Oregon Geology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Preliminary Report of the Battle of the Crater, 30 July 1864
Holding the Line A Preliminary Report of The Battle of the Crater 30 July 1864 Adrian Mandzy, Ph. D. Michelle Sivilich, Ph. D. Benjamin Lewis Fitzpatrick, Ph. D. Dan Sivilich Floyd Patrick Davis Kelsey P. Becraft Dakota Leigh Goedel Jeffrey A. McFadden Jessey C. Reed Jaron A. Rucker A PRELIMINARY REPORT ON THE SURVEY OF THE BATTLE OF THE CRATER, 30 JULY 1864 By Adrian Mandzy, Ph.D., Michelle Sivilich, Ph. D., Floyd Patrick Davis, Kelsey P. Becraft, Dakota Leigh Goedel, Jeffrey A. McFadden, Jessey C. Reed, and Jaron A. Rucker With a Contributions by Daniel Sivilich and Dr. Benjamin Lewis Fitzpatrick Report prepared for the Northeast Region Archeology Program National Park Service 115 John Street, 4th Floor Lowell, Massachusetts 01852-1195 _______________________________ Adrian Mandzy Principal Investigator ARPA Permit 2014.PETE.01 2 Abstract In March 2015, faculty and students from Morehead State University’s History program, along with members of the Battlefield Restoration and Archeological Volunteer Organization (BRAVO) conducted a survey of The Crater Battlefield. Fought on 30 July 1864, during the Siege of Petersburg, the Battle of the Crater, according to the National Park Service, is one of the most important events of the Civil War. The participation of African-American troops in the battle and the subsequent execution of black prisoners highlights the racial animosities that were the underpinning causes of this conflict. The goal of this project is to document the level of integrity of any archaeological resources connected with this field of conflict and to examine how far the Union troops advance beyond the mouth of the Crater. -
Appendix a Conceptual Geologic Model
Newberry Geothermal Energy Establishment of the Frontier Observatory for Research in Geothermal Energy (FORGE) at Newberry Volcano, Oregon Appendix A Conceptual Geologic Model April 27, 2016 Contents A.1 Summary ........................................................................................................................................... A.1 A.2 Geological and Geophysical Context of the Western Flank of Newberry Volcano ......................... A.2 A.2.1 Data Sources ...................................................................................................................... A.2 A.2.2 Geography .......................................................................................................................... A.3 A.2.3 Regional Setting ................................................................................................................. A.4 A.2.4 Regional Stress Orientation .............................................................................................. A.10 A.2.5 Faulting Expressions ........................................................................................................ A.11 A.2.6 Geomorphology ............................................................................................................... A.12 A.2.7 Regional Hydrology ......................................................................................................... A.20 A.2.8 Natural Seismicity ........................................................................................................... -
USGS USGS Geologic Investigations Series I-2569, Pamphlet
U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I–2569 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF UPPER EOCENE TO HOLOCENE VOLCANIC AND RELATED ROCKS OF THE CASCADE RANGE, OREGON By David R. Sherrod and James G. Smith INTRODUCTION volcanic-hosted mineral deposits and even to potential volcanic hazards. Since 1979, Earth scientists of the Geothermal Historically, the regional geology of the Cascade Research Program of the U.S. Geological Survey have Range in Oregon has been interpreted through recon carried out multidisciplinary research in the Cascade naissance studies of large areas (for example, Diller, Range. The goal of this research is to understand 1898; Williams, 1916; Callaghan and Buddington, the geology, tectonics, and hydrology of the Cas cades in order to characterize and quantify geothermal 1938; Williams, 1942, 1957; Peck and others, 1964). Early studies were hampered by limited access, resource potential. A major goal of the program generally poor exposures, and thick forest cover, which is compilation of a comprehensive geologic map of flourishes in the 100 to 250 cm of annual precipi the entire Cascade Range that incorporates modern tation west of the range crest. In addition, age control field studies and that has a unified and internally con was scant and limited chiefly to fossil flora. Since sistent explanation. This map is one of three in a series that shows then, access has greatly improved via a well-devel- oped network of logging roads, and isotopic ages— Cascade Range geology by fitting published and mostly potassium-argon (K-Ar)—have gradually solved unpublished mapping into a province-wide scheme some major problems concerning timing of volcan of rock units distinguished by composition and age; ism and age of mapped units. -
Upper Deschutes River · ·Basin Prehistory
Upper Deschutes River · ·Basin Prehistory: A Preliminary Examination of Flaked Stone Tools and Debitage Michael W. Taggart 2002 ·~. ... .. " .. • '·:: ••h> ·';'"' •..,. •.• '11\•.. ...... :f~::.. ·:·. .. ii AN ABSTRACT OF THE THESIS OF Michael W. Taggart for the degree of Master of Arts in Interdisciplinary Studies in Anthropology. Anthropology. and Geography presented on April 19. 2002. Title: Upper Deschutes River Basin Prehistory: A Preliminary Examination of Flaked Stone Tools and Debitage. The prehistory of Central Oregon is explored through the examination of six archaeological sites and two isolated finds from the Upper Deschutes River Basin. Inquiry focuses on the land use, mobility, technological organization, and raw material procurement of the aboriginal inhabitants of the area. Archaeological data presented here are augmented with ethnographic accounts to inform interpretations. Eight stone tool assemblages and three debitage assemblages are analyzed in order to characterize technological organization. Diagnostic projectile points recovered from the study sites indicate the area was seasonally utilized prior to the eruption of ancient Mt. Mazama (>6,845 BP), and continuing until the Historic period (c. 1850). While there is evidence of human occupation at the study sites dating to between >7,000- 150 B.P., the range of activities and intensity of occupation varied. Source characterization analysis indicates that eight different Central Oregon obsidian sources are represented at the sites. Results of the lithic analysis are presented in light of past environmental and social phenomena including volcanic eruptions, climate change, and human population movements. Chapter One introduces the key questions that directed the inquiry and defines the theoretical perspective used. Chapter Two describes the modem and ancient environmental context of study area. -
Confronting Antisemitism in Modern Media, the Legal and Political Worlds an End to Antisemitism!
Confronting Antisemitism in Modern Media, the Legal and Political Worlds An End to Antisemitism! Edited by Armin Lange, Kerstin Mayerhofer, Dina Porat, and Lawrence H. Schiffman Volume 5 Confronting Antisemitism in Modern Media, the Legal and Political Worlds Edited by Armin Lange, Kerstin Mayerhofer, Dina Porat, and Lawrence H. Schiffman ISBN 978-3-11-058243-7 e-ISBN (PDF) 978-3-11-067196-4 e-ISBN (EPUB) 978-3-11-067203-9 DOI https://10.1515/9783110671964 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For details go to https://creativecommons.org/licenses/by-nc-nd/4.0/ Library of Congress Control Number: 2021931477 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de. © 2021 Armin Lange, Kerstin Mayerhofer, Dina Porat, Lawrence H. Schiffman, published by Walter de Gruyter GmbH, Berlin/Boston The book is published with open access at www.degruyter.com Cover image: Illustration by Tayler Culligan (https://dribbble.com/taylerculligan). With friendly permission of Chicago Booth Review. Printing and binding: CPI books GmbH, Leck www.degruyter.com TableofContents Preface and Acknowledgements IX LisaJacobs, Armin Lange, and Kerstin Mayerhofer Confronting Antisemitism in Modern Media, the Legal and Political Worlds: Introduction 1 Confronting Antisemitism through Critical Reflection/Approaches -
Volcanic Landforms: the Landform Which Is Formed from the Material Thrown out to the Surface During Volcanic Activity Is Called Extrusive Landform
Download Testbook App Volcanic Geography NCERT Notes Landforms For UPSC ABOUT VOLCANIC LANDFORM: Volcanic landform is categorised into two types they are:extrusive and intrusive landforms. This division is done based on whether magma cools within the crust or above the crust. By the cooling process of magma different types of rock are formed. Like: Plutonic rock, it is a rock which is magma within the crust whereas Igneous rock is formed by the cooling of lava above the surface. Along with that “igneous rock” term is also used to refer to all rocks of volcanic origin. Extrusive Volcanic Landforms: The landform which is formed from the material thrown out to the surface during volcanic activity is called extrusive landform. The materials which are thrown out during volcanic activity are: lava flows, pyroclastic debris, volcanic bombs, ash, dust and gases such as nitrogen compounds, sulphur compounds and minor amounts of chlorine, hydrogen and argon. Conical Vent and Fissure Vent: Conical Vent: It is a narrow cylindrical vent through which magma flows out violently. Such vents are commonly seen in andesitic volcanism. Fissure vent: Such vent is a narrow, linear through which lava erupts with any kind of explosive events. Such vents are usually seen in basaltic volcanism. Mid-Ocean Ridges: The volcanoes which are found in oceanic areas are called mid-ocean ridges. In them there is a system of mid-ocean ridges stretching for over 70000 km all through the ocean basins. And the central part of such a ridge usually gets frequent eruptions. Composite Type Volcanic Landforms: Such volcanic landforms are also called stratovolcanoes. -
Muslim Scientists and Thinkers
MUSLIM SCIENTISTS AND THINKERS Syed Aslam Second edition 2010 Copyright 2010 by Syed Aslam Publisher The Muslim Observer 29004 W. Eight Mile Road Farmington, MI 48336 Cover Statue of Ibn Rushd Cordoba, Spain ISBN 978-1-61584-980-2 Printed in India Lok-Hit Offset Shah-e-Alam Ahmedabad Gujarat ii Dedicated to Ibn Rushd and other Scientists and Thinkers of the Islamic Golden Age iii CONTENTS Acknowledgments ................................................VI Foreword .............................................................VII Introduction ..........................................................1 1 Concept of Knowledge in Islam ............................8 2 Abu Musa Jabir Ibn Hayyan..................................25 3 Al-Jahiz abu Uthman Ibn Bahar ...........................31 4 Muhammad Ibn Musa al-Khwarizmi....................35 5 Abu Yaqoub Ibn Ishaq al-Kindi ............................40 6 Muhammad bin Zakaria Razi ...............................45 7 Jabir ibn Sinan al-Batani.......................................51 8 Abu Nasar Mohammad ibn al-Farabi....................55 9 Abu Wafa ibn Ismail al-Buzjani ...........................61 10 Abu Ali al-Hasan ibn al-Haytham .......................66 11 Abu Rayhan ibn al-Biruni ....................................71 12 Ali al-Hussain ibn Sina ........................................77 13 Abu Qasim ibn al-Zahrawi ..................................83 iv 14 Omar Khayyam ...................................................88 15 Abu Hamid al-Ghazali .........................................93 -
Lower Sycan Watershed Analysis
Lower Sycan Watershed Analysis Fremont-Winema National Forest 2005 Lower Sycan River T33S,R12E,S23 Lower Sycan Watershed Analysis Table of Contents INTRODUCTION...................................................................................................................................... 1 General Watershed Area.....................................................................................................................................2 Geology and Soils.................................................................................................................................................5 Climate..................................................................................................................................................................6 STEP 1. CHARACTERIZATION OF THE WATERSHED ................................................................... 7 I. Watershed and Aquatics.................................................................................................................................7 Soils And Geomorphology...............................................................................................................................................10 Aquatic Habitat ................................................................................................................................................................10 II. Vegetation.....................................................................................................................................................12 -
Magma Emplacement and Deformation in Rhyolitic Dykes: Insight Into Magmatic Outgassing
MAGMA EMPLACEMENT AND DEFORMATION IN RHYOLITIC DYKES: INSIGHT INTO MAGMATIC OUTGASSING Presented for the degree of Ph.D. by Ellen Marie McGowan MGeol (The University of Leicester, 2011) Initial submission January 2016 Final submission September 2016 Lancaster Environment Centre, Lancaster University Declaration I, Ellen Marie McGowan, hereby declare that the content of this thesis is the result of my own work, and that no part of the work has been submitted in substantially the same form for the award of a higher degree elsewhere. This thesis is dedicated to Nan-Nar, who sadly passed away in 2015. Nan, you taught our family the importance and meaning of love, we love you. Abstract Exposed rhyolitic dykes at eroded volcanoes arguably provide in situ records of conduit processes during rhyolitic eruptions, thus bridging the gap between surface and sub-surface processes. This study involved micro- to macro-scale analysis of the textures and water content within shallow (emplacement depths <500 m) rhyolitic dykes at two Icelandic central volcanoes. It is demonstrated that dyke propagation commenced with the intrusion of gas- charged currents that were laden with particles, and that the distribution of intruded particles and degree of magmatic overpressure required for dyke propagation were governed by the country rock permeability and strength, with pre-existing fractures playing a pivotal governing role. During this stage of dyke evolution significant amounts of exsolved gas may have escaped. Furthermore, during later magma emplacement within the dyke interiors, particles that were intruded and deposited during the initial phase were sometimes preserved at the dyke margins, forming dyke- marginal external tuffisite veins, which would have been capable of facilitating persistent outgassing during dyke growth. -
Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the Re-Opening of Lava Lands Visitor Center Inside
Volcanic Vistas Discover National Forests in Central Oregon Summer 2009 Celebrating the re-opening of Lava Lands Visitor Center Inside.... Be Safe! 2 LAWRENCE A. CHITWOOD Go To Special Places 3 EXHIBIT HALL Lava Lands Visitor Center 4-5 DEDICATED MAY 30, 2009 Experience Today 6 For a Better Tomorrow 7 The Exhibit Hall at Lava Lands Visitor Center is dedicated in memory of Explore Newberry Volcano 8-9 Larry Chitwood with deep gratitude for his significant contributions enlightening many students of the landscape now and in the future. Forest Restoration 10 Discover the Natural World 11-13 Lawrence A. Chitwood Discovery in the Kids Corner 14 (August 4, 1942 - January 4, 2008) Take the Road Less Traveled 15 Larry was a geologist for the Deschutes National Forest from 1972 until his Get High on Nature 16 retirement in June 2007. Larry was deeply involved in the creation of Newberry National Volcanic Monument and with the exhibits dedicated in 2009 at Lava Lands What's Your Interest? Visitor Center. He was well known throughout the The Deschutes and Ochoco National Forests are a recre- geologic and scientific communities for his enthusiastic support for those wishing ation haven. There are 2.5 million acres of forest including to learn more about Central Oregon. seven wilderness areas comprising 200,000 acres, six rivers, Larry was a gifted storyteller and an ever- 157 lakes and reservoirs, approximately 1,600 miles of trails, flowing source of knowledge. Lava Lands Visitor Center and the unique landscape of Newberry National Volcanic Monument. Explore snow- capped mountains or splash through whitewater rapids; there is something for everyone. -
Video Monitoring Reveals Pulsating Vents and Propagation Path of Fissure Eruption During the March 2011 Pu'u
Journal of Volcanology and Geothermal Research 330 (2017) 43–55 Contents lists available at ScienceDirect Journal of Volcanology and Geothermal Research journal homepage: www.elsevier.com/locate/jvolgeores Video monitoring reveals pulsating vents and propagation path of fissure eruption during the March 2011 Pu'u 'Ō'ō eruption, Kilauea volcano Tanja Witt ⁎,ThomasR.Walter GFZ German Research Centre for Geosciences, Section 2.1: Physics of Earthquakes and Volcanoes, Telegrafenberg, 14473 Potsdam, Germany article info abstract Article history: Lava fountains are a common eruptive feature of basaltic volcanoes. Many lava fountains result from fissure erup- Received 12 April 2016 tions and are associated with the alignment of active vents and rising gas bubbles in the conduit. Visual reports Received in revised form 18 November 2016 suggest that lava fountain pulses may occur in chorus at adjacent vents. The mechanisms behind such a chorus of Accepted 18 November 2016 lava fountains and the underlying processes are, however, not fully understood. Available online 5 December 2016 The March 2011 eruption at Pu'u 'Ō'ō (Kilauea volcano) was an exceptional fissure eruption that was well mon- fi fi Keywords: itored and could be closely approached by eld geologists. The ssure eruption occurred along groups of individ- Kilauea volcano ual vents aligned above the feeding dyke. We investigate video data acquired during the early stages of the Fissure eruption eruption to measure the height, width and velocity of the ejecta leaving eight vents. Using a Sobel edge-detection Vent migration algorithm, the activity level of the lava fountains at the vents was determined, revealing a similarity in the erup- Bubbling magma tion height and frequency. -
LERZ) Eruption of Kīlauea Volcano: Fissure 8 Prognosis and Ongoing Hazards
COOPERATOR REPORT TO HAWAII COUNTY CIVIL DEFENSE Preliminary Analysis of the ongoing Lower East Rift Zone (LERZ) eruption of Kīlauea Volcano: Fissure 8 Prognosis and Ongoing Hazards Prepared by the U.S. Geological Survey Hawaiian Volcano Observatory July 15, 2018 (V 1.1) Introduction In late April 2018, the long-lived Puʻu ʻŌʻō vent collapsed, setting off a chain of events that would result in a vigorous eruption in the lower East Rift Zone of Kīlauea Volcano, as well as the draining of the summit lava lake and magmatic system and the subsequent collapse of much of the floor of the Kīlauea caldera. Both events originated in Lava Flow Hazard Zone (LFHZ) 1 (Wright et al, 1992), which encompasses the part of the volcano that is most frequently affected by volcanic activity. We examine here the possible and potential impacts of the ongoing eruptive activity in the lower East Rift Zone (LERZ) of Kīlauea Volcano, and specifically that from fissure 8 (fig. 1). Fissure 8 has been the dominant lava producer during the 2018 LERZ eruption, which began on May 3, 2018, in Leilani Estates, following intrusion of magma from the middle and upper East Rift Zone, as well as the volcano’s summit, into the LERZ. The onset of downrift intrusion was accompanied by collapse of the Puʻu ʻŌʻō vent, which started on April 30 and lasted several days. Kīlauea Volcano's shallow summit magma reservoir began deflating on about May 2, illustrating the magmatic connection between the LERZ and the summit. Early LERZ fissures erupted cooler lava that had likely been stored within the East Rift Zone, but was pushed out in front of hotter magma arriving from farther uprift.