Land Use and Ownership
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Public Trust: Application of the Public Trust Doctrine to Groundwater Resources
TRUSTING THE PUBLIC TRUST: APPLICATION OF THE PUBLIC TRUST DOCTRINE TO GROUNDWATER RESOURCES Jack Tuholske∗ TABLE OF CONTENTS Introduction ...................................................................................................190 I. An Overview of Groundwater Problems in the United States...............193 A. Running Low in the High Plains .....................................................193 B. A Garden in the Wilderness.............................................................195 C. Land Subsidence...............................................................................197 D. Natural Resource Extraction............................................................198 E. Bottled Water: Groundwater as a Consumer Commodity .............200 F. Saltwater Intrusion: The Sea Cometh..............................................201 G. Reduced Surface Flows ...................................................................202 H. Groundwater Depletion: A Pervasive Nationwide Problem .........203 II. A Brief Overview of Groundwater Law ................................................204 A. Common Law Applied to Groundwater .........................................205 B. Statutory Overlays............................................................................211 III. The Public Trust and Groundwater.......................................................214 A. Brief Historical Overview of the Public Trust Doctrine................214 B. New Applications of the Public Trust Doctrine .............................216 IV. Groundwater -
Nevada Gold Mines - Cortez Mine
CASE STUDY Vigilante Air Quality Station™ Return safely and quicker to the face. Vigilante AQS™ Case Study at Nevada Gold Mines - Cortez Mine stations, to measure environmental conditions in real-time for worker health and safety and to reduce the total installed infrastructure costs. Nevada Gold Mines is a joint venture between Barrick (61.5%) and Newmont CorPoration (38.5%), creating the single largest gold-Producing comPlex in the world. The mining oPeration comPrises eight mines along with their associated infrastructure and Processing facilities. Nevada Gold Mines is oPerated by Barrick. Cortez Gold Mine is a located aPProximately 75 miles (120 km) southwest of Elko, Nevada, USA. The Cortez Hills Underground Mine (CHUG) is fully The Challenge mechanized, with large scale equiPment using a combination of cut and fill mining with cemented Underground mines have challenging backfill and Primary and secondary longhole environmental conditions, including toxic gases stoPing with cemented and uncemented backfill. from blasting, oPerating vehicles and/or gases given off by the surrounding strata rock. At greater Identifying the mining industry’s demand for real- dePths, the air is denser and continues to Pick uP time data to monitor and control air quality, Maestro heat from the exposed rock causing worker heat Digital Mine worked with CorteZ Mine to address stress concerns. the challenges associated with working in the harsh underground mining environment by protecting Nevada Gold Mines goal is to make its oPerations miners from acute or chronic gas related health as safe and efficient as Possible, at the lowest conditions. Nevada Gold Mines integrated Maestro Possible cost. -
Newmont Mining Corporation Reduction of Conflict in The
Draft Final Report to Newmont Mining Corporation Reduction of Conflict in the Extractive Industries Using Good Neighbor Agreements by Alexandra Masaitis Glenn C. Miller Department of Natural Resources and Environmental Science University of Nevada, Reno August, 2015 i Glenn C. Miller Alexandra Masaitis Reduction of conflicts in the extractive industries using Good Neighbor Agreements Abstract Conflicts between mining companies and communities are now prevalent in many countries of the world, both developed and developing. These conflicts have often resulted in delays of mine project development as well as adverse effects to the communities. Reduction of those conflicts has been shown to be best accomplished by good communication, transparency, and a willingness of each of the parties to both understand the positions of other participants, but also a willingness to compromise. One of the types of agreements that have shown success is termed a “Good Neighbor Agreement” (GNA). The needs for this project are to create an open dialog between the mining company and all interested parties who may have concerns regarding the social or environmental impacts from the mine, to minimize the possible conflicts and disagreements, and create the negotiation tools, which can be implemented any time, depending on the needs. In this case, an agreement is negotiated where good communication and frequent meetings are utilized, and the resulting agreement has sufficient penalties that if any of the signatories to the agreement fail to abide by that agreement, those penalties will be imposed. This process is often complicated, but ultimately has the potential to reduce threats of appeals or legal action, but at the same time may require elimination of certain practices. -
Number 72 Spring 2016
Number 72 Spring 2016 An organization of retirees of the Geologic Division, U.S. Geological Survey, who seek to keep in touch with each other and with their former Agency. Officers National Officers President John Keith 703-435-1147 Vice President John Aaron 703-437-4001 Secretary/Treasurer Odette B. James 703-476-9738 Regional Officers East Jim McNeal 703-476-0025 Central John S. Stuckless 303-236-7847 Katherine L. Varnes 303-237-2639 West Pat Muffler 650-493-6439 Newsletter Editor Bill Outerbridge 703-860-8537 Deputy Assistant Editor Kathleen Gohn 703-620-3368 Production Dave Newman 540-212-3281 Directory Coordinator Odette James 703-476-9738 References Bob Tilling [email protected] Address Geologic Division Retirees U.S. Geological Survey 953 National Center Reston, VA 20192 Email Address [email protected] About the Cover: Sampling trip into the Sierra Agua Verde, Sonora, Mexico, February 20, 1983. Left to right: Juan Manuel Morales-Ramirez, Anita Harris, Bruce Wardlaw, Jack Stewart, and Barney Poole. Before his recent death, Bruce told John Keith that each person collected about 20 kilos of rock, and the hike out was a very long one. Anita was lagging behind, and Bruce dropped back to check on her. She said, “I just can’t make it with my samples—can you put them in your pack and not tell the others?” So Bruce hauled 40 kilos for the rest of the trip. (Photo by Barney P. with camera on timer) From the President Treasurer’s Report and Membership Statistics Many of you are familiar with the American Geosciences (formerly Geologic) Institute. -
Lovelock-Cave-Back-Country-Byway
Back Country Byways . An Invitation to Discover There is an axiom among seasoned travelers advising that the best way to get to know a new place is to get off the highway and visit the back roads, the side trails and the hidden, out-of-the-way corners where the true qualities wait to be discovered. The same axiom holds true for America’s public lands, the vast reaches of our nation that are all too often seen only from the windows of speeding cars or the tiny portholes of airliners. The Bureau of Land Management, America’s largest land managing agency, is providing an exciting opportunity for more Americans to get to know their lands by getting off the main roads for leisurely trips on a series of roads and trails being dedicated as Back Country Byways. The Back Country Byways Program, an outgrowth of the national Scenic Byways Program, is designed to encourage greater use of these existing back roads through greater public awareness. The system is BUREAUREAU OOFF LANDLAND MANMANAGEMENTGEMENT expected to expand to 100 roads when completed. In Nevada, each byway has a character and beauty of its own, taking travelers through scenery that is uniquely Nevadan, into historic areas that helped shape our state and near areas that have been largely untouched by man. They can see the multiple uses of their lands and come to a greater awareness of the need for the conservation and wise use of these resources. And all this can be accomplished at little cost to the taxpayer. Because the roads are already in place, only interpretive signs and limited facilities are needed to better serve the public. -
Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11 -
Gravity Modeling of the Rye Patch Known Geothermal Resource Area, Rye Patch, Nevada
GRC Transactions, Vol. 38, 2014 Gravity Modeling of the Rye Patch Known Geothermal Resource Area, Rye Patch, Nevada Mark R. McDonald1 and William D. Gosnold2 1North Dakota Geological Survey, Bismarck ND 2Department of Geology and Geological Engineering, University of North Dakota, Grand Forks ND Keywords A gravity study was performed at the Rye Patch KGRA in an Rye Patch, gravity, modeling, geophysics, exploration attempt to further define the geothermal reservoir and/or to identify potential drilling targets in the area by delineating approximate fault locations, lengths, trends and dip angles. The gravity survey ABSTRACT was augmented with existing seismic, aeromagnetic, remote sens- ing, and geochemical data. A gravity survey was conducted at the Rye Patch Known Geo- thermal Resource Area located at Rye Patch, Nevada. The purpose Geology of the study was to attempt to further delineate the geothermal reservoir and/or to identify potential drilling targets. The survey The Rye Patch geothermal area is located in the Humboldt Riv- consisted of collecting data at 264 new stations to augment data er Valley in Pershing County, Nevada. As previously mentioned, from 203 stations collected in 2008. Information from previous the study area is bounded by the Humboldt Range on the east seismic, aeromagnetic and geochemical investigations was also examined and incorporated. After filtering the data to remove the strong regional overprint caused by the large density contrast between the low density alluvium within the valley versus the near-surface higher density rock in the higher elevations, 2-D models were created across three profiles. Based on estimates arrived at by using 2nd derivative methods, fault dip angles are on the order of 80o and are consistent with previous conceptual models of the site. -
Golden Rules Making the Case for Responsible Mining
GOLDEN RULES Making the case for responsible mining A REPORT BY EARTHWORKS AND OXFAM AMERICA Contents Introduction: The Golden Rules 2 Grasberg Mine, Indonesia 5 Yanacocha Mine, Peru, and Cortez Mine, Nevada 7 BHP Billiton Iron Ore Mines, Australia 9 Hemlo Camp Mines, Canada 10 Mongbwalu Mine, the Democratic Republic of Congo 13 Rosia Montana Mine, Romania 15 Marcopper Mine, the Philippines, and Minahasa Raya and Batu Hijau Mines, Indonesia 17 Porgera Gold Mine, Papua New Guinea 18 Junín Mine, Ecuador 21 Akyem Mine, Ghana 22 Pebble Mine, Alaska 23 Zortman-Landusky Mine, Montana 25 Bogoso/Prestea Mine, Ghana 26 Jerritt Canyon Mine, Nevada 27 Summitville Mine, Colorado 29 Following the rules: An agenda for action 30 Notes 31 Cover: Sadiola Gold Mine, Mali | Brett Eloff/Oxfam America Copyright © EARTHWORKS, Oxfam America, 2007. Reproduction is permitted for educational or noncommercial purposes, provided credit is given to EARTHWORKS and Oxfam America. Around the world, large-scale metals mining takes an enormous toll on the health of the environment and communities. Gold mining, in particular, is one of the dirtiest industries in the world. Massive open-pit mines, some measuring as much as two miles (3.2 kilometers) across, generate staggering quantities of waste—an average of 76 tons for every ounce of gold.1 In the US, metals mining is the leading contributor of toxic emissions to the environment.2 And in countries such as Ghana, Romania, and the Philippines, mining has also been associated with human rights violations, the displacement of people from their homes, and the disruption of traditional livelihoods. -
Quaternary Fault and Fold Database of the United States
Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Western Humboldt Range fault zone (Class A) No. 1635 Last Review Date: 2006-03-22 citation for this record: Adams, K., Sawyer, T.L., and Haller, K.M., compilers, 2006, Fault number 1635, Western Humboldt Range fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:35 PM. Synopsis This long, mostly continuous zone is comprised of range-front normal faults and piedmont faults along the prominent western fronts of the Humboldt and West Humboldt Ranges. The zone includes short piedmont faults on slopes adjacent to these ranges. The Humboldt ranges have been tilted about 10–15° east since Tertiary time. The entire length of the fault zone shows evidence of rupture since the highstand of Lake Lahontan at about 13 ka. Sources of data include detailed topical studies of the fault zone involving detailed photogeologic mapping, scarp morphology studies, and trenching; regional and detailed geologic mapping; and reconnaissance photogeologic mapping. Name Refers to faults on the western side of the Humboldt Range and comments West Humboldt Range that were mapped by more than a century comments ago by Russell (1885 #3549). More recent mapping has been conducted by Silberling and Wallace (1967 #3025), Wallace and others (1969 #3027), Slemmons (1968, unpublished Reno 1:250,000-scale map; 1974, unpublished Lovelock 1:250,000- scale map), Johnson (1977 #2569), Wallace (1979 #203), Davis (1983 #3026), Anderson and others (1983 #416), Bell (1984 #105), and Dohrenwend and others (1991 #285). -
Technical Report for the Rochester Mine Lovelock, Nevada, Usa
TECHNICAL REPORT FOR THE ROCHESTER MINE LOVELOCK, NEVADA, USA NI 43-101 Technical Report – Updated Project Study Effective Date: December 31, 2014 Filing Date: February 18, 2015 Prepared by: Gregory D. Robinson, P.E. Kelly Lippoth, AIME Annette McFarland, P.E. Raul Mondragon, RM SME Dana Willis, RM SME Rochester Mine Lovelock, Nevada, USA NI 43-101 Technical Report February 18, 2015 Cautionary Statement on Forward-Looking Information This Technical Report contains forward-looking statements within the meaning of the U.S. Securities Act of 1933 and the U.S. Securities Exchange Act of 1934 (and the equivalent under Canadian securities laws), that are intended to be covered by the safe harbor created by such sections. Such forward-looking statements include, without limitation, statements regarding Coeur Mining, Inc.’s (Coeur’s) expectations for the Rochester Mine, including estimated capital requirements, expected production, cash costs and rates of return; mineral reserve and resource estimates; estimates of silver and gold grades, expected financial returns and costs; and other statements that are not historical facts. We have tried to identify these forward-looking statements by using words such as “may,” “might”, “will,” “expect,” “anticipate,” “believe,” “could,” “intend,” “plan,” “estimate” and similar expressions. Forward-looking statements address activities, events or developments that Coeur expects or anticipates will or may occur in the future, and are based on information currently available. Although Coeur believes that its -
Cultural Resources Overview of the Heinz Ranch, South Parcel (Approximately 1378 Acres) for the Stone Gate Master Planned Community, Washoe County, Nevada
Cultural Resources Overview of the Heinz Ranch, South Parcel (approximately 1378 acres) for the Stone Gate Master Planned Community, Washoe County, Nevada Project Number: 2016-110-1 Submitted to: Heinz Ranch Company, LLCt 2999 Oak Road, Suite 400 Walnut Creek, CA 94597 Prepared by: Michael Drews Dayna Giambastiani, MA, RPA Great Basin Consulting Group, LLC. 200 Winters Drive Carson City, Nevada 89703 July7, 2016 G-1 Summary Heinz Ranch was established in 1855 by Frank Heinz, an emigrant from Germany, who together with his wife Wilhelmina, turned it into a profitable cow and calf operation (Nevada Department of Agriculture 2016). In 2004, Heinz Ranch received the Nevada Centennial Ranch and Farm award from the Nevada Department of Agriculture for being an active ranch for over 100 years. A Class II archaeological investigation of the property was conducted in May and June 2016. Several prehistoric archaeological sites have been recorded on the property. Habitation sites hold the potential for additional research and have previously been determined eligible to the National Register of Historic Places. Historic sites relating to mining and transportation along with the ranching landscape are also prominent. Architectural resources on the property consist of several barns, outbuildings and residences. The barns are notable for their method of construction. Many are constructed of hand hewn posts and beams, and assembled with pegged mortise and tenon joinery. They date to the earliest use of the ranch. Residences generally date to the 1930s. Historic sites and resources located on Heinz Ranch provide an opportunity for more scholarly research into the prehistory and history of Cold Springs Valley (also Laughton’s Valley) and the region in general. -
Larval Hostplants of Butterflies in Nevada
HOLARCTIC LEPIDOPTERA Editor: Andrei Sourakov Assoc. Editor: Thomas C. Emmel ASSOCIATION FOR TROPICAL VOLUME 12 NUMBER 1-2 August 2008 LEPIDOPTERA Founded 1989 ADVISORY COUNCIL LARVAL HOSTPLANTS James K. Adams (USA) Martin Krüger (South Africa) Andrés O. Angulo (Chile) Tosio Kumata (Japan) OF BUTTERFLIES IN NEVADA Yutaka Arita (Japan) Jean-Francois Landry (Canada) George T. Austin (USA) Torben B. Larsen (England) Jorge Llorente B. (Mexico) Vitor O. Becker, Planaltina, Brazil by Zsolt Bálint (Hungary) Martin Lödl (Austria) Henry S. Barlow (Malaysia) Wolfram Mey (Germany) George T. Austin Dubi Benyamini (Israel) Kauri Mikkola (Finland) Ronald Boender (USA) Scott E. Miller (USA) and Keith S. Brown Jr. (Brazil) Joël Minet (France) José A. Clavijo A. (Venezuela) Eugene G. Munroe (Canada) Patrick J. Leary Charles V. Covell Jr. (USA) K.-T. Park (South Korea) U. Dall’Asta (Belgium) Rod E. Parrott (Canada) Philip J. DeVries (USA) Amnuay Pinratana (Thailand) Julian P. Donahue (USA) Rimantas Puplesis (Lithuania) CONTENTS Eric Garraway (Jamaica) Jozef Razowski (Poland) Dale H. Habeck (USA) M. Alma Solis (USA) INTRODUCTION 1 NYMPHALIDAE 95 Christoph Häuser (Germany) Dieter Stüning (Germany) METHODS 1 Libytheinae 95 Lowell N. Harris (USA) Gerhard Tarmann (Austria) Toshiya Hirowatari (Japan) Paul Thiaucourt (France) LARVAL HOSTPLANTS 2 Heliconiinae 96 Hiroshi Inoue (Japan) Jürgen H. R. Thiele (Germany) HESPERIIDAE 2 Nymphalinae 99 Daniel H. Janzen (USA) Antonio Vives M. (Spain) Kurt Johnson (USA) Hsiau-Yue Wang (Taiwan) Eudaminae 2 Limenitidinae 119 Roger L. Kitching (Australia) Per O. Wickman (Sweden) Pyrginae 2 George O. Krizek (USA) Allen M. Young (USA) Apaturinae 124 Hesperiinae 8 Satyrinae 124 PAPILIONIDAE 14 OFFICERS Danainae 126 President: Ulf Eitschberger, Germany Parnassiinae 14 DISCUSSION 127 Vice-President: Thomas C.