Mesovoid Shallow Substratum As a Biodiversity Hotspot for Conservation Priorities: Analysis of Oribatid Mite (Acari: Oribatida) Fauna Ioana Nae, Raluca Ioana Băncilă

Total Page:16

File Type:pdf, Size:1020Kb

Mesovoid Shallow Substratum As a Biodiversity Hotspot for Conservation Priorities: Analysis of Oribatid Mite (Acari: Oribatida) Fauna Ioana Nae, Raluca Ioana Băncilă Mesovoid shallow substratum as a biodiversity hotspot for conservation priorities: analysis of oribatid mite (Acari: Oribatida) fauna Ioana Nae, Raluca Ioana Băncilă To cite this version: Ioana Nae, Raluca Ioana Băncilă. Mesovoid shallow substratum as a biodiversity hotspot for conser- vation priorities: analysis of oribatid mite (Acari: Oribatida) fauna. Acarologia, Acarologia, 2017, 57 (4), pp.855-868. 10.24349/acarologia/20174202. hal-01598394 HAL Id: hal-01598394 https://hal.archives-ouvertes.fr/hal-01598394 Submitted on 29 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACAROLOGIA A quarterly journal of acarology, since 1959 Publishing on all aspects of the Acari All information: http://www1.montpellier.inra.fr/CBGP/acarologia/ [email protected] Acarologia is proudly non-profit, with no page charges and free open access Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari. Subscriptions: Year 2017 (Volume 57): 380 € http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php Previous volumes (2010-2015): 250 € / year (4 issues) Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01) Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. Acarologia 57(4): 855-868 (2017) DOI: 10.24349/acarologia/20174202 Mesovoid shallow substratum as a biodiversity hotspot for conservation priorities: analysis of oribatid mite (Acari: Oribatida) fauna Ioana NAE1,2B and Raluca Ioana BANCIL˘ A˘ 1,3 (Received 09 October 2016; accepted 12 April 2017; published online 06 July 2017; edited by Ekaterina SIDORCHUK) 1"Emil Racovi¸t˘a"Institute of Speleology of Romanian Academy, 13 Septembrie Road, No. 13, 050711, Bucharest, Romania. 2University of Bucharest, Faculty of Biology, Splaiul Independentei 91-95, Bucharest, R-050095, Romania. (B) [email protected] 3University Ovidius Constan¸ta,Faculty of Natural Sciences, Al. Universit˘a¸tii,corp B, Constan¸ta,Romania. [email protected] ABSTRACT — The mesovoid shallow substratum (MSS) is a unique habitat that shelters and serves as a microrefuge for epigean, endogean and hypogean invertebrate species. Understanding the MSS community0s spatio-temporal structure and species diversity patterns in relation to environmental parameters plays a crucial role in conservation. In this study we investigated: i) the diversity and community structure of oribatid mites from the edaphic habitat, superficial MSS (i.e., the upper layer of MSS) and deep MSS (i.e., lower layer of MSS) in an alpine region of Southern Carpathians, Romania, and ii) the relationships between the oribatid mite communities and the environmental variables, such as temperature and humidity. The composition and the structure of oribatid communities differed along the three habitats indicating possible habitat specialization. The structure of the oribatid community was influenced by temperature and humidity. The rich and mixed oribatid communities in the MSS and the oribatid communities0 response to surface and subsurface environmental variables suggest that the MSS may offer a micro-refuge for edaphic species when the conditions in the surface habitats become too harsh. Thus, we suggest that MSS should be prioritized for conservation because it may be a key component in maintaining biodiversity. KEYWORDS — community structure; conservation; diversity; edaphic habitat; MSS; oribatid mites ZOOBANK — 6274E042-BBA1-44B9-B1CE-9DA5BE36EABE INTRODUCTION e.g. Mesovoid Shallow Substratum (MSS) commu- nities are less known. Described in 1980 as ”Mil- Exploring how community composition and diver- lieu Souterrain Superficiel”, MSS is an intermediate sity change across spatial and temporal scales is im- habitat between the base of the soil and the bedrock. portant for biodiversity conservation as it explains It is composed by a network of small cracks and the sources of diversity and the processes that cre- voids and is commonly situated in the lower levels ate or maintain diversity (Veech et al. 2002; Ger- of scree slopes (Juberthie et al. 1980; Juberthie 1983). ing et al. 2003; Noda 2004). Work in this field of research using oribatid mite species has mostly fo- The MSS’s particular environmental conditions, cused on species-area relationships or arboreal com- i.e., absence of light and photoperiod, low temper- munities (Maraun and Scheu 2000; Kaneko et al. ature fluctuations (Culver and Pipan 2014), very 2005; Fischer et al. 2010). Subsoil compartments, high humidity (Giachino and Vailati 2010) and bi- http://www1.montpellier.inra.fr/CBGP/acarologia/ 855 ISSN 0044-586-X (print). ISSN 2107-7207 (electronic) Nae I. and B˘ancil˘aR.I. directional flux of organic material (Culver and Pi- important karst areas in Romania (Nitzu et al. 2014). pan 2014) make it a unique habitat that shelters Piatra Craiului Massif is a 20 km2 limestone ridge and serves as a microrefuge for epigean, endo- with more than 500 caves and diverse types of talus gean and hypogean invertebrate species (Nitzu et and scree slopes, both covered and open (see Culver al. 2014). Therefore, understanding the MSS com- and Pipan 2014). munity structure and diversity as related to spatio- Three sampling sites were selected: (1) Cerdacul temporal variation of environmental factors is im- Stanciului – a mobile limestone scree situated near portant. Stanciului Cave; (2) Marele Grohotis, – the largest Recent studies revealed that the MSS is inhab- mobile nude limestone scree accumulation from Pi- ited predominantly by oribatid mites (Skubała et al. atra Craiului Massif; and (3) Valea Seac˘a– a stabi- 2013). Oribatid mites are distributed worldwide, in- lized type of MSS, covered by forest (spruce and cluding the alpine regions, and are one of the richest beech). and most abundant of the Acari taxa in soils with Cerdacul Stanciului and Marele Grohotis, are high content of decaying organic matter (Krantz sub-alpine habitats, classified as "calcareous and and Walter 2009). Oribatid abundance is influenced calcashist screes of the montane to alpine levels – by environmental variables such as temperature Thlaspietea rotundifolii" (Donit, ˘a et al. 2005) and are and humidity (Culver and Pipan 2014, Mumladze et listed in the 8210 habitat types following Natura al. 2015, Pipan et al. 2011). There is limited informa- 2000 habitats classification. Valea Seac˘ais a R6111 tion on oribatid mites from MSS, and the patterns type of habitat – Carpathian South-East commu- and drivers of their diversity and community struc- nities of fixed screes with Geranium macrrorhizum, et al. ture are poorly understood (Jiménez-Valverde Sedum fabaria and Geranium lucidum (Donit, ˘a et al. 2015). Although the interest in evaluating the im- 2005). portance of the MSS as a hot spot for invertebrate di- All Oribatida material used in this study was col- versity increased in the last years (Nae and Ilie 2004; lected as a part of a broader study concerning the Nitzu et al. 2006; Nitzu et al. 2010; Nitzu et al. 2014; diversity of epigeal invertebrates, commonly bee- Pipan et al. 2011), there is little information on ori- tles and wandering spiders (Nitzu et al. 2014). Pit- batid community structure and spatio-temporal dy- fall traps were used to collect invertebrates from namics in these environments (Skubała et al. 2013). edaphic habitat (EDAF), and drillings for MSS In this study we aim to investigate: i) the diver- (López and Oromi 2010). Pitfall traps might not be sity and community structure of oribatid mites from the most effective sampling technique for oribatid edaphic environment, superficial MSS (i.e., the up- mites, as the traps sample surface-active inverte- per layer of MSS) and deep MSS (i.e., lower layer brates, estimating the abundance of each species as of MSS) in a sub-alpine region in the Piatra Craiu- a function of its activity during the sampling period lui National Park, Southern Carpathians, Romania; and population density in the habitat (Brown and ii) the relationships between the environmental vari- Matthews 2016). Thus this study provides data on ables, such as temperature and humidity, and diver- oribatid species activity-density, i.e., the abundance sity and community structure of oribatid mites. We of a species in pitfall traps is an unknown function discuss the results in the context of increased inter- of that species’ surface activity and density in the est in studying MSS habitats from an ecological per- surrounding habitat, but for simplicity we refer to spective, and we provide here a first comprehensive oribatid mite “abundance” throughout the paper. study on the oribatid mite communities in MSS. The MSS was sampled at two depths: 0.5 m – the superficial MSS (SMSS) and 0.75 m – the deep MSS MATERIALS AND METHODS (DMSS). The MSS at each sampling site was sam- pled at two altitudes: Cerdacul Stanciului at 1637 m The study area is located in the Piatra Craiului Na- and 1672 m, Marele Grohotis, at 1579 m and 1580 m tional Park, Southern Carpathians, one of the most and Valea Seac˘aat 1087 m and 1200 m, respectively 856 Acarologia 57(4): 855-868 (2017) (Table 1). However, the drilling at 1200 m was lost once a month from April to November (8 months), (represented by missing values (-) in Table 1).
Recommended publications
  • Ecology of Soil Microarthropods in Gobi Gurvan Saykhan Mountains, Southern Mongolia Tsedev Bolortuya National University of Mongolia
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2005 Ecology of Soil Microarthropods in Gobi Gurvan Saykhan Mountains, Southern Mongolia Tsedev Bolortuya National University of Mongolia Badamdorj Bayartogtokh National University of Mongolia, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Desert Ecology Commons, Environmental Sciences Commons, Nature and Society Relations Commons, Other Animal Sciences Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Bolortuya, Tsedev and Bayartogtokh, Badamdorj, "Ecology of Soil Microarthropods in Gobi Gurvan Saykhan Mountains, Southern Mongolia" (2005). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 120. http://digitalcommons.unl.edu/biolmongol/120 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. In: Proceedings of the symposium ”Ecosystem Research in the Arid Environments of Central Asia: Results, Challenges, and Perspectives,” Ulaanbaatar, Mongolia, June 23-24, 2004. Erforschung biologischer Ressourcen der Mongolei (2005) 5. Copyright 2005, Martin-Luther-Universität. Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2005 (9): 53–58 Ecology of soil microarthropods in Gobi Gurvan Saykhan mountains, southern Mongolia Ts.
    [Show full text]
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • The Canopy Arthropods of Old and Mature Pine Pinus Sylvestris in Norway
    ECOGRAPHY 26: 490–502, 2003 The canopy arthropods of old and mature pine Pinus syl7estris in Norway Karl H. Thunes, John Skarveit and Ivar Gjerde Thunes, K. H., Skarveit, J. and Gjerde, I. 2003. The canopy arthropods of old and mature pine Pinus syl6estris in Norway. – Ecography 26: 490–502. We fogged 24 trees in two pine dominated forests in Norway with a synthetic pyrethroid in order to compare the canopy-dwelling fauna of arthropods between costal (Kvam) and boreal (Sigdal) sites and between old (250–330 yr) and mature (60–120 yr) trees at Sigdal. Almost 30 000 specimens were assigned to 510 species; only 93 species were present at both sites. Species diversity, as established by rarefaction, was similar in old and mature trees. However, the number of species new to Norway (including nine species new to science) was significantly higher in the old trees. We suggest that the scarcity of old trees, habitat heterogeneity and structural differences between old and mature trees may explain these patterns. Productivity and topographic position at the site of growth explained the between-tree variation in species occurrence for the more abundant species, which were mainly Collembola and Oribatida. Species diversity was similar at the boreal and coastal sites, but there were clear differences in species composition. K. H. Thunes ([email protected]) and I. Gjerde, Norwegian Forest Research Inst., Fanaflaten 4, N-5244 Fana, Norway.–J. Skart6eit, Museum of Zoology, Uni6. of Bergen, Muse´plass 3, N-5007 Bergen, Norway, (present address: Dept of Ecology and Conser6ation, Scottish Agricultural College, Ayr Campus, Auchincrui6e Estate, Ayr, Scotland KA65HW.
    [Show full text]
  • (Acari: Oribatida) in the Grassland Habitats of Eastern Mongolia Badamdorj Bayartogtokh National University of Mongolia, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Erforschung biologischer Ressourcen der Mongolei Institut für Biologie der Martin-Luther-Universität / Exploration into the Biological Resources of Halle-Wittenberg Mongolia, ISSN 0440-1298 2005 Biodiversity and Ecology of Soil Oribatid Mites (Acari: Oribatida) in the Grassland Habitats of Eastern Mongolia Badamdorj Bayartogtokh National University of Mongolia, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/biolmongol Part of the Asian Studies Commons, Biodiversity Commons, Desert Ecology Commons, Environmental Sciences Commons, Nature and Society Relations Commons, Other Animal Sciences Commons, Terrestrial and Aquatic Ecology Commons, and the Zoology Commons Bayartogtokh, Badamdorj, "Biodiversity and Ecology of Soil Oribatid Mites (Acari: Oribatida) in the Grassland Habitats of Eastern Mongolia" (2005). Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298. 121. http://digitalcommons.unl.edu/biolmongol/121 This Article is brought to you for free and open access by the Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Erforschung biologischer Ressourcen der Mongolei / Exploration into the Biological Resources of Mongolia, ISSN 0440-1298 by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. In: Proceedings of the symposium ”Ecosystem Research in the Arid Environments of Central Asia: Results, Challenges, and Perspectives,” Ulaanbaatar, Mongolia, June 23-24, 2004. Erforschung biologischer Ressourcen der Mongolei (2005) 5. Copyright 2005, Martin-Luther-Universität. Used by permission. Erforsch. biol. Ress. Mongolei (Halle/Saale) 2005 (9): 59–70 Biodiversity and Ecology of Soil Oribatid Mites (Acari: Oribatida) in the Grassland Habitats of Eastern Mongolia B.
    [Show full text]
  • The Armoured Mite Fauna (Acari: Oribatida) from a Long-Term Study in the Scots Pine Forest of the Northern Vidzeme Biosphere Reserve, Latvia
    FRAGMENTA FAUNISTICA 57 (2): 141–149, 2014 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2014.57.2.141 The armoured mite fauna (Acari: Oribatida) from a long-term study in the Scots pine forest of the Northern Vidzeme Biosphere Reserve, Latvia 1 2 1 Uģis KAGAINIS , Voldemārs SPUNĢIS and Viesturs MELECIS 1 Institute of Biology, University of Latvia, 3 Miera Street, LV-2169, Salaspils, Latvia; e-mail: [email protected] (corresponding author) 2 Department of Zoology and Animal Ecology, Faculty of Biology,University of Latvia, 4 Kronvalda Blvd., LV-1586, Riga, Latvia; e-mail: [email protected] Abstract: In 1992–2012, a considerable amount of soil micro-arthropods has been collected annually as a part of a project of the National Long-Term Ecological Research Network of Latvia at the Mazsalaca Scots Pine forest sites of the North Vidzeme Biosphere Reserve. Until now, the data on oribatid species have not been published. This paper presents a list of oribatid species collected during 21 years of ongoing research in three pine stands of different age. The faunistic records refer to 84 species (including 17 species new to the fauna of Latvia), 1 subspecies, 1 form, 5 morphospecies and 18 unidentified taxa. The most dominant and most frequent oribatid species are Oppiella (Oppiella) nova, Tectocepheus velatus velatus and Suctobelbella falcata. Key words: species list, fauna, stand-age, LTER, Mazsalaca INTRODUCTION Most studies of Oribatida or the so-called armoured mites (Subías 2004) have been relatively short term and/or from different ecosystems simultaneously and do not show long- term changes (Winter et al.
    [Show full text]
  • Biodiversity and Threats in Non-Protected Areas: a Multidisciplinary and Multi-Taxa Approach Focused on the Atlantic Forest
    Heliyon 5 (2019) e02292 Contents lists available at ScienceDirect Heliyon journal homepage: www.heliyon.com Biodiversity and threats in non-protected areas: A multidisciplinary and multi-taxa approach focused on the Atlantic Forest Esteban Avigliano a,b,*, Juan Jose Rosso c, Dario Lijtmaer d, Paola Ondarza e, Luis Piacentini d, Matías Izquierdo f, Adriana Cirigliano g, Gonzalo Romano h, Ezequiel Nunez~ Bustos d, Andres Porta d, Ezequiel Mabragana~ c, Emanuel Grassi i, Jorge Palermo h,j, Belen Bukowski d, Pablo Tubaro d, Nahuel Schenone a a Centro de Investigaciones Antonia Ramos (CIAR), Fundacion Bosques Nativos Argentinos, Camino Balneario s/n, Villa Bonita, Misiones, Argentina b Instituto de Investigaciones en Produccion Animal (INPA-CONICET-UBA), Universidad de Buenos Aires, Av. Chorroarín 280, (C1427CWO), Buenos Aires, Argentina c Grupo de Biotaxonomía Morfologica y Molecular de Peces (BIMOPE), Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina d Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN-CONICET), Av. Angel Gallardo 470, (C1405DJR), Buenos Aires, Argentina e Laboratorio de Ecotoxicología y Contaminacion Ambiental, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (CONICET), Dean Funes 3350, (B7600), Mar del Plata, Argentina f Laboratorio de Biología Reproductiva y Evolucion, Instituto de Diversidad
    [Show full text]
  • Acari: Oribatida) of Canada and Alaska
    Zootaxa 4666 (1): 001–180 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4666.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:BA01E30E-7F64-49AB-910A-7EE6E597A4A4 ZOOTAXA 4666 Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska VALERIE M. BEHAN-PELLETIER1,3 & ZOË LINDO1 1Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, K1A0C6, Canada. 2Department of Biology, University of Western Ontario, London, Canada 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by T. Pfingstl: 26 Jul. 2019; published: 6 Sept. 2019 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 VALERIE M. BEHAN-PELLETIER & ZOË LINDO Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska (Zootaxa 4666) 180 pp.; 30 cm. 6 Sept. 2019 ISBN 978-1-77670-761-4 (paperback) ISBN 978-1-77670-762-1 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2019 Magnolia Press ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4666 (1) © 2019 Magnolia Press BEHAN-PELLETIER & LINDO Table of Contents Abstract ...................................................................................................4 Introduction ................................................................................................5
    [Show full text]
  • Phylogeography in Sexual and Parthenogenetic European Oribatida
    GÖTTINGER ZENTRUM FÜR BIODIVERSITÄTSFORSCHUNG UND ÖKOLOGIE - GÖTTINGEN CENTRE FOR BIODIVERSITY AND ECOLOGY - Phylogeography in sexual and parthenogenetic European Oribatida Dissertation zur Erlangung des akademischen Grades eines Doctor rerum naturalium an der Georg-August Universität Göttingen vorgelegt von Dipl. Biol. Martin Julien Rosenberger aus Langen, Hessen Referent: Prof. Dr. Stefan Scheu Koreferent: PD Dr. Mark Maraun Tag der Einreichung: 21 Oktober 2010 Tag der mündlichen Prüfung: Curriculum Vitae Curriculum Vitae Personal data Name: Martin Julien Rosenberger Address: Brandenburgerstrasse 53, 63329 Egelsbach Date of Birth: October 31st 1980 Place of Birth: Langen (Hessen) Education 1987-1991 Wilhelm Leuschner Primary School, Egelsbach 1991-2000 Abitur at Dreieich-Schule, Langen 2000-2006 Study of Biology at Darmstadt University of Technology, Germany 2006-2007 Diploma thesis: “Postglaziale Kolonisation von Zentraleuropa durch parthenogenetische (Platynothrus peltifer) und sexuelle (Steganacarus magnus) Hornmilben (Oribatida)” at Darmstadt University of Technology, Germany under supervision of Dipl. Biol. Katja Domes and Prof. Dr. S. Scheu 2007-2008 Scientific assistant at Darmstadt University of Technology, Germany 2008-2009 Scientific officer Darmstadt University of Technology, Germany Since 2009 PhD student at the Georg August University, Göttingen, Germany at the J. F. Blumenbach Insitute of Zoology and Anthropology under supervision of Prof. Dr. S. Scheu 2009-2010 Scientific officer at the Georg August University, Göttingen,
    [Show full text]
  • Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
    Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al.
    [Show full text]
  • SUPPLEMENTARY DESCRIPTION of BELBA CORNUTA WANG ET NORTON, 1995 (ACARI, ORIBATIDA, DAMAEIDAE) Sergey G
    Acarina 26 (1): 89–95 © Acarina 2018 SUPPLEMENTARY DESCRIPTION OF BELBA CORNUTA WANG ET NORTON, 1995 (ACARI, ORIBATIDA, DAMAEIDAE) Sergey G. Ermilov Tyumen State University, Tyumen, Russia e-mail: [email protected] ABSTRACT: The oribatid mite, Belba cornuta Wang et Norton, 1995 (Oribatida, Damaeidae), is redescribed and illustrated in detail on the basis of specimens collected in Taiwan. The main morphological traits for this species are summarized. KEY WORDS: Oribatid mite, Belba cornuta, systematics, morphology, supplementary description, Taiwan. DOI: 10.21684/0132-8077-2018-26-1-89-95 INTRODUCTION The oribatid mite Belba cornuta (Acari, Orib- solenidia are given in square brackets according to atida, Damaeidae) was described by Wang and the sequence genu–tibia–tarsus. Norton (1995) based on specimens from southeast Drawings were made with a camera lucida us- China. At present, the species’ distribution is limi- ing a Leica transmission light microscope “Leica ted to this country only (Subías 2004, online ver- DM 2500”. sion 2018). General morphological terminology used in During a taxonomic survey of oribatid mites this paper mostly follows that of F. Grandjean: see from Taiwan, I found B. cornuta. The original de- Travé and Vachon (1975) for references, Norton scription (Wang and Norton 1995) is not complete. (1977) for leg setal nomenclature, and Norton and In particular, it lacks the information about some Behan-Pelletier (2009) for overview. measures of morphological structures, the identifica- The following abbreviations are used: car—ca- tion of leg setation and solenidia, and morphology rina; P—propodolateral apophysis; ro, le, in, bs, of gnathosoma. Also, the figures are not numerous.
    [Show full text]
  • Oribatid Mites of the Superfamily Galumnoidea from Zambia, with Description of a New Species of the Genus Galumna (Acari: Oribatida)
    Genus Vol. 23(3): 455-460 Wrocław, 15 X 2012 Oribatid mites of the superfamily Galumnoidea from Zambia, with description of a new species of the genus Galumna (Acari: Oribatida) SERGEY G. ERMILOV Phytosanitary Department, Nizhniy Novgorod Referral Сenter of the Federal service for Veterinary and Phytosanitary, Inspection, Gagarin 97, Nizhniy Novgorod 603107, Russia, e-mail: [email protected] ABSTRACT. An annotated checklist of registered galumnoid mites from Zambia is presented. Five species, four genera and two families have been found. All taxa (except family Galumnidae) represent the first records from Zambia. A new species of the genus Galumna, Galumna wojciechniedbalai sp. nov., is described. In having the combination of straight lamellar lines, directed to insertion of rostral setae, and sensilli, having a dilated head, a new species resembles Galumna aba MAHUNKA, G. araujoi PÉREZ-ÍÑIGO & BAGGIO and G. gibbula GRANDJEAN. However, it is clearly different from the listed species in several characters (body size, lengths of lamellar setae, presence or absence of interlamellar setae and dorsosejugal furrow, morphology of sensilli and porose areas). Key words: acarology, taxonomy, Oribatida, fauna, Galumnoidea, checklist, new species, new record, Galumna, Zambia. INtRODuctION the oribatid mite fauna of Zambia is poorly studied. At present, only one spe- cies, one genus and one family of oribatids are recorded (MWASE and BAKER 2006): Orthogalumna terebrantis WALLWORK, 1965 (Galumnidae). the present study is based on Zambian material collected by my Polish colleague, Wojciech Niedbała, during a visit to 5th African Acarology Symposium, Livingstone, Zambia in May 2011. this work includes the data about species from the superfamily Galumnoidea.
    [Show full text]
  • The Importance of Topotypic Specimens in Revisionary Studies of Oribatid Mites (Acari: Oribatida)
    J. Acarol. Soc. Jpn., 25(S1): 27-34. March 25, 2016 © The Acarological Society of Japan http://www.acarology-japan.org/ 27 The importance of topotypic specimens in revisionary studies of oribatid mites (Acari: Oribatida) Fabio BERNINI* and Massimo MIGLIORINI Department of Life Sciences, via A. Moro 2, University of Siena, Siena, Italy ABSTRACT Taxonomic revisions should comply with certain best practices, one of which is to study topotypic specimens if type specimens are not available. We discuss the example of an oribatid mite, the classical species Carabodes labyrinthicus (Michael 1879), in which topotypes are critical to questions of identity, synonymy, and species status. Key words: Oribatid mite, Carabodes labyrinthicus, taxonomic method, type material, topotype INTRODUCTION Species descriptions and revisions of oribatid mites should comply with certain best practices (Bernini 1979; Bernini and Avanzati 1988; Bernini and Nannelli 1982; Bernini et al. 1988; Cancela da Fonseca 1970; Kagainis 2014; Salomone et al. 1996, 2003), which may be summarized as follows: 1) Essential and indispensable taxonomic practices: a) availability of a sufficient number of specimens preserved in alcohol b) accurate descriptions accompanied by explanatory drawings c) biogeographical and ecological information 2) Highly desirable taxonomic practices: a) existence and availability of type series b) availability and thorough studies of juvenile stages c) SEM pictures d) molecular analyses e) variability analyses, biometric statistics Although these best practices are important, we believe that they are not sufficient to avoid systematic errors. Because types, cotypes, and syntypes are often damaged or in poor condition, when redescriptions are needed, it may be useful to follow Grandjean’s (1936) advice to collect samples from type localities (topotypes).
    [Show full text]