Rochester District, Nevada

Total Page:16

File Type:pdf, Size:1020Kb

Rochester District, Nevada DEPARTMENT OF THE INTERIOR HUBERT WORK, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 762 GEOLOGY AND ORE DEPOSITS OF THE ROCHESTER DISTRICT, NEVADA BY ADOLPH KNOPF WASHINGTON GOVERNMENT PRINTING OFFICE 1924 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM' THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C AT 15 CENTS PER COPY CONTENTS Preface, by F. L. Ransome____________________________________________ Outline of the report__________________________________________ Part I. General features_____________________________ Geography. ___________ __________________.______. Situation of the district ________________________ Physical features _______________- _________________ 1 Climate and vegetation____ ________________ 3 History of mining______________________________ _ 4 Output of silver and gold_______ ________________ fi Geologic investigations of the district-^_________________ 7 Bibliography____________________________________ !) Geology of the Star Peak Range______________________ 9 Part II. General geology of the district____________________ 13 Triassic rocks _______________________________ 13 Introductory outline________________________- 13 Rochester trachyte____________________________. 14 General features____ ______ 14 Petrography______________________________. 14 Thickness and age________ _ ________ 17 Dumortieritized trachyte _____ _____________ 18 Keratophyres________________ _______________ 20 Occurrence and character___________________. 20 Petrographic features__ __________________ 20 Relation of keratophyres to the Rochester trachyte____ '-2 Age and correlation_________________________ 22 Nenzel rhyolite breccia_____ _ _ __________ 23 Occurrence and character. _ _ _________ 23 Stratigraphy and structure____________________ 23 Rhyolite tuffs___________'.__________________ 26 Weaver rhyolite_______________ _____ 20 Occurrence and character __ 2U Petrography_______ _ 27 Tuffaceous shales ____ _ 28 Limestone____________ __ 29 General features____ __ 20 Age__________________________________ 29 Relation of limestone and volcanic rocks _ 30 Metadiorite _______ - 31 Post-Triassic, probably late Jurassic igneous rocks __ 32 Aplite______________ - 32 General features_____ ; >2 Petrography_____ 32 Genetic relations____ --_ 3$ Granite porphyry __ '>* Tertiary (?) rocks 35 Pliocene (?) alluvial-cone detritus ___- 35 Occurrence and character - 35 Age__ 36 Basalt______________ - 36 Quaternary alluvium - 37 in IV CONTENTS Part II. General geology of the district Continued. Page Geologic structure ___ ____ _______________ 38 Folding and faulting__________________________ 3S Schistosity____________________________'___ 40 Physiographic history__________________________,__ 41 Part III The ore deposits___________________________ 43 General features _______________________________ 43 Relation of ore deposits to water level_________________ 43 Silver veins__________________________________ 44 Distribution and general character_________________ 44 Nature of the ore________________-_ _______ 43 Enrichment by supergene argentite________________ 40 Wall-rock alteration_________________________ 50 Gold veins___________'_____________________ 51 General character.. _____:___________________ 51 Nature of the gold ore-forming solutions_____________ 52 Other mineral deposits__________________________ 53 Cinnabar _______________________________ 53 Miscellaneous deposits_______________________ 54 Genesis of the ores of the district___:________________ 55 Placers ________________ _________________ 58 Part IV. Mines and prospects_________________________ 59 Silver mines and prospects_________ ______________ 59 Eochester mine_____________________________ 59 Bonghton & Hackley mine_ ____________________ 64 Nenzel Grown Point property_________ ________ 65 Buck & Charley mine ______ ____ _________ 66 Octopus mine_______ ___ ________________ . 67 Raven prospect____________ ________________ 68 Abe Lincoln mine__ --__ _ 68 Kaiser Bill prospect_______________ _________ 68 Nevada Packard mine , 69 Gold mines and prospects 74 Lincoln Hill mine__ 74 Oro Fino mine____ ___ ____ _ 75 Hagan prospect________________________ 75 Index ______________ - - 77 ILLUSTRATIONS Page PLATE I. Geologic map of the Rochester district _ __ _ 22 II. A, B, Silver-bearing stockwork at the Nevada Packard mine_ 46 III. A, Incipient replacement of sphalerite by supergene argentite; B, Advanced replacement of sphalerite by supergene argentite 47 IV. Map of Nevada Packard mine workings-____ __ 72 FIGURE 1. Index map showing the location of the Rochester district__ 2 2. Diagrammatic section through the south end of the Star Pe'ak Range____________________________ 12 3. Geologic section through the north end of Nenzel Hill____ 24 4. Geologic section from portal of Boughton & Hackley tunnel to northeast corner of North Crown Fraction claim________ 65 5. Diagrammatic section through the Nevada Packard mine . along the line of tunnel A___ 72 PEEFACE By F. L. RAN SOME The modern development of the Rochester district dates from the later part of the year 1912. Early in 1913 F. C. Schrader was de­ tailed by the United States Geological Survey to make a reconnais­ sance study of the district, and his brief examination was followed by an excellent report, which was published in 1915. The con­ tinued productivity of the Rochester mines and the interesting char­ acter of the ore deposits made it evident that more detailed geologic work was desirable, and after the completion of a topographic map, in 1916, Mr. Knopf was instructed to make a geologic study of the district early in 1917. The preparation of his report, like many other investigations by the Geological Survey then in progress, was interrupted by the urgent war demand for information in regard to particular mineral resources and was further delayed by Mr. Knopf's withdrawal from full-time participation in the work of the Survey and his acceptance of a professorship at Yale University. His new duties left only a small part of his time available for the investigation that he has now satisfactorily completed. As Mr. Knopf shows, the ore deposits of the Rochester district are mmeralogically of unusual character. Dumortierite, a rare alumi­ num borosilicate, is in some parts of this district extraordinarily abundant and is accompanied by tourmaline and andahisite minerals, which also are rather unusual in association with silver deposits. The boron-bearing minerals were evidently formed at high temperature, and Mr. Knopf concludes that there were three distinct stages in the deposition of these minerals. The principal silver-bearing veins were probably formed later and at lower temperature. The report shows that the original vein material was of too low grade to be ore. The district owes its economic development to downward enrichment, effected largely by the replacement of sphalerite by argentite a process that is fully discussed in its appropriate, place. It follows that the silver deposits of the Rochester district are not likely to extend to great depth. The same conclusion, based apparently on the observed decrease in tenor of the ore on the deeper mine levels, finds! expression also in the annual report of the Rochester Silver Corporation for 1921. Mr. Knopf has given the explanation for the observed decrease. VI PREFACE The following report, although it deals with only a small area, throws considerable new light on the geology of the Humboldt Range. The range has long been noted as a collecting ground for Triassic fossils, but our knowledge of the beds in which these ancient marine shells are found left much to be desired. Mr. Knopf has not only supplied some of this deficiency but has shown that the light- colored felsitic rocks of the Humboldt Range, which in early reports were regarded as metamorphosed sediments and later were classed generally as rhyolites, include rocks belonging to the group of trachytes a group that is rather sparsely represented in North America, OUTLINE OF THE REPORT Rochester is a silver-mining district in the Humboldt Range of western Nevada. Silver was discovered there in 1912, and to the end of 1922 the district produced 7,000,000 ounces of silver. It is second in yearly outpuj; among Nevada's many silver districts, but it ranks far below Tonopah, the leading district. The prevailing rocks of the district are a thick series of Triassic volcanic rocks overlain by limestone of the same age. The volcanic rocks consist of felsitic trachyte and keratophyre, aggregating 10,000 feet in thickness, and an overlying series of rhyolite, 1,000 feet thick. Above the igneous rocks lies the limestone, of which only 2,000 feet is exposed in the district, although else­ where in the Star Peak Range it apparently attains a far greater thickness. At or near the end of the Jurassic period this series of volcanic rocks and limestone came within the influence of the great revolution and crustal dis­ turbances that affected the western Cordilleran region at that time. A long train of events started then, which culminated in the formation of the ore deposits of the district. First the rocks were folded into a broad anticline, which consti­ tutes one of the major structural features of the range. This arching of the rocks was followed by the intrusion of granitic magma, which within the district proper is represented by fine-grained white granite, or aplite. The bodies of aplite are comparatively large for rock of this kind, and their size implies, therefore,
Recommended publications
  • Geologic Map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington by Wes Hildreth and Judy Fierstein
    Prepared in Cooperation with the Water Resources Program of the Yakama Nation Geologic Map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington By Wes Hildreth and Judy Fierstein Pamphlet to accompany Scientific Investigations Map 3315 Photograph showing Mount Adams andesitic stratovolcano and Signal Peak mafic shield volcano viewed westward from near Mill Creek Guard Station. Low-relief rocky meadows and modest forested ridges marked by scattered cinder cones and shields are common landforms in Simcoe Mountains volcanic field. Mount Adams (elevation: 12,276 ft; 3,742 m) is centered 50 km west and 2.8 km higher than foreground meadow (elevation: 2,950 ft.; 900 m); its eruptions began ~520 ka, its upper cone was built in late Pleistocene, and several eruptions have taken place in the Holocene. Signal Peak (elevation: 5,100 ft; 1,555 m), 20 km west of camera, is one of largest and highest eruptive centers in Simcoe Mountains volcanic field; short-lived shield, built around 3.7 Ma, is seven times older than Mount Adams. 2015 U.S. Department of the Interior U.S. Geological Survey Contents Introductory Overview for Non-Geologists ...............................................................................................1 Introduction.....................................................................................................................................................2 Physiography, Environment, Boundary Surveys, and Access ......................................................6 Previous Geologic
    [Show full text]
  • Lovelock-Cave-Back-Country-Byway
    Back Country Byways . An Invitation to Discover There is an axiom among seasoned travelers advising that the best way to get to know a new place is to get off the highway and visit the back roads, the side trails and the hidden, out-of-the-way corners where the true qualities wait to be discovered. The same axiom holds true for America’s public lands, the vast reaches of our nation that are all too often seen only from the windows of speeding cars or the tiny portholes of airliners. The Bureau of Land Management, America’s largest land managing agency, is providing an exciting opportunity for more Americans to get to know their lands by getting off the main roads for leisurely trips on a series of roads and trails being dedicated as Back Country Byways. The Back Country Byways Program, an outgrowth of the national Scenic Byways Program, is designed to encourage greater use of these existing back roads through greater public awareness. The system is BUREAUREAU OOFF LANDLAND MANMANAGEMENTGEMENT expected to expand to 100 roads when completed. In Nevada, each byway has a character and beauty of its own, taking travelers through scenery that is uniquely Nevadan, into historic areas that helped shape our state and near areas that have been largely untouched by man. They can see the multiple uses of their lands and come to a greater awareness of the need for the conservation and wise use of these resources. And all this can be accomplished at little cost to the taxpayer. Because the roads are already in place, only interpretive signs and limited facilities are needed to better serve the public.
    [Show full text]
  • (2000), Voluminous Lava-Like Precursor to a Major Ash-Flow
    Journal of Volcanology and Geothermal Research 98 (2000) 153–171 www.elsevier.nl/locate/jvolgeores Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado O. Bachmanna,*, M.A. Dungana, P.W. Lipmanb aSection des Sciences de la Terre de l’Universite´ de Gene`ve, 13, Rue des Maraıˆchers, 1211 Geneva 4, Switzerland bUS Geological Survey, 345 Middlefield Rd, Menlo Park, CA, USA Received 26 May 1999; received in revised form 8 November 1999; accepted 8 November 1999 Abstract The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (ϳ5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (Ͼ200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow- layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows.
    [Show full text]
  • Northern Paiute and Western Shoshone Land Use in Northern Nevada: a Class I Ethnographic/Ethnohistoric Overview
    U.S. DEPARTMENT OF THE INTERIOR Bureau of Land Management NEVADA NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Ginny Bengston CULTURAL RESOURCE SERIES NO. 12 2003 SWCA ENVIROHMENTAL CON..·S:.. .U LTt;NTS . iitew.a,e.El t:ti.r B'i!lt e.a:b ~f l-amd :Nf'arat:1.iern'.~nt N~:¥G~GI Sl$i~-'®'ffl'c~. P,rceP,GJ r.ei l l§y. SWGA.,,En:v,ir.e.m"me'Y-tfol I €on's.wlf.arats NORTHERN PAIUTE AND WESTERN SHOSHONE LAND USE IN NORTHERN NEVADA: A CLASS I ETHNOGRAPHIC/ETHNOHISTORIC OVERVIEW Submitted to BUREAU OF LAND MANAGEMENT Nevada State Office 1340 Financial Boulevard Reno, Nevada 89520-0008 Submitted by SWCA, INC. Environmental Consultants 5370 Kietzke Lane, Suite 205 Reno, Nevada 89511 (775) 826-1700 Prepared by Ginny Bengston SWCA Cultural Resources Report No. 02-551 December 16, 2002 TABLE OF CONTENTS List of Figures ................................................................v List of Tables .................................................................v List of Appendixes ............................................................ vi CHAPTER 1. INTRODUCTION .................................................1 CHAPTER 2. ETHNOGRAPHIC OVERVIEW .....................................4 Northern Paiute ............................................................4 Habitation Patterns .......................................................8 Subsistence .............................................................9 Burial Practices ........................................................11
    [Show full text]
  • Gravity Modeling of the Rye Patch Known Geothermal Resource Area, Rye Patch, Nevada
    GRC Transactions, Vol. 38, 2014 Gravity Modeling of the Rye Patch Known Geothermal Resource Area, Rye Patch, Nevada Mark R. McDonald1 and William D. Gosnold2 1North Dakota Geological Survey, Bismarck ND 2Department of Geology and Geological Engineering, University of North Dakota, Grand Forks ND Keywords A gravity study was performed at the Rye Patch KGRA in an Rye Patch, gravity, modeling, geophysics, exploration attempt to further define the geothermal reservoir and/or to identify potential drilling targets in the area by delineating approximate fault locations, lengths, trends and dip angles. The gravity survey ABSTRACT was augmented with existing seismic, aeromagnetic, remote sens- ing, and geochemical data. A gravity survey was conducted at the Rye Patch Known Geo- thermal Resource Area located at Rye Patch, Nevada. The purpose Geology of the study was to attempt to further delineate the geothermal reservoir and/or to identify potential drilling targets. The survey The Rye Patch geothermal area is located in the Humboldt Riv- consisted of collecting data at 264 new stations to augment data er Valley in Pershing County, Nevada. As previously mentioned, from 203 stations collected in 2008. Information from previous the study area is bounded by the Humboldt Range on the east seismic, aeromagnetic and geochemical investigations was also examined and incorporated. After filtering the data to remove the strong regional overprint caused by the large density contrast between the low density alluvium within the valley versus the near-surface higher density rock in the higher elevations, 2-D models were created across three profiles. Based on estimates arrived at by using 2nd derivative methods, fault dip angles are on the order of 80o and are consistent with previous conceptual models of the site.
    [Show full text]
  • The Late Oligocene Cieneguilla Basanites, Santa Fe County
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/62 The late Oligocene Cieneguilla basanites, Santa Fe County: Records of early Rio Grande rift magmatism Jennifer Lindline, Michael Petronis, Rachell Pitrucha, and Salvador Sena, 2011, pp. 235-250 in: Geology of the Tusas Mountains and Ojo Caliente, Author Koning, Daniel J.; Karlstrom, Karl E.; Kelley, Shari A.; Lueth, Virgil W.; Aby, Scott B., New Mexico Geological Society 62nd Annual Fall Field Conference Guidebook, 418 p. This is one of many related papers that were included in the 2011 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • Analogues for Radioactive Waste For~1S •
    PNL-2776 UC-70 3 3679 00049 3611 ,. NATURALLY OCCURRING GLASSES: ANALOGUES FOR RADIOACTIVE WASTE FOR~1S • Rodney C. Ewing Richard F. Haaker Department of Geology University of New Mexico Albuquerque, ~ew Mexico 87131 April 1979 Prepared for the U.S. Department of Energy under Contract EY-76-C-06-1830 Pacifi c i'lorthwest Laboratory Richland, Washington 99352 TABLE OF CONTENTS List of Tables. i i List of Figures iii Acknowledgements. Introduction. 3 Natural Glasses 5 Volcanic Glasses 9 Physical Properties 10 Compos i ti on . 10 Age Distributions 10 Alteration. 27 Devitrification 29 Hydration 32 Tekti tes. 37 Physical Properties 38 Composition . 38 Age Distributions . 38 Alteration, Hydration 44 and Devitrification Lunar Glasses 44 Summary . 49 Applications to Radioactive Waste Disposal. 51 Recommenda ti ons 59 References 61 Glossary 65 i LIST OF TABLES 1. Petrographic Properties of Natural Glasses 6 2. Average Densities of Natural Glasses 11 3. Density of Crystalline Rock and Corresponding Glass 11 4. Glass and Glassy Rocks: Compressibility 12 5. Glass and Glassy Rocks: Elastic Constants 13 6. Glass: Effect of Temperature on Elastic Constants 13 7. Strength of Hollow Cylinders of Glass Under External 14 Hydrostatic Pressure 8. Shearing Strength Under High Confining Pressure 14 9. Conductivity of Glass 15 10. Viscosity of Miscellaneous Glasses 16 11. Typical Compositions for Volcanic Glasses 18 12. Selected Physical Properties of Tektites 39 13. Elastic Constants 40 14. Average Composition of Tektites 41 15. K-Ar and Fission-Track Ages of Tektite Strewn Fields 42 16. Microprobe Analyses of Various Apollo 11 Glasses 46 17.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Western Humboldt Range fault zone (Class A) No. 1635 Last Review Date: 2006-03-22 citation for this record: Adams, K., Sawyer, T.L., and Haller, K.M., compilers, 2006, Fault number 1635, Western Humboldt Range fault zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:35 PM. Synopsis This long, mostly continuous zone is comprised of range-front normal faults and piedmont faults along the prominent western fronts of the Humboldt and West Humboldt Ranges. The zone includes short piedmont faults on slopes adjacent to these ranges. The Humboldt ranges have been tilted about 10–15° east since Tertiary time. The entire length of the fault zone shows evidence of rupture since the highstand of Lake Lahontan at about 13 ka. Sources of data include detailed topical studies of the fault zone involving detailed photogeologic mapping, scarp morphology studies, and trenching; regional and detailed geologic mapping; and reconnaissance photogeologic mapping. Name Refers to faults on the western side of the Humboldt Range and comments West Humboldt Range that were mapped by more than a century comments ago by Russell (1885 #3549). More recent mapping has been conducted by Silberling and Wallace (1967 #3025), Wallace and others (1969 #3027), Slemmons (1968, unpublished Reno 1:250,000-scale map; 1974, unpublished Lovelock 1:250,000- scale map), Johnson (1977 #2569), Wallace (1979 #203), Davis (1983 #3026), Anderson and others (1983 #416), Bell (1984 #105), and Dohrenwend and others (1991 #285).
    [Show full text]
  • USGS Scientific Investigations Map 2832, Pamphlet
    Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon By Charles R. Bacon Pamphlet to accompany Scientific Investigations Map 2832 View from the south-southwest rim of Crater Lake caldera showing the caldera wall from Hillman Peak on the west to Cleetwood Cove on the north. Crater Lake fills half of the 8- by 10-km-diameter caldera formed during the climactic eruption of Mount Mazama volcano approximately 7,700 years ago. Volcanic rocks exposed in the caldera walls and on the flanks record over 400,000 years of eruptive history. The exposed cinder cone and andesite lava flows on Wizard Island represent only 2 percent of the total volume of postcaldera volcanic rock that is largely covered by Crater Lake. Beyond Wizard Island, the great cliff of Llao Rock, rhyodacite lava emplaced 100–200 years before the caldera-forming eruption, dominates the northwest caldera wall where andesite lava flows at the lakeshore are approximately 150,000 years old. 2008 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank. CONTENTS Introduction . 1 Physiography and access . 1 Methods . 1 Geologic setting . 4 Eruptive history . 5 Regional volcanism . 6 Pre-Mazama silicic rocks . 6 Mount Mazama . 7 Preclimactic rhyodacites . 9 The climactic eruption . 10 Postcaldera volcanism . .11 Submerged caldera walls and floor . .11 Glaciation . .11 Geothermal phenomena . 12 Hazards . 13 Volcanic hazards . 13 Earthquake hazards . 14 Acknowledgments . 14 Description of map units . 14 Sedimentary deposits . 15 Volcanic rocks . 15 Regional volcanism, northwest . 15 Regional volcanism, southwest . 17 Mount Mazama . 20 Regional volcanism, east . 38 References cited .
    [Show full text]
  • Rock and Mineral Identification for Engineers
    Rock and Mineral Identification for Engineers November 1991 r~ u.s. Department of Transportation Federal Highway Administration acid bottle 8 granite ~~_k_nife _) v / muscovite 8 magnify~in_g . lens~ 0 09<2) Some common rocks, minerals, and identification aids (see text). Rock And Mineral Identification for Engineers TABLE OF CONTENTS Introduction ................................................................................ 1 Minerals ...................................................................................... 2 Rocks ........................................................................................... 6 Mineral Identification Procedure ............................................ 8 Rock Identification Procedure ............................................... 22 Engineering Properties of Rock Types ................................. 42 Summary ................................................................................... 49 Appendix: References ............................................................. 50 FIGURES 1. Moh's Hardness Scale ......................................................... 10 2. The Mineral Chert ............................................................... 16 3. The Mineral Quartz ............................................................. 16 4. The Mineral Plagioclase ...................................................... 17 5. The Minerals Orthoclase ..................................................... 17 6. The Mineral Hornblende ...................................................
    [Show full text]
  • Petrography Edward F
    Chapter 4 Petrography Edward F. Stoddard A petrographic study was taken in order to help determine the sources of lithic artifacts found at archaeological sites on Fort Bragg. In the first phase of the study, known and suspected archaeological quarry sites in the central Piedmont of North Carolina were visited. From each quarry, hand specimens were collected and petrographic thin sections were examined in an attempt to establish a basis for distinguishing among the quarries. If material from each quarry was sufficiently distinctive, then quarry sources could potentially be matched with Fort Bragg lithic artifacts. Seventy-one samples from 12 quarry zones were examined (Table 4.1). Thirty- one of these samples are from five quarry zones in the Uwharrie Mountains region; 20 of these were collected and described previously by Daniel and Butler (1996). Forty specimens were collected from seven additional quarry zones in Chatham, Durham, Person, Orange, and Cumberland Counties. All quarries are within the Carolina Terrane, except the Cumberland County quarry, which occurs in younger sedimentary material derived primarily from Carolina Terrane outcrops. Rocks include both metavolcanic and metasedimentary types. Compositionally, most metavolcanic rocks are dacitic and include flows, tuffs, breccias, and porphyries. Metasedimentary rocks are metamudstone and fine metasandstone. The Uwharrie quarries are divided into five zones: Eastern, Western, Southern, Asheboro, and Southeastern. The divisions are based primarily on macroscopic petrography and follow the results of Daniel and Butler (1996); the Uwharries Southeastern zone was added in this study. Each of the Uwharrie quarry zones represents three to six individual quarries in relatively close proximity. Rock specimens are all various felsic metavolcanic rocks, but zones may be distinguished based upon mineralogy and texture.
    [Show full text]
  • Distribution and Transport of Thermal Energy Within Magma–Hydrothermal Systems
    geosciences Article Distribution and Transport of Thermal Energy within Magma–Hydrothermal Systems John Eichelberger International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK 99775, USA; [email protected] Received: 15 April 2020; Accepted: 25 May 2020; Published: 1 June 2020 Abstract: Proximity to magma bodies is generally acknowledged as providing the energy source for hot hydrothermal reservoirs. Hence, it is appropriate to think of a “magma–hydrothermal system” as an entity, rather than as separate systems. Repeated coring of Kilauea Iki lava lake on Kilauea Volcano, Hawaii, has provided evidence of an impermeable, conductive layer, or magma–hydrothermal boundary (MHB), between a hydrothermal system and molten rock. Crystallization on the lower face of the MHB and cracking by cooling on the upper face drive the zone downward while maintaining constant thickness, a Stefan problem of moving thermal boundaries with a phase change. Use of 2 the observed thermal gradient in MHB of 84 ◦C/m yields a heat flux of 130 W/m . Equating this with the heat flux produced by crystallization and cooling of molten lava successfully predicts the growth rate of lava lake crust of 2 m/a, which is faster than simple conduction where crust thickens at pt and heat flux declines with 1/ pt. However, a lava lake is not a magma chamber. Compared to erupted and degassed lava, magma at depth contains a significant amount of dissolved water that influences the magma’s thermal, chemical, and mechanical behaviors. Also, a lava lake is rootless; it has no source of heat and mass, whereas there are probably few shallow, active magma bodies that are isolated from deeper sources.
    [Show full text]