Volcanism, Plutonism and Hydrothermal Alteration at Medicine Lake Volcano, California

Total Page:16

File Type:pdf, Size:1020Kb

Volcanism, Plutonism and Hydrothermal Alteration at Medicine Lake Volcano, California PROCEEDINGS, Twenty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 27-29, 2003 SGP-TR-173 VOLCANISM, PLUTONISM AND HYDROTHERMAL ALTERATION AT MEDICINE LAKE VOLCANO, CALIFORNIA Lowenstern, Jacob B.1, Donnelly-Nolan, J.1, Wooden, J.L.1, Charlier, B.L.A2. 1U.S. Geological Survey, Menlo Park, CA, 94025, USA e-mail: [email protected] 2 Dept. of Geological Sciences, University of Durham, UK granitoids obtained as drillcore and xenoliths. The ABSTRACT resulting data provide a framework for understanding the intrusive history of the volcano and the genesis of Ion microprobe dating of zircons provides insight its geothermal system. We provide evidence for the into the history of granitoid generation beneath timing of intrusive episodes beneath the volcano and Medicine Lake volcano (MLV), northern California. their relationship to ongoing volcanism. Part of the MLV geothermal system is hosted by a 319 ± 8 ka granodiorite intrusion that may be over 6 km in diameter. A sample of this intrusion was BACKGROUND GEOLOGY hydrothermally altered by 171 ka, indicating that the geothermal system was active by that time. Post- The current edifice of MLV has grown since about 100-ka magmatism resulted in crustal melting, 0.5 Ma and overlies older lavas of the Modoc evidence for which is found in granitoid xenoliths Plateau. Basement beneath the volcano is thought to erupted with numerous lava flows. Zircons within be Sierran granite located at a depth of 10-20 km many of these xenoliths, analyzed by the ion (Fuis et al., 1987). Eruptive products of the volcano microprobe (230Th techniques) have ages less than cover about 2000 km2 and are estimated at 600 km3 in 20,000 years, and as young as the age of eruption in volume (Donnelly-Nolan, 1988), making MLV the the very latest Holocene. Sustained crustal input of largest volcano by volume in the Cascade Range. basaltic magma generates the heat to melt crust, and acts as a continuing heat source to the shallow MLV consists of a broad shield with a central 7 x 12 geothermal system. km caldera (Anderson, 1941). From the caldera region, the volcano’s only ash-flow, the “andesite INTRODUCTION tuff” was erupted 171±43 ka (Herrero-Bervera et al., 1994). Argon ages of andesitic lavas forming the rim Medicine Lake volcano, located about 50 km ENE of of the caldera are ~100-120 ka (Donnelly-Nolan et Mt. Shasta in northern California, is a large al., 1994). Since eruption of the ~85 ka Lake Basalt, Quaternary shield volcano that last erupted about nearly all volcanism within the Medicine Lake 1000 years ago (Donnelly-Nolan et al., 1990). For caldera has been silicic in composition (Donnelly- nearly 30 years, it has been the site of geothermal Nolan, 1988). exploration and represents one of the few U.S. prospects under consideration for new development Around 11,000 B.P., voluminous basalts erupted to (Hulen and Lutz, 1999). form the Giant Crater lava field, the basalt of Valentine Cave and other mafic lava flows scattered Deep geothermal drillholes reveal that much of the across the flanks of the volcano. This mafic episode exploitable geothermal system is hosted by was followed by a pause of about 6000 years without hydrothermally altered granitoid rocks located ~ 2 an eruption. Beginning about 5 ka, a variety of km below the Medicine Lake caldera (Fig. 1). basaltic, intermediate and silicic lavas erupted across Granitoid xenoliths, mostly unaltered, are found MLV, including several late Holocene silicic within many Pleistocene and Holocene lava flows eruptions in and near the caldera. The Medicine that cover the volcano (Mertzman and Williams, Lake Glass Flow erupted within the caldera about 1981; Grove et al., 1988; Lowenstern et al., 2000). In 5000 B.P. Just to the west and east of the caldera, this paper we provide U-Pb and U-Th disequilibrium rhyolite eruptions took place respectively at Glass ages of zircon crystals (ZrSiO4) extracted from 1 Fig. 1. Location map for samples from Medicine Lake volcano. Labeled samples are discussed in text. Unlabeled dots represent other studied xenoliths. Drill holes are shown by the stars. textures. Mafic minerals are altered to chlorite and Mountain (885 B.P.) and Little Glass Mountain (1065 secondary, liquid-rich fluid inclusions are abundant. B.P.) (Donnelly-Nolan et al., 1990). Whole rock δ18O on three samples revealed similar degrees of oxygen exchange as the sample from In the 1980’s, geothermal operators drilled four deep GMF 31-17 (δ18O = –0.8 to –3.3 ‰). geothermal wells to depths ranging up to 2932 m. Three, including GMF 31-17, tapped a high- A xenolith of hydrothermally altered granodiorite (68 temperature, liquid-dominated geothermal reservoir wt.% SiO2) was found within the 171 ka “andesite and are capable of geothermal production (Hulen and tuff”. This unit is thought to have vented ~ 6km Lutz, 1999). Another well, 17A-6, encountered distant from the GMF 31-17 drilling site (Donnelly- commercial temperatures but was not flow tested Nolan and Nolan, 1986). The xenolith, sample because of mechanical difficulties (Hulen and Lutz, 997M-f, is petrographically similar to the granitoids 1999). from the geothermal drillholes and has a whole-rock δ18O of 0.5 ‰. SAMPLES We also studied unaltered granitoid xenoliths found Granodiorite (64 wt.% SiO ) from geothermal 2 within younger volcanic units at MLV. The xenoliths drillhole GMF 31-17 was made available by California Energy Corporation. The sample came range in composition from diorite to granite and from a depth of ~2570 m. This granodiorite body is include granophyric, seriate and equigranular textures. The fine- to medium-grain size, granophyric located within the present-day geothermal system and quench textures and vapor-rich fluid inclusions imply shows clear evidence for hydrothermal alteration. In that these granitoids crystallized in the upper crust (< thin-section, mafic minerals have been converted to 8 km) where pressures are low and temperature chlorite and Fe-oxides. Abundant, secondary, liquid- gradients high. The xenoliths range from unmelted to rich fluid inclusions give the feldspar phenocrysts a highly melted (up to 50%). Presumably, the melting grainy appearance. Whole-rock analysis for oxygen isotope composition yielded a δ 18O of –1.5 ‰, occurred during final transport to the surface within a hot magma column. Phenocrysts show no signs of revealing that abundant meteoric-derived water has hydrothermal alteration and δ18O of whole-rocks and interacted with the rocks, replacing the original phenocryst separates display magmatic compositions magmatic oxygen. from (+6 to +10‰). Sr isotopic compositions (87Sr/86Sr) of many of the xenoliths range up to Hydrothermally altered granitoid is also found 0.7050, far more radiogenic than basalts and basaltic continuously from 2348 m to 2933 m within andesites from MLV (Grove et al., 1988). That, and geothermal drillhole 17A-6. Chemical analyses of δ 18 drill cuttings of this material range in composition the elevated O imply a significant crustal component to the granitoid xenoliths (Grove et al., from 68 to 74 wt.% SiO2 and thin sections display a range of micrographic to seriate to equigranular 1988; Lowenstern et al., in prep.) About 35 xenoliths have been collected and analyzed for their chemical 2 and isotopic compositions, but only six have been further prepared for geochronology (Table 1). They come mostly from the following Holocene lavas: Medicine Lake Glass Flow (MD1 and MD2), Crater Glass Flow (CG1 and CG2) and Little Glass Mountain (LGM1). In addition, we studied a single xenolith from the ~85 ka Lake Basalt (LB1). Sample Field Wt.% δ18O Host Name Name SiO2 ‰ Eruption GMF GMF 31-17 31-17 63.9 -1.5 – 997M-f 997M-f 67.7 0.5 ~171 ka LB1 561M 71.0 9.3(q) ~85 ka CG1 2050M 64.9 6.0 ~ 1 ka CG2 2049M 73.0 8.3 ~1 ka MD1 86-3 72.6 7.8 ~ 5 ka MD2 680M 74.2 8.8(q) ~ 5 ka Fig. 2. Cathodoluminescence image of zircon crystal LGM1 2029M 73.7 8.8 ~ 1 ka from LGM1. Dark bands correlate with areas high in U. The white circles Table 1. Granitoid samples from MLV. Oxygen represent areas analyzed with the isotopes for whole rocks, except where SHRIMP-RG and yielded 230Th/238U ages indicated (q = quartz separate). Host of 50±10 and 55±10 ka (1 σ analytical eruption = time of eruption that brought errors). This crystal is among the oldest xenolith to surface. from this sample and may have been remobilized from an earlier intrusion. SAMPLE PREPARATION AND ANALYTICAL TECHNIQUES For samples younger than 200,000 years, low 230 238 Zircons were separated with standard magnetic radiogenic Pb and potential Th– U disequilibrium and heavy-liquid techniques and individual zircons makes U-Pb dating rather imprecise. Such young samples were thus dated by taking advantage of were mounted in epoxy, ground nearly to half- 230 238 thickness using 1500 grit wet-dry sandpaper and Th– U disequilibrium systematics (Reid et al., polished with 6- and 1-µm diamond abrasive. Each 1997; Lowenstern et al., 2000). Because zircon incorporates U preferentially with respect to Th, a grain was photographed in reflected light and imaged 230 with an SEM-based cathodoluminescence detector finite time (about 5 half-lives of Th; i.e., ~375,000 years) must elapse before 230Th is in isotopic (Fig. 2). Isotopic data were acquired on the 238 Stanford/USGS SHRIMP-RG (Sensitive, high- equilibrium with its parent isotope, U. Prior to that time, and especially for samples < 150,000 years old, resolution ion microprobe – reverse geometry) at 230 238 Stanford University. Grains older than 300,000 years the Th– U system is effective as a geochronometer.
Recommended publications
  • Geologic Map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington by Wes Hildreth and Judy Fierstein
    Prepared in Cooperation with the Water Resources Program of the Yakama Nation Geologic Map of the Simcoe Mountains Volcanic Field, Main Central Segment, Yakama Nation, Washington By Wes Hildreth and Judy Fierstein Pamphlet to accompany Scientific Investigations Map 3315 Photograph showing Mount Adams andesitic stratovolcano and Signal Peak mafic shield volcano viewed westward from near Mill Creek Guard Station. Low-relief rocky meadows and modest forested ridges marked by scattered cinder cones and shields are common landforms in Simcoe Mountains volcanic field. Mount Adams (elevation: 12,276 ft; 3,742 m) is centered 50 km west and 2.8 km higher than foreground meadow (elevation: 2,950 ft.; 900 m); its eruptions began ~520 ka, its upper cone was built in late Pleistocene, and several eruptions have taken place in the Holocene. Signal Peak (elevation: 5,100 ft; 1,555 m), 20 km west of camera, is one of largest and highest eruptive centers in Simcoe Mountains volcanic field; short-lived shield, built around 3.7 Ma, is seven times older than Mount Adams. 2015 U.S. Department of the Interior U.S. Geological Survey Contents Introductory Overview for Non-Geologists ...............................................................................................1 Introduction.....................................................................................................................................................2 Physiography, Environment, Boundary Surveys, and Access ......................................................6 Previous Geologic
    [Show full text]
  • (2000), Voluminous Lava-Like Precursor to a Major Ash-Flow
    Journal of Volcanology and Geothermal Research 98 (2000) 153–171 www.elsevier.nl/locate/jvolgeores Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado O. Bachmanna,*, M.A. Dungana, P.W. Lipmanb aSection des Sciences de la Terre de l’Universite´ de Gene`ve, 13, Rue des Maraıˆchers, 1211 Geneva 4, Switzerland bUS Geological Survey, 345 Middlefield Rd, Menlo Park, CA, USA Received 26 May 1999; received in revised form 8 November 1999; accepted 8 November 1999 Abstract The Pagosa Peak Dacite is an unusual pyroclastic deposit that immediately predated eruption of the enormous Fish Canyon Tuff (ϳ5000 km3) from the La Garita caldera at 28 Ma. The Pagosa Peak Dacite is thick (to 1 km), voluminous (Ͼ200 km3), and has a high aspect ratio (1:50) similar to those of silicic lava flows. It contains a high proportion (40–60%) of juvenile clasts (to 3–4 m) emplaced as viscous magma that was less vesiculated than typical pumice. Accidental lithic fragments are absent above the basal 5–10% of the unit. Thick densely welded proximal deposits flowed rheomorphically due to gravitational spreading, despite the very high viscosity of the crystal-rich magma, resulting in a macroscopic appearance similar to flow- layered silicic lava. Although it is a separate depositional unit, the Pagosa Peak Dacite is indistinguishable from the overlying Fish Canyon Tuff in bulk-rock chemistry, phenocryst compositions, and 40Ar/39Ar age. The unusual characteristics of this deposit are interpreted as consequences of eruption by low-column pyroclastic fountaining and lateral transport as dense, poorly inflated pyroclastic flows.
    [Show full text]
  • The Late Oligocene Cieneguilla Basanites, Santa Fe County
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/62 The late Oligocene Cieneguilla basanites, Santa Fe County: Records of early Rio Grande rift magmatism Jennifer Lindline, Michael Petronis, Rachell Pitrucha, and Salvador Sena, 2011, pp. 235-250 in: Geology of the Tusas Mountains and Ojo Caliente, Author Koning, Daniel J.; Karlstrom, Karl E.; Kelley, Shari A.; Lueth, Virgil W.; Aby, Scott B., New Mexico Geological Society 62nd Annual Fall Field Conference Guidebook, 418 p. This is one of many related papers that were included in the 2011 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • Analogues for Radioactive Waste For~1S •
    PNL-2776 UC-70 3 3679 00049 3611 ,. NATURALLY OCCURRING GLASSES: ANALOGUES FOR RADIOACTIVE WASTE FOR~1S • Rodney C. Ewing Richard F. Haaker Department of Geology University of New Mexico Albuquerque, ~ew Mexico 87131 April 1979 Prepared for the U.S. Department of Energy under Contract EY-76-C-06-1830 Pacifi c i'lorthwest Laboratory Richland, Washington 99352 TABLE OF CONTENTS List of Tables. i i List of Figures iii Acknowledgements. Introduction. 3 Natural Glasses 5 Volcanic Glasses 9 Physical Properties 10 Compos i ti on . 10 Age Distributions 10 Alteration. 27 Devitrification 29 Hydration 32 Tekti tes. 37 Physical Properties 38 Composition . 38 Age Distributions . 38 Alteration, Hydration 44 and Devitrification Lunar Glasses 44 Summary . 49 Applications to Radioactive Waste Disposal. 51 Recommenda ti ons 59 References 61 Glossary 65 i LIST OF TABLES 1. Petrographic Properties of Natural Glasses 6 2. Average Densities of Natural Glasses 11 3. Density of Crystalline Rock and Corresponding Glass 11 4. Glass and Glassy Rocks: Compressibility 12 5. Glass and Glassy Rocks: Elastic Constants 13 6. Glass: Effect of Temperature on Elastic Constants 13 7. Strength of Hollow Cylinders of Glass Under External 14 Hydrostatic Pressure 8. Shearing Strength Under High Confining Pressure 14 9. Conductivity of Glass 15 10. Viscosity of Miscellaneous Glasses 16 11. Typical Compositions for Volcanic Glasses 18 12. Selected Physical Properties of Tektites 39 13. Elastic Constants 40 14. Average Composition of Tektites 41 15. K-Ar and Fission-Track Ages of Tektite Strewn Fields 42 16. Microprobe Analyses of Various Apollo 11 Glasses 46 17.
    [Show full text]
  • Heat Flow at the Medicine Lake Volcano Hot Spot, Modoc County, California
    Oberlin Digital Commons at Oberlin Honors Papers Student Work 2014 Full of Hot Air: Heat Flow at the Medicine Lake Volcano Hot Spot, Modoc County, California Katrina D. Gelwick Oberlin College Follow this and additional works at: https://digitalcommons.oberlin.edu/honors Part of the Geology Commons Repository Citation Gelwick, Katrina D., "Full of Hot Air: Heat Flow at the Medicine Lake Volcano Hot Spot, Modoc County, California" (2014). Honors Papers. 288. https://digitalcommons.oberlin.edu/honors/288 This Thesis is brought to you for free and open access by the Student Work at Digital Commons at Oberlin. It has been accepted for inclusion in Honors Papers by an authorized administrator of Digital Commons at Oberlin. For more information, please contact [email protected]. FULL OF HOT AIR: HEAT FLOW AT THE MEDICINE LAKE VOLCANO HOT SPOT, MODOC COUNTY, CALIFORNIA Katrina D. Gelwick Honors Thesis April 2014 Advisors: F. Zeb Page Department of Geology, Oberlin College, Oberlin, OH Steven E. Ingebritsen U.S. Geological Survey, Menlo Park, CA Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree with Honors in Geology from Oberlin College, Oberlin, Ohio Abstract Changes in volcanic hydrothermal systems can shed light on the physical processes associated with volcanic unrest such as changes in an underlying magma body. The U.S. Geological Survey recently implemented an experimental hydrothermal monitoring network throughout the Cascade volcanic arc. Despite being ranked as the 12th highest threat among all Cascade volcanoes, Medicine Lake Volcano in northeastern California is considered under-monitored. The primary hydrothermal-monitoring site at Medicine Lake Volcano is a weak fumarole contained within a small area of heated ground, called the Hot Spot, located near the caldera rim.
    [Show full text]
  • USGS Scientific Investigations Map 2832, Pamphlet
    Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon By Charles R. Bacon Pamphlet to accompany Scientific Investigations Map 2832 View from the south-southwest rim of Crater Lake caldera showing the caldera wall from Hillman Peak on the west to Cleetwood Cove on the north. Crater Lake fills half of the 8- by 10-km-diameter caldera formed during the climactic eruption of Mount Mazama volcano approximately 7,700 years ago. Volcanic rocks exposed in the caldera walls and on the flanks record over 400,000 years of eruptive history. The exposed cinder cone and andesite lava flows on Wizard Island represent only 2 percent of the total volume of postcaldera volcanic rock that is largely covered by Crater Lake. Beyond Wizard Island, the great cliff of Llao Rock, rhyodacite lava emplaced 100–200 years before the caldera-forming eruption, dominates the northwest caldera wall where andesite lava flows at the lakeshore are approximately 150,000 years old. 2008 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank. CONTENTS Introduction . 1 Physiography and access . 1 Methods . 1 Geologic setting . 4 Eruptive history . 5 Regional volcanism . 6 Pre-Mazama silicic rocks . 6 Mount Mazama . 7 Preclimactic rhyodacites . 9 The climactic eruption . 10 Postcaldera volcanism . .11 Submerged caldera walls and floor . .11 Glaciation . .11 Geothermal phenomena . 12 Hazards . 13 Volcanic hazards . 13 Earthquake hazards . 14 Acknowledgments . 14 Description of map units . 14 Sedimentary deposits . 15 Volcanic rocks . 15 Regional volcanism, northwest . 15 Regional volcanism, southwest . 17 Mount Mazama . 20 Regional volcanism, east . 38 References cited .
    [Show full text]
  • Rock and Mineral Identification for Engineers
    Rock and Mineral Identification for Engineers November 1991 r~ u.s. Department of Transportation Federal Highway Administration acid bottle 8 granite ~~_k_nife _) v / muscovite 8 magnify~in_g . lens~ 0 09<2) Some common rocks, minerals, and identification aids (see text). Rock And Mineral Identification for Engineers TABLE OF CONTENTS Introduction ................................................................................ 1 Minerals ...................................................................................... 2 Rocks ........................................................................................... 6 Mineral Identification Procedure ............................................ 8 Rock Identification Procedure ............................................... 22 Engineering Properties of Rock Types ................................. 42 Summary ................................................................................... 49 Appendix: References ............................................................. 50 FIGURES 1. Moh's Hardness Scale ......................................................... 10 2. The Mineral Chert ............................................................... 16 3. The Mineral Quartz ............................................................. 16 4. The Mineral Plagioclase ...................................................... 17 5. The Minerals Orthoclase ..................................................... 17 6. The Mineral Hornblende ...................................................
    [Show full text]
  • Geologic Map of Medicine Lake Volcano, Northern California by Julie M
    Geologic Map of Medicine Lake Volcano, Northern California By Julie M. Donnelly-Nolan Pamphlet to accompany Scientific Investigations Map 2927 View of Medicine Lake volcano from northeast. Photo by Julie M. Donnelly-Nolan, 1978 2010 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank Contents Introduction............................................................................................................................................1 Geography and Access ..............................................................................................................1 Name of the Volcano ...................................................................................................................1 Methods.........................................................................................................................................2 Previous Geologic Work ......................................................................................................................2 Geologic and Tectonic Setting ............................................................................................................3 Pre-MLV Volcanic Activity...................................................................................................................4 Eruptive History of MLV .......................................................................................................................4 Eruptive Stage 1: Approximately 500 ka to 300 ka .................................................................6
    [Show full text]
  • Thermal Modeling and EGS Potential of Newberry Volcano, Central Oregon
    PROCEEDINGS, Thirty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 24-26, 2014 SGP-TR-202 Thermal Modeling and EGS Potential of Newberry Volcano, Central Oregon Zachary Frone, Al Waibel, and David Blackwell [email protected], [email protected], [email protected] Keywords: Newberry Volcano, Numerical Modeling, Heat Flow, EGS ABSTRACT Newberry Volcano, located in central Oregon in the Deschutes National Forest, is a large bimodal Quaternary volcanic edifice that covers 1600 km2. Various periods of geothermal exploration in and around the volcano over the last 30+ years has resulted in a robust dataset of wellbore temperatures, cores, gravity data, and other geophysical surveys. Wells drilled on the flanks of Newberry have an average geothermal gradient of 130°C/km and show a roughly circular heat flow anomaly centered on the caldera. Geologic data suggest a typical interval of ~200,000 years between large caldera forming eruptions. Using these data along with new industry collected gravity data and recent tomographic studies; a 2-D finite-difference heat conduction program was used to model the heat source under the volcano. The available temperature data on the west flank of the volcano can be explained by silicic sill intrusions recurring at a 200,000 year rate over the 500,000 year lifetime of the volcano. 1. INTRODUCTION The purpose of this study is to constrain the nature of the heat source beneath Newberry Volcano in order to quantify the thermal energy potential of the area. Newberry Volcano is located in Deschutes County, Oregon, about 35 km south of the city of Bend.
    [Show full text]
  • 6 IA 6 – Volcano
    6 IA 6 – Volcano THIS PAGE LEFT BLANK INTENTIONALLY Table of Contents 1 Purpose ..................................................................... IA 6-1 2 Policies ...................................................................... IA 6-1 3 Situation and Assumptions ..................................... IA 6-2 4 Concept of Operations ............................................. IA 6-9 5 Roles and Responsibilities ...................................... IA 6-9 5.1 Primary Agency: Oregon Emergency Management ................. IA 6-9 5.2 Supporting Agencies .............................................................. IA 6-10 5.3 Adjunct Agencies ................................................................... IA 6-10 6 Hazard Specific Information – Volcano ................. IA 6-10 6.1 Definition ................................................................................ IA 6-10 6.2 Frequency .............................................................................. IA 6-11 6.3 Territory at Risk ...................................................................... IA 6-12 6.4 Effects .................................................................................... IA 6-12 6.5 Predictability ........................................................................... IA 6-13 7 Supporting Documents .......................................... IA 6-13 8 Appendices ............................................................. IA 6-13 IA 6-iii State of Oregon EOP Incident Annexes IA 6. Volcano THIS PAGE LEFT BLANK INTENTIONALLY
    [Show full text]
  • Petrography Edward F
    Chapter 4 Petrography Edward F. Stoddard A petrographic study was taken in order to help determine the sources of lithic artifacts found at archaeological sites on Fort Bragg. In the first phase of the study, known and suspected archaeological quarry sites in the central Piedmont of North Carolina were visited. From each quarry, hand specimens were collected and petrographic thin sections were examined in an attempt to establish a basis for distinguishing among the quarries. If material from each quarry was sufficiently distinctive, then quarry sources could potentially be matched with Fort Bragg lithic artifacts. Seventy-one samples from 12 quarry zones were examined (Table 4.1). Thirty- one of these samples are from five quarry zones in the Uwharrie Mountains region; 20 of these were collected and described previously by Daniel and Butler (1996). Forty specimens were collected from seven additional quarry zones in Chatham, Durham, Person, Orange, and Cumberland Counties. All quarries are within the Carolina Terrane, except the Cumberland County quarry, which occurs in younger sedimentary material derived primarily from Carolina Terrane outcrops. Rocks include both metavolcanic and metasedimentary types. Compositionally, most metavolcanic rocks are dacitic and include flows, tuffs, breccias, and porphyries. Metasedimentary rocks are metamudstone and fine metasandstone. The Uwharrie quarries are divided into five zones: Eastern, Western, Southern, Asheboro, and Southeastern. The divisions are based primarily on macroscopic petrography and follow the results of Daniel and Butler (1996); the Uwharries Southeastern zone was added in this study. Each of the Uwharrie quarry zones represents three to six individual quarries in relatively close proximity. Rock specimens are all various felsic metavolcanic rocks, but zones may be distinguished based upon mineralogy and texture.
    [Show full text]
  • Oregon Geology
    OREGOM GEOLOGY published by the Oregon Department of Geology and Mineral Industries VOLUME 44 , NUMBER 11 NOVEMBER 19B2 '" ;. OREGON GEOLOGY OIL AND GAS NEWS (ISSN 0164-3304) Columbia County VOLUME 44, NUMBER 11 NOVEMBER 1982 Reichhold Energy Corporation drilled Adams 34-28 to a total depth of 2,572 ft. The well, in sec. 28, T. 7 N., R. 5 W., Published monthly by the State of Oregon Department of was abandoned as a dry hole in September. Geology and Mineral Industries (Volumes I through 40 were en­ The company will soon spud Libel 12-14 in the Mist gas titled The Ore Bin). field. The proposed 2,900-ft well is to be located in sec. 14, T. 6 N., R. 5 W .. The location is half a mile from the recently Governing Board completed redrill of Columbia County 4. C. Stanley Rasmussen ........................... Baker Allen P. Stinchfield ........................ North Bend Clatsop County Donald A. Haagensen. .. Portland Oregon Natural Gas Development Company's Patton 32-9 in sec. 9, T. 7 N., R. 5 W., is idle pending the decision State Geologist .. .. Donald A. Hull whether to redrill. Deputy State Geologist ..................... John D. Beaulieu Douglas County Editor .... .. Beverly F. Vogt Florida Exploration Company has abandoned the 1-4 well near Drain. It is not known whether the company will drill Main Ollice: 1005 State Office Building, Portland 97201, other locations. phone (503) 229-5580. Yamhill County Baker Field Office: 2033 First Street, Baker 97814, phone (503) Nahama and Weagant Energy Company recently drilled 523-3133. Klohs 1 in sec. 6, T.
    [Show full text]