Survey and Benchmark of Lightweight Block Ciphers for Wireless Sensor Networks?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems
Rochester Institute of Technology RIT Scholar Works Theses 11-2014 Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems Kai Tian Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Tian, Kai, "Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems" (2014). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Fault-Resilient Lightweight Cryptographic Block Ciphers for Secure Embedded Systems by Kai Tian A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical Engineering Supervised by Dr. Mehran Mozaffari-Kermani Department of Electrical and Microelectronic Engineering Kate Gleason College of Engineering Rochester Institute of Technology Rochester, NY November 2014 Approved By: Dr. Mehran Mozaffari-Kermani Assistant Professor – R.I.T. Dept. of Electrical and Microelectronic Engineering Dr. Dorin Patru Associate Professor – R.I.T. Dept. of Electrical and Microelectronic Engineering Dr. Reza Azarderakhsh Assistant Professor – R.I.T. Dept. of Computer Engineering Dr. Sohail A. Dianat Department Head - Professor –Dept. of Electrical and Microelectronic Engineering Acknowledgements I am grateful to my advisor, Dr. Mehran Mozaffari-Kermani, whose support and guidance helped me to understand the concepts clearly and complete my Masters. Special thanks also go to other professors, who helped me in my field of study, Dr. Dorin Patru, Dr. Reza Azarderakhsh and Dr. Marcin Lukowiak, for their constructive comments and participation. -
Atlantic Highly Migratory Species Stock Assessment and Fisheries Evaluation Report 2019
Atlantic Highly Migratory Species Stock Assessment and Fisheries Evaluation Report 2019 U.S. Department of Commerce | National Oceanic and Atmospheric Administration | National Marine Fisheries Service 2019 Stock Assessment and Fishery Evaluation Report for Atlantic Highly Migratory Species Atlantic Highly Migratory Species Management Division May 2020 Highly Migratory Species Management Division NOAA Fisheries 1315 East-West Highway Silver Spring, MD 20910 Phone (301) 427-8503 Fax (301) 713-1917 For HMS Permitting Information and Regulations • HMS recreational fishermen, commercial fishermen, and dealer compliance guides: www.fisheries.noaa.gov/atlantic-highly-migratory-species/atlantic-hms-fishery- compliance-guides • Regulatory updates for tunas: hmspermits.noaa.gov For HMS Permit Purchase or Renewals Open Access Vessel Permits Issuer Permits Contact Information HMS Permit HMS Charter/Headboat, (888) 872-8862 Shop Atlantic Tunas (General, hmspermits.noaa.gov Harpoon, Trap), Swordfish General Commercial, HMS Angling (recreational) Southeast Commercial Caribbean Small (727) 824-5326 Regional Boat, Smoothhound Shark www.fisheries.noaa.gov/southeast/resources- Office fishing/southeast-fisheries-permits Greater Incidental HMS Squid Trawl (978) 281-9370 Atlantic www.fisheries.noaa.gov/new-england-mid- Regional atlantic/resources-fishing/vessel-and-dealer- Fisheries permitting-greater-atlantic-region Office Limited Access Vessel Permits Issuer Permits Contact Information HMS Permit Atlantic Tunas Purse Seine (888) 872-8862 Shop category hmspermits.noaa.gov -
Optimizing the Block Cipher Resource Overhead at the Link Layer Security Framework in the Wireless Sensor Networks
Proceedings of the World Congress on Engineering 2008 Vol I WCE 2008, July 2 - 4, 2008, London, U.K. Optimizing the Block Cipher Resource Overhead at the Link Layer Security Framework in the Wireless Sensor Networks Devesh C. Jinwala, Dhiren R. Patel and Kankar S. Dasgupta, data collected from different sensor nodes. Since the Abstract—The security requirements in Wireless Sensor processing of the data is done on-the-fly, while being Networks (WSNs) and the mechanisms to support the transmitted to the base station; the overall communication requirements, demand a critical examination. Therefore, the costs are reduced [2]. Due to the multi-hop communication security protocols employed in WSNs should be so designed, as and the in-network processing demanding applications, the to yield the optimum performance. The efficiency of the block cipher is, one of the important factors in leveraging the conventional end-to-end security mechanisms are not performance of any security protocol. feasible for the WSN [3]. Hence, the use of the standard In this paper, therefore, we focus on the issue of optimizing end-to-end security protocols like SSH, SSL [4] or IPSec [5] the security vs. performance tradeoff in the security protocols in WSN environment is rejected. Instead, appropriate link in WSNs. As part of the exercise, we evaluate the storage layer security architecture, with low associated overhead is requirements of the block ciphers viz. the Advanced Encryption required. Standard (AES) cipher Rijndael, the Corrected Block Tiny Encryption Algorithm (XXTEA) using the Output Codebook There are a number of research attempts that aim to do so. -
Protocol Failure in the Escrowed Encryption Standard
Protocol Failure in the Escrowed Encryption Standard Matt Blaze AT&T Bell Laboratories [email protected] August 20, 1994 Abstract The proposal, called the Escrowed Encryption Stan- dard (EES) [NIST94], includes several unusual fea- The Escrowed Encryption Standard (EES) de¯nes tures that have been the subject of considerable de- a US Government family of cryptographic processors, bate and controversy. The EES cipher algorithm, popularly known as \Clipper" chips, intended to pro- called \Skipjack", is itself classi¯ed, and implemen- tect unclassi¯ed government and private-sector com- tations of the cipher are available to the private sec- munications and data. A basic feature of key setup be- tor only within tamper-resistant modules supplied by tween pairs of EES processors involves the exchange of government-approved vendors. Software implementa- a \Law Enforcement Access Field" (LEAF) that con- tions of the cipher will not be possible. Although Skip- tains an encrypted copy of the current session key. The jack, which was designed by the US National Security LEAF is intended to facilitate government access to Agency (NSA), was reviewed by a small panel of civil- the cleartext of data encrypted under the system. Sev- ian experts who were granted access to the algorithm, eral aspects of the design of the EES, which employs a the cipher cannot be subjected to the degree of civilian classi¯ed cipher algorithm and tamper-resistant hard- scrutiny ordinarily given to new encryption systems. ware, attempt to make it infeasible to deploy the sys- By far the most controversial aspect of the EES tem without transmitting the LEAF. -
Multiple New Formulas for Cipher Performance Computing
International Journal of Network Security, Vol.20, No.4, PP.788-800, July 2018 (DOI: 10.6633/IJNS.201807 20(4).21) 788 Multiple New Formulas for Cipher Performance Computing Youssef Harmouch1, Rachid Elkouch1, Hussain Ben-azza2 (Corresponding author: Youssef Harmouch) Department of Mathematics, Computing and Networks, National Institute of Posts and Telecommunications1 10100, Allal El Fassi Avenue, Rabat, Morocco (Email:[email protected] ) Department of Industrial and Production Engineering, Moulay Ismail University2 National High School of Arts and Trades, Mekns, Morocco (Received Apr. 03, 2017; revised and accepted July 17, 2017) Abstract are not necessarily commensurate properties. For exam- ple, an online newspaper will be primarily interested in Cryptography is a science that focuses on changing the the integrity of their information while a financial stock readable information to unrecognizable and useless data exchange network may define their security as real-time to any unauthorized person. This solution presents the availability and information privacy [14, 23]. This means main core of network security, therefore the risk analysis that, the many facets of the attribute must all be iden- for using a cipher turn out to be an obligation. Until now, tified and adequately addressed. Furthermore, the secu- the only platform for providing each cipher resistance is rity attributes are terms of qualities, thus measuring such the cryptanalysis study. This cryptanalysis can make it quality terms need a unique identification for their inter- hard to compare ciphers because each one is vulnerable to pretations meaning [20, 24]. Besides, the attributes can a different kind of attack that is often very different from be interdependent. -
KLEIN: a New Family of Lightweight Block Ciphers
KLEIN: A New Family of Lightweight Block Ciphers Zheng Gong1, Svetla Nikova1;2 and Yee Wei Law3 1Faculty of EWI, University of Twente, The Netherlands fz.gong, [email protected] 2 Dept. ESAT/SCD-COSIC, Katholieke Universiteit Leuven, Belgium 3 Department of EEE, The University of Melbourne, Australia [email protected] Abstract Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has ad- vantage in the software performance on legacy sensor platforms, while its hardware implementation can be compact as well. Key words. Block cipher, Wireless sensor network, Low-resource implementation. 1 Introduction With the development of wireless communication and embedded systems, we become increasingly de- pendent on the so called pervasive computing; examples are smart cards, RFID tags, and sensor nodes that are used for public transport, pay TV systems, smart electricity meters, anti-counterfeiting, etc. Among those applications, wireless sensor networks (WSNs) have attracted more and more attention since their promising applications, such as environment monitoring, military scouting and healthcare. On resource-limited devices the choice of security algorithms should be very careful by consideration of the implementation costs. Symmetric-key algorithms, especially block ciphers, still play an important role for the security of the embedded systems. -
Performance and Energy Efficiency of Block Ciphers in Personal Digital Assistants
Performance and Energy Efficiency of Block Ciphers in Personal Digital Assistants Creighton T. R. Hager, Scott F. Midkiff, Jung-Min Park, Thomas L. Martin Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061 USA {chager, midkiff, jungmin, tlmartin} @ vt.edu Abstract algorithms may consume more energy and drain the PDA battery faster than using less secure algorithms. Due to Encryption algorithms can be used to help secure the processing requirements and the limited computing wireless communications, but securing data also power in many PDAs, using strong cryptographic consumes resources. The goal of this research is to algorithms may also significantly increase the delay provide users or system developers of personal digital between data transmissions. Thus, users and, perhaps assistants and applications with the associated time and more importantly, software and system designers need to energy costs of using specific encryption algorithms. be aware of the benefits and costs of using various Four block ciphers (RC2, Blowfish, XTEA, and AES) were encryption algorithms. considered. The experiments included encryption and This research answers questions regarding energy decryption tasks with different cipher and file size consumption and execution time for various encryption combinations. The resource impact of the block ciphers algorithms executing on a PDA platform with the goal of were evaluated using the latency, throughput, energy- helping software and system developers design more latency product, and throughput/energy ratio metrics. effective applications and systems and of allowing end We found that RC2 encrypts faster and uses less users to better utilize the capabilities of PDA devices. -
Data Encryption Routines for the PIC18
AN953 Data Encryption Routines for the PIC18 Author: David Flowers ENCRYPTION MODULE OVERVIEW Microchip Technology Inc. • Four algorithms to choose from, each with their own benefits INTRODUCTION • Advanced Encryption Standard (AES) This Application Note covers four encryption - Modules available in C, Assembly and algorithms: AES, XTEA, SKIPJACK® and a simple Assembly written for C encryption algorithm using a pseudo-random binary - Allows user to decide to include encoder, sequence generator. The science of cryptography decoder or both dates back to ancient Egypt. In today’s era of informa- - Allows user to pre-program a decryption key tion technology where data is widely accessible, into the code or use a function to calculate sensitive material, especially electronic data, needs to the decryption key be encrypted for the user’s protection. For example, a • Tiny Encryption Algorithm version 2 (XTEA) network-based card entry door system that logs the persons who have entered the building may be suscep- - Modules available in C and Assembly tible to an attack where the user information can be - Programmable number of iteration cycles stolen or manipulated by sniffing or spoofing the link • SKIPJACK between the processor and the memory storage - Module available in C device. If the information is encrypted first, it has a • Pseudo-random binary sequence generator XOR better chance of remaining secure. Many encryption encryption algorithms provide protection against someone reading - Modules available in C and Assembly the hidden data, as well as providing protection against tampering. In most algorithms, the decryption process - Allows user to change the feedback taps at will cause the entire block of information to be run-time destroyed if there is a single bit error in the block prior - KeyJump breaks the regular cycle of the to to decryption. -
Development of the Advanced Encryption Standard
Volume 126, Article No. 126024 (2021) https://doi.org/10.6028/jres.126.024 Journal of Research of the National Institute of Standards and Technology Development of the Advanced Encryption Standard Miles E. Smid Formerly: Computer Security Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA [email protected] Strong cryptographic algorithms are essential for the protection of stored and transmitted data throughout the world. This publication discusses the development of Federal Information Processing Standards Publication (FIPS) 197, which specifies a cryptographic algorithm known as the Advanced Encryption Standard (AES). The AES was the result of a cooperative multiyear effort involving the U.S. government, industry, and the academic community. Several difficult problems that had to be resolved during the standard’s development are discussed, and the eventual solutions are presented. The author writes from his viewpoint as former leader of the Security Technology Group and later as acting director of the Computer Security Division at the National Institute of Standards and Technology, where he was responsible for the AES development. Key words: Advanced Encryption Standard (AES); consensus process; cryptography; Data Encryption Standard (DES); security requirements, SKIPJACK. Accepted: June 18, 2021 Published: August 16, 2021; Current Version: August 23, 2021 This article was sponsored by James Foti, Computer Security Division, Information Technology Laboratory, National Institute of Standards and Technology (NIST). The views expressed represent those of the author and not necessarily those of NIST. https://doi.org/10.6028/jres.126.024 1. Introduction In the late 1990s, the National Institute of Standards and Technology (NIST) was about to decide if it was going to specify a new cryptographic algorithm standard for the protection of U.S. -
State of the Art in Lightweight Symmetric Cryptography
State of the Art in Lightweight Symmetric Cryptography Alex Biryukov1 and Léo Perrin2 1 SnT, CSC, University of Luxembourg, [email protected] 2 SnT, University of Luxembourg, [email protected] Abstract. Lightweight cryptography has been one of the “hot topics” in symmetric cryptography in the recent years. A huge number of lightweight algorithms have been published, standardized and/or used in commercial products. In this paper, we discuss the different implementation constraints that a “lightweight” algorithm is usually designed to satisfy. We also present an extensive survey of all lightweight symmetric primitives we are aware of. It covers designs from the academic community, from government agencies and proprietary algorithms which were reverse-engineered or leaked. Relevant national (nist...) and international (iso/iec...) standards are listed. We then discuss some trends we identified in the design of lightweight algorithms, namely the designers’ preference for arx-based and bitsliced-S-Box-based designs and simple key schedules. Finally, we argue that lightweight cryptography is too large a field and that it should be split into two related but distinct areas: ultra-lightweight and IoT cryptography. The former deals only with the smallest of devices for which a lower security level may be justified by the very harsh design constraints. The latter corresponds to low-power embedded processors for which the Aes and modern hash function are costly but which have to provide a high level security due to their greater connectivity. Keywords: Lightweight cryptography · Ultra-Lightweight · IoT · Internet of Things · SoK · Survey · Standards · Industry 1 Introduction The Internet of Things (IoT) is one of the foremost buzzwords in computer science and information technology at the time of writing. -
Optimization of Core Components of Block Ciphers Baptiste Lambin
Optimization of core components of block ciphers Baptiste Lambin To cite this version: Baptiste Lambin. Optimization of core components of block ciphers. Cryptography and Security [cs.CR]. Université Rennes 1, 2019. English. NNT : 2019REN1S036. tel-02380098 HAL Id: tel-02380098 https://tel.archives-ouvertes.fr/tel-02380098 Submitted on 26 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITE DE RENNES 1 COMUE UNIVERSITE BRETAGNE LOIRE Ecole Doctorale N°601 Mathématique et Sciences et Technologies de l’Information et de la Communication Spécialité : Informatique Par Baptiste LAMBIN Optimization of Core Components of Block Ciphers Thèse présentée et soutenue à RENNES, le 22/10/2019 Unité de recherche : IRISA Rapporteurs avant soutenance : Marine Minier, Professeur, LORIA, Université de Lorraine Jacques Patarin, Professeur, PRiSM, Université de Versailles Composition du jury : Examinateurs : Marine Minier, Professeur, LORIA, Université de Lorraine Jacques Patarin, Professeur, PRiSM, Université de Versailles Jean-Louis Lanet, INRIA Rennes Virginie Lallemand, Chargée de Recherche, LORIA, CNRS Jérémy Jean, ANSSI Dir. de thèse : Pierre-Alain Fouque, IRISA, Université de Rennes 1 Co-dir. de thèse : Patrick Derbez, IRISA, Université de Rennes 1 Remerciements Je tiens à remercier en premier lieu mes directeurs de thèse, Pierre-Alain et Patrick. -
A Lightweight Encryption Algorithm for Secure Internet of Things
Pre-Print Version, Original article is available at (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 1, 2017 SIT: A Lightweight Encryption Algorithm for Secure Internet of Things Muhammad Usman∗, Irfan Ahmedy, M. Imran Aslamy, Shujaat Khan∗ and Usman Ali Shahy ∗Faculty of Engineering Science and Technology (FEST), Iqra University, Defence View, Karachi-75500, Pakistan. Email: fmusman, [email protected] yDepartment of Electronic Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan. Email: firfans, [email protected], [email protected] Abstract—The Internet of Things (IoT) being a promising and apply analytics to share the most valuable data with the technology of the future is expected to connect billions of devices. applications. The IoT is taking the conventional internet, sensor The increased number of communication is expected to generate network and mobile network to another level as every thing mountains of data and the security of data can be a threat. The will be connected to the internet. A matter of concern that must devices in the architecture are essentially smaller in size and be kept under consideration is to ensure the issues related to low powered. Conventional encryption algorithms are generally confidentiality, data integrity and authenticity that will emerge computationally expensive due to their complexity and requires many rounds to encrypt, essentially wasting the constrained on account of security and privacy [4]. energy of the gadgets. Less complex algorithm, however, may compromise the desired integrity. In this paper we propose a A. Applications of IoT: lightweight encryption algorithm named as Secure IoT (SIT).