GÖKER1, Marcin PIATEK2, Martin KEMLER1, Dominik BEGEROW1, and Franz OBERWINKLER1 Phylogenetic relationships of Microbotryum species (Urediniomycetes, Basidiomycota) inhabiting anthers of Caryophyllaceae were investigated by molecular analyses using internal transcribed spacer (ITS) sequences and collections from different host plants. The data show that the current taxonomy of Microbotryum on Caryophyllaceae is only partly satisfactory. Micro- botryum violaceum is confirmed to be a paraphyletic grouping and is split up in monophyletic groups. Microbotryum silenes- inflatae and M. violaceo-verrucosum appear as polyphyletic. Host data are in good agreement with molecular results. Two new species, Microbotryum chloranthae-verrucosum and M. saponariae, are described based on morphological, ecological, and molecular characteristics. An emended circumscription of Microbotryum dianthorum is given. The name Ustilago major (= Microbotryum major) is lectotypified. Taxonomic novelties: Microbotryum chloranthae-verrucosum M. Lutz, Göker, M. Piatek, Kemler, Begerow et Oberw.; Microbotryum saponariae M. Lutz, Göker, M. Piatek, Kemler, Begerow et Oberw. Keywords: anther parasites, ITS, Microbotryum, molecular analysis, smut fungi, Urediniomycetes n the current classification of Microbotryum (VÁNKY ecological factors (e.g., THRALL, BIERE & ANTONOVICS 1993) 1998), 15 species on Caryophyllaceae are accepted, eight and numerous publications dealt with population studies (e.g., I of which occur in the host’s anthers, more rarely also in LEE 1981; MILLER ALEXANDER & ANTONOVICS 1995; MILLER other floral parts. These anther parasites exhibit a couple of ALEXANDER et al. 1996), including investigations in recent outstanding features. Infected anthers become completely host shifts (ANTONOVICS, HOOD & PARTAIN 2002). -
<I>Tilletia Indica</I>
ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological -
Taxonomy and Distribution of Microbotryum Pinguiculae, a Species of Smut Fungi New for the Carpathians
Polish Botanical Journal 50(2): 153–158, 2005 TAXONOMY AND DISTRIBUTION OF MICROBOTRYUM PINGUICULAE, A SPECIES OF SMUT FUNGI NEW FOR THE CARPATHIANS MARCIN PIĄTEK, WIESŁAW MUŁENKO, JOLANTA PIĄTEK & KAMILA BACIGÁLOVÁ Abstract. Microbotryum pinguiculae (Rostr.) Vánky on Pinguicula alpina L., a rarely collected smut fungus belonging to the genus Microbotryales in the class Urediniomycetes, is reported for the fi rst time from the Carpathians as well as from Poland and Slovakia. The species is described and illustrated by a drawing of infected plants and SEM micrographs of spores. Microbotryum pinguiculae is a very rare fungus parasitizing various species of Pinguicula (Lentibulariaceae). It is known from Europe, Asia and North America, where it shows a true arctic-alpine type of distribution. Taxonomically its generic position is not completely stabilized and needs further studies employing modern techniques (e.g., molecular, ultrastructural). Key words: Microbotryum, Pinguicula alpina, smut fungi, Microbotryales, Urediniomycetes, Carpathians, Poland, Slovakia Marcin Piątek, Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland; e-mail: [email protected] Wiesław Mułenko, Department of General Botany, Maria Curie-Skłodowska University, Akademicka 19, PL-20-033 Lublin, Poland; e-mail: [email protected] Jolanta Piątek, Department of Phycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland; e-mail: [email protected] Kamila Bacigálová, Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845-23 Bratislava, Slovak Republic; e-mail: [email protected] INTRODUCTION In the current circumscription, the smut genus species occurs in other populations of Pinguicula Microbotryum Lév. -
Four Master Teachers Who Fostered American Turn-Of-The-(20<Sup>TH
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2021 January–March 2021—Volume 136, pp. 1–58 https://doi.org/10.5248/136.1 Four master teachers who fostered American turn-of-the-(20TH)-century mycology and plant pathology Ronald H. Petersen Department of Ecology & Evolutionary Biology, University of Tennessee Knoxville, TN 37919-1100 Correspondence to: [email protected] Abstract—The Morrill Act of 1862 afforded the US states the opportunity to found state colleges with agriculture as part of their mission—the so-called “land-grant colleges.” The Hatch Act of 1887 gave the same opportunity for agricultural experiment stations as functions of the land-grant colleges, and the “third Morrill Act” (the Smith-Lever Act) of 1914 added an extension dimension to the experiment stations. Overall, the end of the 19th century and the first quarter of the 20th was a time for growing appreciation for, and growth of institutional education in the natural sciences, especially botany and its specialties, mycology, and phytopathology. This paper outlines a particular genealogy of mycologists and plant pathologists representative of this era. Professor Albert Nelson Prentiss, first of Michigan State then of Cornell, Professor William Russel Dudley of Cornell and Stanford, Professor Mason Blanchard Thomas of Wabash College, and Professor Herbert Hice Whetzel of Cornell Plant Pathology were major players in the scenario. The supporting cast, the students selected, trained, and guided by these men, was legion, a few of whom are briefly traced here. Key words—“New Botany,” European influence, agrarian roots Chapter 1. Introduction When Dr. Lexemual R. -
Corn Smuts, RPD No
report on RPD No. 203 PLANT February 1990 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN CORN SMUTS Corn smuts occur throughout the world. Common corn smut, caused by the fungus Ustilago zeae (synonym U. maydis), and head smut, caused by the fungus Sporisorium holci-sorghi (synonyms Sphacelotheca reiliana, Sorosporium reilianum and Sporisorium reilianum), are spectacular in appearance and easily distinguished. Common smut occurs worldwide wherever corn (maize) is grown, by presence of large conspicuous galls or replacement of grain kernels with smut sori. The quality of the remaining yield is often reduced by the presence of black smut spores on the surface of healthy kernels. COMMON SMUT Common smut is well known to all Illinois growers. The fungus attacks only corn–field corn (dent and flint), Indian or ornamental corn, popcorn, and sweet corn–and the closely related teosinte (Zea mays subsp. mexicana) but is most destructive to sweet corn. The smut is most prevalent on young, actively growing plants that have Figure 1. Infection of common corn smut been injured by detasseling in seed fields, hail, blowing soil or and on the ear. Smut galls are covered by the particles, insects, “buggy-whipping”, and by cultivation or spraying silvery white membrane. equipment. Corn smut differs from other cereal smuts in that any part of the plant above ground may be attacked, from the seedling stage to maturity. Losses from common smut are highly variable and rather difficult to measure, ranging from a trace up to 10 percent or more in localized areas. In rare cases, the loss in a particular field of sweet corn may approach 100 percent. -
Blister Blight Disease of Tea: an Enigma Chayanika Chaliha and Eeshan Kalita
Chapter Blister Blight Disease of Tea: An Enigma Chayanika Chaliha and Eeshan Kalita Abstract Tea is one of the most popular beverages consumed across the world and is also considered a major cash crop in countries with a moderately hot and humid climate. Tea is produced from the leaves of woody, perennial, and monoculture crop tea plants. The tea leaves being the source of production the foliar diseases which may be caused by a variety of bacteria, fungi, and other pests have serious impacts on production. The blis- ter blight disease is one such serious foliar tea disease caused by the obligate biotrophic fungus Exobasidium vexans. E. vexans, belonging to the phylum basidiomycete primarily infects the young succulent harvestable tea leaves and results in ~40% yield crop loss. It reportedly alters the critical biochemical characteristics of tea such as catechin, flavo- noid, phenol, as well as the aroma in severely affected plants. The disease is managed, so far, by administering high doses of copper-based chemical fungicides. Although alternate approaches such as the use of biocontrol agents, biotic and abiotic elicitors for inducing systemic acquired resistance, and transgenic resistant varieties have been tested, they are far from being adopted worldwide. As the research on blister blight disease is chiefly focussed towards the evaluation of defense responses in tea plants, during infection very little is yet known about the pathogenesis and the factors contrib- uting to the disease. The purpose of this chapter is to explore blister blight disease and to highlight the current challenges involved in understanding the pathogen and patho- genic mechanism that could significantly contribute to better disease management. -
Molecular Phylogeny of Ustilago and Sporisorium Species (Basidiomycota, Ustilaginales) Based on Internal Transcribed Spacer (ITS) Sequences1
Color profile: Disabled Composite Default screen 976 Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences1 Matthias Stoll, Meike Piepenbring, Dominik Begerow, Franz Oberwinkler Abstract: DNA sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA genes were used to determine a phylogenetic relationship between the graminicolous smut genera Ustilago and Sporisorium (Ustilaginales). Fifty-three members of both genera were analysed together with three related outgroup genera. Neighbor-joining and Bayesian inferences of phylogeny indicate the monophyly of a bipartite genus Sporisorium and the monophyly of a core Ustilago clade. Both methods confirm the recently published nomenclatural change of the cane smut Ustilago scitaminea to Sporisorium scitamineum and indicate a putative connection between Ustilago maydis and Sporisorium. Overall, the three clades resolved in our analyses are only weakly supported by morphological char- acters. Still, their preferences to parasitize certain subfamilies of Poaceae could be used to corroborate our results: all members of both Sporisorium groups occur exclusively on the grass subfamily Panicoideae. The core Ustilago group mainly infects the subfamilies Pooideae or Chloridoideae. Key words: basidiomycete systematics, ITS, molecular phylogeny, Bayesian analysis, Ustilaginomycetes, smut fungi. Résumé : Afin de déterminer la relation phylogénétique des genres Ustilago et Sporisorium (Ustilaginales), responsa- bles du charbon chez les graminées, les auteurs ont utilisé les données de séquence de la région espaceur transcrit interne (ITS) des gènes nucléiques ADNr. Ils ont analysé 53 membres de ces genres, ainsi que trois genres apparentés. Les liens avec les voisins et l’inférence bayésienne de la phylogénie indiquent la monophylie d’un genre Sporisorium bipartite et la monophylie d’un clade Ustilago central. -
<I>Ustilago-Sporisorium-Macalpinomyces</I>
Persoonia 29, 2012: 55–62 www.ingentaconnect.com/content/nhn/pimj REVIEW ARTICLE http://dx.doi.org/10.3767/003158512X660283 A review of the Ustilago-Sporisorium-Macalpinomyces complex A.R. McTaggart1,2,3,5, R.G. Shivas1,2, A.D.W. Geering1,2,5, K. Vánky4, T. Scharaschkin1,3 Key words Abstract The fungal genera Ustilago, Sporisorium and Macalpinomyces represent an unresolved complex. Taxa within the complex often possess characters that occur in more than one genus, creating uncertainty for species smut fungi placement. Previous studies have indicated that the genera cannot be separated based on morphology alone. systematics Here we chronologically review the history of the Ustilago-Sporisorium-Macalpinomyces complex, argue for its Ustilaginaceae resolution and suggest methods to accomplish a stable taxonomy. A combined molecular and morphological ap- proach is required to identify synapomorphic characters that underpin a new classification. Ustilago, Sporisorium and Macalpinomyces require explicit re-description and new genera, based on monophyletic groups, are needed to accommodate taxa that no longer fit the emended descriptions. A resolved classification will end the taxonomic confusion that surrounds generic placement of these smut fungi. Article info Received: 18 May 2012; Accepted: 3 October 2012; Published: 27 November 2012. INTRODUCTION TAXONOMIC HISTORY Three genera of smut fungi (Ustilaginomycotina), Ustilago, Ustilago Spo ri sorium and Macalpinomyces, contain about 540 described Ustilago, derived from the Latin ustilare (to burn), was named species (Vánky 2011b). These three genera belong to the by Persoon (1801) for the blackened appearance of the inflores- family Ustilaginaceae, which mostly infect grasses (Begerow cence in infected plants, as seen in the type species U.