Spatial Analysis, Modelling and Planning

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Analysis, Modelling and Planning Edited by Jorge Rocha and José António Tenedório Spatial Analysis, Modelling and Planning New powerful technologies, such as geographic information systems (GIS), have been evolving and are quickly becoming part of a worldwide emergent digital infrastructure. Spatial analysis is becoming more important than ever because enormous volumes of Spatial Analysis, spatial data are available from different sources, such as social media and mobile phones. When locational information is provided, spatial analysis researchers can use it to calculate statistical and mathematical relationships through time and space. Modelling and Planning This book aims to demonstrate how computer methods of spatial analysis and modeling, integrated in a GIS environment, can be used to better understand reality and give rise to more informed and, thus, improved planning. It provides a comprehensive discussion of Edited by Jorge Rocha and José António Tenedório spatial analysis, methods, and approaches related to planning. ISBN 978-1-78984-239-5 Published in London, UK © 2018 IntechOpen © eugenesergeev / iStock SPATIAL ANALYSIS, MODELLING AND PLANNING Edited by Jorge Rocha and José António Tenedório SPATIAL ANALYSIS, MODELLING AND PLANNING Edited by Jorge Rocha and José António Tenedório Spatial Analysis, Modelling and Planning http://dx.doi.org/10.5772/intechopen.74452 Edited by Jorge Rocha and José António Tenedório Contributors Ana Cristina Gonçalves, Adélia Sousa, Lenwood Hall, Ronald Anderson, Khalid Al-Ahmadi, Andreas Rienow, Frank Thonfeld, Nora Schneevoigt, Diego Montenegro, Ana Da Cunha, Ingrid Machado, Lili Duraes, Stefan Vilges De Oliveira, Marcel Pedroso, Gilberto Gazêta, Reginaldo Brazil, Brooks C Pearson, Brian Ways, Valentina Svalova, Andreas Koch, Hélder Lopes, Paula Remoaldo, Vítor Ribeiro, Toshiaki Ichinose, Norman Schofield, Fred Bidandi, John James Williams, Jorge Rocha, José António Tenedório © The Editor(s) and the Author(s) 2018 The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department ([email protected]). Violations are liable to prosecution under the governing Copyright Law. Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not be included under the Creative Commons license. In such cases users will need to obtain permission from the license holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be found at http://www.intechopen.com/copyright-policy.html. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. First published in London, United Kingdom, 2018 by IntechOpen IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, registration number: 11086078, The Shard, 25th floor, 32 London Bridge Street London, SE19SG – United Kingdom Printed in Croatia British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Additional hard copies can be obtained from [email protected] Spatial Analysis, Modelling and Planning, Edited by Jorge Rocha and José António Tenedório p. cm. Print ISBN 978-1-78984-239-5 Online ISBN 978-1-78984-240-1 Spatial Analysis, Modelling and Planning http://dx.doi.org/10.5772/intechopen.74452 We are IntechOpen, Edited by Jorge Rocha and José António Tenedório Contributors Ana Cristina Gonçalves, Adélia Sousa, Lenwood Hall, Ronald Anderson, Khalid Al-Ahmadi, Andreas Rienow, Frank the world’s leading publisher of Thonfeld, Nora Schneevoigt, Diego Montenegro, Ana Da Cunha, Ingrid Machado, Lili Duraes, Stefan Vilges De Oliveira, Marcel Pedroso, Gilberto Gazêta, Reginaldo Brazil, Brooks C Pearson, Brian Ways, Valentina Svalova, Andreas Koch, Hélder Lopes, Paula Remoaldo, Vítor Ribeiro, Toshiaki Ichinose, Norman Schofield, Fred Bidandi, John James Williams, Jorge Rocha, José António Tenedório Open Access books © The Editor(s) and the Author(s) 2018 The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole (compilation) Built by scientists, for scientists cannot be reproduced, distributed or used for commercial or non-commercial purposes without INTECHOPEN LIMITED’s written permission. Enquiries concerning the use of the book should be directed to INTECHOPEN LIMITED rights and permissions department ([email protected]). Violations are liable to prosecution under the governing Copyright Law. Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 3,900+ 116,000+ 120M+ Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided Open access books available International authors and editors Downloads the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not be included under the Creative Commons license. In such cases users will need to obtain permission from the license holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be found at http://www.intechopen.com/copyright-policy.html. Notice Our authors are among the Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 151 Top 1% 12.2% use of any materials, instructions, methods or ideas contained in the book. Countries delivered to most cited scientists Contributors from top 500 universities First published in London, United Kingdom, 2018 by IntechOpen IntechOpen is the global imprint of INTECHOPEN LIMITED, registered in England and Wales, registration number: 11086078, The Shard, 25th floor, 32 London Bridge Street London, SE19SG – United Kingdom Printed in Croatia British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Additional hard copies can be obtained from [email protected] Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Spatial Analysis, Modelling and Planning, Edited by Jorge Rocha and José António Tenedório p. cm. Print ISBN 978-1-78984-239-5 Online ISBN 978-1-78984-240-1 Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Meet the editors Jorge Rocha is a geographer and was born in Lisbon in 1970. He has an MSc in Geographic Information Sys- tems (2003) and in Spatial Planning (2013) and a PhD in Geographic Information Science (2012). He is currently an Assistant Professor at the Institute of Geography and Spatial Planning and a member of the Modelling, Urban and Regional Planning, and Environmental Hazard and Risk Assessment and Management research groups at the Centre of Geo- graphical Studies, all at the University of Lisbon. His fields of expertise are Geosimulation and Geocomputation involving Artificial Neural Networks, Graphs Theory, Cellular Automata, and Multi-agent Systems. Jorge’s works are quite diverse, focusing mainly on, but not exclusively, in Urban Morphology, Remote Sensing, Epidemiology, Health Geography, Smart Cities and Big Data (Geomarketing and Tourism). José António Tenedório is a geographer and an associate professor at the Universidade NOVA de Lisboa, NOVA FCSH, Lisbon, Portugal. He is also a Visiting Professor at Polytechnic University of Catalonia, Barcelona Tech, Barcelona School of Architecture (ETSAB), Spain. He graduated with a degree in Geography and Regional Planning. He attended the Sorbonne University, Faculty of Sciences (UPMC), where he undertook postgraduate studies (DESS) in Remote Sensing. At the University of Paris-Est Créteil (UPEC), he obtained his PhD in Urbanism. His main scientific areas of research are Urban Remote Sensing, Spatial Analysis, and Geographical Modeling. He has published more than one hundred papers (book chapters, papers in pe- riodicals with scientific refereeing, and papers in conference proceedings with scientific refereeing). He was won the first prize in the SANTANDER Award for the Internationalization of the NOVA FCSH Scientific Produc- tion (2013
Recommended publications
  • Science-Based Target Setting Manual Version 4.1 | April 2020
    Science-Based Target Setting Manual Version 4.1 | April 2020 Table of contents Table of contents 2 Executive summary 3 Key findings 3 Context 3 About this report 4 Key issues in setting SBTs 5 Conclusions and recommendations 5 1. Introduction 7 2. Understand the business case for science-based targets 12 3. Science-based target setting methods 18 3.1 Available methods and their applicability to different sectors 18 3.2 Recommendations on choosing an SBT method 25 3.3 Pros and cons of different types of targets 25 4. Set a science-based target: key considerations for all emissions scopes 29 4.1 Cross-cutting considerations 29 5. Set a science-based target: scope 1 and 2 sources 33 5.1 General considerations 33 6. Set a science-based target: scope 3 sources 36 6.1 Conduct a scope 3 Inventory 37 6.2 Identify which scope 3 categories should be included in the target boundary 40 6.3 Determine whether to set a single target or multiple targets 42 6.4 Identify an appropriate type of target 44 7. Building internal support for science-based targets 47 7.1 Get all levels of the company on board 47 7.2 Address challenges and push-back 49 8. Communicating and tracking progress 51 8.1 Publicly communicating SBTs and performance progress 51 8.2 Recalculating targets 56 Key terms 57 List of abbreviations 59 References 60 Acknowledgments 63 About the partner organizations in the Science Based Targets initiative 64 Science-Based Target Setting Manual Version 4.1 -2- Executive summary Key findings ● Companies can play their part in combating climate change by setting greenhouse gas (GHG) emissions reduction targets that are aligned with reduction pathways for limiting global temperature rise to 1.5°C or well-below 2°C compared to pre-industrial temperatures.
    [Show full text]
  • Information Visualization Lecture 5
    Information Visualization Lecture 5 IVIS15 Skylike (link to project, link to video) Mario Romero 2016/02/02 Proposal for Skylike IVIS15 Skylike proposal on Feb 13, 2015: “make night sky constellations from your network of friends.” 2016-02-02 IVIS16 L5 2 Feedback to Proposal: link to presentation PDF Diana, Andrés, Willie, Tomáš, Johanna: Your proposal is ambitious in some aspects and unclear in others. It is ambitious in its plan to compute constellations from network graphs. What is a constellation mathematically? You will need graph theory, a sophisticated data transformation. How many stars and links for a typical constellation? Why? Are there families of constellations? How do you represent the constellations within the network? What are the view transformations? How do you provide overview, zooming, filtering, details on demand? You need to focus. Who is your user? What are the tasks? Where do you get your raw data? You need refine your ideas. Using the 4K screen with the kinect may work. 2016-02-02 IVIS16 L5 3 Skylikes feedback to ”Hello World” Demo Diana, Andrés, Willie, Tomáš, Johanna: Your choice of focusing on Goodreads is wise. Your Hello World demo worked very well and it gave your classmates a concrete opportunity to provide actionable feedback. Good work. Your challenge remains the graph theory to compute reasonable constellations in the number of stars and edges and their location. For example, should you strive for planar graphs? How many nodes and edges? Where do you place the cut off? Also, you have to think about your query system and the permanence of the constellations across users, sessions, and networks of friends.
    [Show full text]
  • Semantic Foundation of Diagrammatic Modelling Languages
    Universität Leipzig Fakultät für Mathematik und Informatik Institut für Informatik Johannisgasse 26 04103 Leipzig Semantic Foundation of Diagrammatic Modelling Languages Applying the Pictorial Turn to Conceptual Modelling Diplomarbeit im Studienfach Informatik vorgelegt von cand. inf. Alexander Heußner Leipzig, August 2007 betreuender Hochschullehrer: Prof. Dr. habil. Heinrich Herre Institut für Medizininformatik, Statistik und Epidemologie (I) Härtelstrasse 16–18 04107 Leipzig Abstract The following thesis investigates the applicability of the picto- rial turn to diagrammatic conceptual modelling languages. At its heart lies the question how the “semantic gap” between the for- mal semantics of diagrams and the meaning as intended by the modelling engineer can be bridged. To this end, a pragmatic ap- proach to the domain of diagrams will be followed, starting from pictures as the more general notion. The thesis consists of three parts: In part I, a basic model of cognition will be proposed that is based on the idea of conceptual spaces. Moreover, the most central no- tions of semiotics and semantics as required for the later inves- tigation and formalization of conceptual modelling will be intro- duced. This will allow for the formalization of pictures as semi- otic entities that have a strong cognitive foundation. Part II will try to approach diagrams with the help of a novel game-based F technique. A prototypical modelling attempt will reveal basic shortcomings regarding the underlying formal foundation. It will even become clear that these problems are common to all current conceptualizations of the diagram domain. To circumvent these difficulties, a simple axiomatic model will be proposed that allows to link the findings of part I on conceptual modelling and formal languages with the newly developed con- cept of «abstract logical diagrams».
    [Show full text]
  • Health Geography: Supporting Public Health Policy and Planning
    Commentary Public health Health geography: supporting public health policy and planning Trevor J. B. Dummer PhD eography and health are intrinsically linked. Where equalities and polarization, scale, globalization and urbaniza- we are born, live, study and work directly influ- tion,6 are directly related to public health. The scope and breadth G ences our health experiences: the air we breathe, of health geography research is diverse and wide-ranging, and the food we eat, the viruses we are exposed to and the health examples of some common research areas relevant to public services we can access. The social, built and natural environ- health policy are provided in Table 1. These research areas are ments affect our health and well-being in ways that are dir- not mutually exclusive and some of the examples span multiple ectly relevant to health policy. Spatial location (the geo- areas and themes. In the paragraphs that follow, we discuss graphic context of places and the connectedness between these research themes in more detail to provide insight into the places) plays a major role in shaping environmental risks as role of health geography in public health. well as many other health effects.1 For example, locating health care facilities, targeting public health strategies or Spatial scale, globalization and urbanization monitoring disease outbreaks all have a geographic context. Concern with scales of organization is crucial to health ser- vice provision and public health implementation. For in- What is health geography? stance, global issues, such as environmental change, demo- graphic transition and the internationalization of health Health geography is a subdiscipline of human geography, service organization, all have geographic contexts that dir- which deals with the interaction between people and the ectly influence health policy.6 Global patterns in infectious environment.
    [Show full text]
  • Coronavirus Control Plan: Revised Alert Levels in Wales (March 2021) Coronavirus Control Plan: Revised Alert Levels in Wales 2
    Coronavirus Control Plan: Revised Alert Levels in Wales (March 2021) Coronavirus Control Plan: Revised Alert Levels in Wales 2 Ministerial Foreword The coronavirus pandemic has turned all our lives upside down. Over the last 12 months, everyone in Wales has made sacrifices to help protect themselves and their families and help bring coronavirus under control. This is a cruel virus – far too many families have lost loved ones, and unfortunately, we know that many more people will fall seriously ill and sadly will die before the pandemic is over. But the way people and communities have pulled together across Wales, and followed the rules, has undoubtedly saved many more lives. We are now entering a critical phase in the pandemic. We can see light at the end of the tunnel as we approach the end of a long and hard second wave, thanks to the incredible efforts of scientists and researchers across the world to develop effective vaccines. Our amazing vaccination programme has made vaccines available to people in the most at-risk groups at incredible speed. But just as we are rolling out vaccination, we are facing a very different virus in Wales today. The highly-infectious variant, first identified in Kent, is now dominant in all parts of Wales. This means the protective behaviours we have all learned to adopt are even more important than ever – getting tested and isolating when we have symptoms; keeping our distance from others; not mixing indoors; avoiding crowds; washing our hands regularly and wearing face coverings in places we cannot avoid being in close proximity with each other.
    [Show full text]
  • System for Electrochemical Analysis and Visualization
    An Object Orïented Infrastructure for the Development of a Computer Modeling System for Electrochemical Analysis and Visualization by Eric Marcuzzi A Thesis Submitted to the Faculty of Graduate Studies and Research through the School of Computer Science in Partial Fulfillment of the Requirernents for the Degree of Master of Science at the Univers@ of Windsor Windsor, Ontario, Canada 1997 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services senrices bibliographiques 395 WelliStreet 395. rue Wellmgton OttayiliaON K1A ON4 OttawON K1AW carlada canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loaq distriiute or sell reproduire, prêter, distncbuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor subsîantial extracts fiom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. O Eric Marcuzzi 1997 ABSTRACT In this thesis a partial system design and implementation for a computer modelhg system, the VPMS (Vimial Proto-ping, Modelling and Simulation) system. which supports exteiisibility, reusability, distributivity and openness, is presented. This system identifies and cornpartmentahes modelling system functionaliry, such as numerical modelling and scientific visualization.
    [Show full text]
  • Geography of Health What Is the Geography of Health?
    Geography of Health What is the geography of health? The geography of health, some)mes called medical geography, uses the tools and approaches of geography to tackle health-related quesons. Geographers focus on the importance of variaons across space, with an emphasis on concepts such as locaon, direc)on, and place. Photo by Helen Hazen In thinking spaally, geographers dis)nguish between space, which is concerned with locang where things are, and place, which refers to the cultural meaning of a par)cular seng. Both these aspects of geography inform health geographers’ work. Spaal ques)ons consider Ques)ons related to how and why things are place consider how distributed or connected in cultural construc)ons the way they are. of a place influence the people who live there. What is the geography of health? Some ques)ons posed by a health geographer could include: How does a par)cular environment influence health? How does human ac)vity affect health in different locaons? How does disease spread across space? How do people’s interac)ons with and feelings about a par)cular place influence their health? 4 Which of these three factors seems Beyond these physical factors, to be the most what else might help explain closely related to the distribuon of malaria? malaria? Elevaon Rainfall Temperatur e Approaches to Health Geography Tradi)onally, health geographers have referred to their sub-discipline as “medical geography.” Recently, a group of cri)cal scholars has argued that this term emphasizes biomedical approaches to health over others. Today, many health geographers use the term “health geography” for their sub-discipline, in recogni)on of its emphasis on social as well as biomedical aspects of health.
    [Show full text]
  • Models: Bringing Real-World Phenomena to School
    BACK TO SCHOOL 2020 Models: Bringing Real-World Phenomena to School Whether learning in a physical or virtual classroom, using models helps students understand real-world phenomena— like COVID-19—and solve problems related to phenomena. hanks in large part to the power of model-based science, we are in a far better place than any generation “Tbefore us to deal successfully and efficiently with a pandemic of this scale.” That statement about the COVID-19 pandemic is from Rachael L. Brown, director of the Centre for Philosophy of the Sciences, Australian National University (Brown 2020). It highlights the value of scientific modeling in making complex issues that impact the world easier to understand— to define, quantify, and visualize. Modeling is a key process for both scientists and engineers. Models represent a system (or parts of a system) and its interactions—such as inputs, processes, and outputs—and can be modified or refined with new evidence or new test results. • Scientists use models to help develop questions and explanations, generate data that can be used to make predictions, and communicate ideas to others (NSTA 2014). • Engineers use models to help analyze a system to see where or under what conditions flaws might develop or to test possible solutions to a program (NSTA 2014). Carolina Biological Supply Company A meteorologist gathers data at an observation station. For example, an epidemiology-driven machine- in activities—including creating models—they learning model is just one of the models are better equipped to share their knowledge, developed to predict the spread of COVID-19 engineer solutions to problems that arise from (UCLA Samueli Newsroom 2020).
    [Show full text]
  • Current Strategies for Reducing Recidivism
    CURRENT STRATEGIES FOR REDUCING RECIDIVISM LISE MCKEAN, PH.D. CHARLES RANSFORD CENTER FOR IMPACT RESEARCH AUGUST 2004 ACKNOWLEDGEMENTS PROJECT FUNDER Chicago Community Organizing Capacity Building Initiative PROJECT PARTNERS Developing Justice Coalition Coalition Members ACORN Ambassadors for Christ Church Brighton Park Neighborhood Council Chicago Coalition for the Homeless Community Renewal Society Developing Communities Project Foster Park Neighborhood Council Garfield Area Partnership Global Outreach Ministries Inner-City Muslim Action Network Northwest Neighborhood Federation Organization of the North East Protestants for the Common Good SERV-US Southwest Organizing Project Target Area Development Corp. West Side Health Authority Center for Impact Research Project Staff Lise McKean, Ph.D., Project Director Charles Ransford 2 TABLE OF CONTENTS EXECUTIVE SUMMARY……………………………………………… 4 INTRODUCTION …………………………...……………………….. 8 STUDY DESIGN……………………………………………………… 9 DEFINING RECIDIVISM……………………………………………… 11 FINDINGS ON PROGRAMS ………………………………………….. 15 Treatment Programs………………………………………….. 15 Educational Programs……………………………………....... 18 Employment Programs………………………………………. 19 Other Types of Programs……………………………….......... 21 RECOMMENDATIONS …………..…………………………………… 24 APPENDIX…..………………………………………………………. 27 3 CURRENT STRATEGIES FOR REDUCING RECIDIVISM Lise McKean, Ph.D., and Charles Ransford Center for Impact Research August 2004 EXECUTIVE SUMMARY Recidivism is the relapse into criminal activity and is generally measured by a former prisoner’s return to prison for a new offense. Rates of recidivism reflect the degree to which released inmates have been rehabilitated and the role correctional programs play in reintegrating prisoners into society. The rate of recidivism in the U.S. is estimated to be about two-thirds, which means that two-thirds of released inmates will be re-incarcerated within three years. High rates of recidivism result in tremendous costs both in terms of public safety and in tax dollars spent to arrest, prosecute, and incarcerate re-offenders.
    [Show full text]
  • THE ROLE of CARTOGRAPHY in DESIGNING a GLOBAL SAMPLING FRAMEWORK for Envmonmental MONITORING
    ORAL PRESENTATION 314 THE ROLE OF CARTOGRAPHY IN DESIGNING A GLOBAL SAMPLING FRAMEWORK FOR ENVmONMENTAL MONITORING A. Jon Kimerling Denis White Department Of Geosciences Oregon State University Corvallis, OR 97331 USA Abstract Environmental monitoring and assessment is becoming a global activity as our concern with and understanding of global scale environmental issues increases. Additionally, international economic agreements such as GATT and NAFTA now include environmental compliance regulations. Scientists at the U.S. Environmental Protection Agency (EPA) and similar organizations in other countries are now asking cartographers and GIS experts if there exist global geographical data structures that will allow optimal implementation of survey sample designs, modeling of environmental processes, analyses of sampling and related data, and display of results. In this paper we examine the role that cartographers in the' United States have played in the development of global grid sampling frameworks for environmental monitoring and analysis, an EPA sponsored activity .. First and foremost, cartographers have played a lead role in devising ways to define a set of regularly arranged sampling points covering the entire earth. The problem is to approximate as closely as possible a regularly spaced sampling grid. This is because not more than 12 points, the vertices of an icosahedron projected onto a sphere, can be placed on the earth equidistantly. One approach has been to model the earth as a polyhedral globe, with each face of the polyhedron being a map projection surface that optimizes the generation of a large set of approximately reguhirly spaced sampling points. Equal area and other projections have been developed for the faces of the octahedron and icosahedron.
    [Show full text]
  • The Language of Spatial ANALYSIS CONTENTS
    The Language of spatial ANALYSIS CONTENTS Foreword How to use this book Chapter 1 An introduction to spatial analysis Chapter 2 The vocabulary of spatial analysis Understanding where Measuring size, shape, and distribution Determining how places are related Finding the best locations and paths Detecting and quantifying patterns Making predictions Chapter 3 The seven steps to successful spatial analysis Chapter 4 The benefits of spatial analysis Case study Bringing it all together to solve the problem Reference A quick guide to spatial analysis Additional resources FOREWORD Watching the GIS industry grow for more than 25 years, I have seen innovation in the problems we solve, the people we can reach through technology, the stories we tell, and the decisions that help make our organizations and the world more successful. However, what has not changed is our longstanding goal to better understand our world through spatial analysis. Traveling the world I have met people from many diverse cultures who work in a wide range of industries. However, as I listen to their mission and challenges, there is a common pattern: we all speak the same language—it is the language of spatial analysis. This language consists of a core set of questions that we ask, a taxonomy that organizes and expands our understanding, and the fundamental steps to spatial analysis that embody how we solve spatial problems. I encourage each of you to learn and communicate to the world the power of spatial analysis. Learn the definition, learn the vocabulary and the process, and most important, be able to speak this language to the world.
    [Show full text]
  • A Curriculum Guide
    FOCUS ON PHOTOGRAPHY: A CURRICULUM GUIDE This page is an excerpt from Focus on Photography: A Curriculum Guide Written by Cynthia Way for the International Center of Photography © 2006 International Center of Photography All rights reserved. Published by the International Center of Photography, New York. Printed in the United States of America. Please credit the International Center of Photography on all reproductions. This project has been made possible with generous support from Andrew and Marina Lewin, the GE Fund, and public funds from the New York City Department of Cultural Affairs Cultural Challenge Program. FOCUS ON PHOTOGRAPHY: A CURRICULUM GUIDE PART IV Resources FOCUS ON PHOTOGRAPHY: A CURRICULUM GUIDE This section is an excerpt from Focus on Photography: A Curriculum Guide Written by Cynthia Way for the International Center of Photography © 2006 International Center of Photography All rights reserved. Published by the International Center of Photography, New York. Printed in the United States of America. Please credit the International Center of Photography on all reproductions. This project has been made possible with generous support from Andrew and Marina Lewin, the GE Fund, and public funds from the New York City Department of Cultural Affairs Cultural Challenge Program. FOCUS ON PHOTOGRAPHY: A CURRICULUM GUIDE Focus Lesson Plans Fand Actvities INDEX TO FOCUS LINKS Focus Links Lesson Plans Focus Link 1 LESSON 1: Introductory Polaroid Exercises Focus Link 2 LESSON 2: Camera as a Tool Focus Link 3 LESSON 3: Photographic Field
    [Show full text]