Confronting the Nuclear Power Structure in India Dhirendra Sharma

Total Page:16

File Type:pdf, Size:1020Kb

Confronting the Nuclear Power Structure in India Dhirendra Sharma 7 Confronting the nuclear power structure in India Dhirendra Sharma Published in Brian Martin (editor), Confronting the Experts (Albany, NY: State University of New York Press, 1996), pp. 155-174 In 1974, after my return from the United in academic councils, scientific meetings, States, I joined the most prestigious national seminars and through my writings. I organised university in New Delhi, named after India’s street marches against nuclear power when first Prime Minister: Jawaharlal Nehru Uni- only a few knew about radiation hazards. I versity (JNU). I joined as associate professor took up the task of educating members of with a promise to be elevated in due course to parliament, petitioned the heads of govern- full professor, and was also made chairperson ments against nuclear weapons and actively of the recently established Centre for Studies opposed India’s secret nuclear programme. in Science Policy at the School of Social Though I challenged the political power- Sciences, JNU. brokers and their operative influence in scien- Those were the years when India was ruled tific and technological decision making, I did by dynastic Prime Minister Mrs. Indira not join any political party. Nor did I establish Gandhi. She was autocratic and corrupt and a my own political group. All through my years shrewd manipulator of money forces and of struggle in India (and earlier in the US) I industrial and government machinery to her sought no political advantage, and basically I personal advantage. She wanted India’s major remain anti-establishment. Fundamentally, I scientific and academic institutions and followed my academic discipline and tried to governmental agencies to work towards her implement my findings in socio-political dynastic aspirations and, therefore, the new policy decisions. university established in the early 1970s on the Perhaps that was my mistake or perhaps it US academic pattern was named after her was my strength. I have no way to measure my illustrious father, Jawaharlal Nehru. For success. What mistakes, tactical or otherwise, obtaining research grants or for advancement I made are for the reader to judge. I shall here of your institution, you were supposed to attempt to narrate my story of confronting the praise the dynasty. It was, therefore, no combined forces of political corruption and coincidence that almost all top scientists in secret scientific sub-government of atomic India panegyrized the Nehru family. energy in India — including the retribution I Within a few months of my joining JNU, received. Mrs. Gandhi was found guilty of corrupt practices by the Supreme Court. Instead of The politics of nuclear power resigning, she imposed what was called the In 1975-76, I began studying the sociology of Emergency. Thousands of citizens and science purely as an academic undertaking. opposition leaders were imprisoned, democ- Unaware of the seriousness of problems ratic freedoms were removed, press censorship related to science policy in general and atomic was imposed, and free associations, meetings, energy policy in particular, I, as chairperson of discussions, demonstrations and unions were the Centre for Studies in Science Policy at banned. It was in that historic moment of JNU, organised seminar lectures on energy national crisis that I decided to dissent in policy. Among those invited to give a series of academic circles, and offered a critical voice lectures was Professor B. D. Nag Chaudhuri, a against corruption and misuse of science for brilliant nuclear scientist and former director narrow political ends. I challenged the system of Saha Institute of Nuclear Physics. Nag 94 Confronting the experts Chaudhuri had been the Scientific Adviser to contact with Dr. Atma Ram, once the the Prime Minister and headed the Defence President of Indian National Science Academy Research Organisations. I was to learn later and former Director-General of the Council of that he was one of the six advisers of Mrs. Scientific and Industrial Research. In the Gandhi when she decided to explode a nuclear Janata Government, Atma Ram was the bomb at Pokharan in the Rajasthan desert on Scientific Advisor to Prime Minister Moraraji May 18, 1974. But now he was my Vice- Desai. He invited me to examine the nuclear Chancellor and had shown keen interest in my establishment critically and report my findings research. In fact, he was instrumental in to the new government. Prime Minister Desai appointing me to the chair of Science Policy and Atma Ram both were known to be Studies. Gandhian and anti-nuclear in their philosophi- During his lectures on energy policy, Nag cal inclinations. Chaudhuri was evasive on issues of nuclear During 1978-79, a few months were energy. But he encouraged me to investigate available to me to peep into the secret and suggested that little work had been done in chambers of nuclear sub-government. But India on this critically important subject. soon after, due to Mrs. Gandhi’s machinations, There existed no critical writings on the the Janata government fell, and I received a subject and most academics, politicians and curt note from a Joint Secretary of the the media were not aware of critical assess- government debarring my visits to nuclear ments of nuclear technology in the west. A facilities. I was also asked to seek clearance powerful and insular group controlled the before I made public any information gathered nuclear establishment, comfortably protected during my visits to nuclear establishment. It by the Atomic Energy Act 1962, which was then, when I challenged the order, that I provided them with all-pervasive legal was shown the provisions of the Atomic authority to refuse the public access to any Energy Act 1962 which bar any disclosure information. The Act forbade any disclosure about the nuclear programme. Around that of information which relates to “an existing or time, the US Energy Research and Develop- proposed plant used or proposed to be used for ment Administration downgraded its forecast the purpose of producing, developing or using of 1,200 nuclear plants of 1,000 MWe atomic energy.” The Act further read that “No capacity each to about 400 plants by the year person shall disclose, or obtain or attempt to 2000, and Sweden adopted a new policy of obtain any information” about nuclear energy phasing out its 12 reactors by 2010. activities which was thus restricted under the I prepared a comprehensive critical analysis Act. of nuclear power, including a cost-benefit Because of such repressive provisions and analysis. In a two-part article published by The in view of the strategic importance of the Times of India I challenged, for the first time programme, no one in my country had in India, the official claims to “clean, safe and ventured to look into the affairs of the nuclear cheap source of energy.”2 In the conclusion I energy department. The patriotic and populist stated that the arguments against nuclear political culture backed by the dynastic regime technology were too well-established to be of Mrs. Gandhi had reinforced denial of public rejected as “anti-science.” Little debate was access to critical scientific information. permitted by the government on the question During the internal Emergency imposed by of advantages and disadvantages and undue Mrs. Gandhi from 1975 to 1977, I joined publicity and the glamour attached to the “big underground activities.1 During those dark bang” grossly distorted our national perception days of political repression, underground of nuclear reality. Otherwise, “every million activism brought me closer to some of the earmarked now for the nuclear programme political bigwigs who later became ministers will simply drag us into a quagmire of many in the Janata (People’s) Government during a more millions within a few years. It is brief spell of 1977-79. In 1978, I came in close imperative that we consider the economic, Nuclear power structure in India 95 industrial and ecological implications of our nuclear programme in India in spite of all the nuclear policy seriously and give the due official restrictions. importance to renewable energy sources.” I In December 1980 I visited England and concluded, “There is a great danger of our met Rt. Hon. Tony Benn, who had been the energy policy becoming the captive of the Energy Secretary from 1974 to 1979 and who nuclear technological elite. Our national was known for his critical view on nuclear energy planning and our military and defence energy. During long discussions with Benn I interests would be better served by developing learned about the secret functioning of nuclear solar technology.” establishments and received some important In the Indian context, this was the first ever tips for comparative analysis of nuclear critical evaluation of nuclear power in relation establishments in India and abroad. to solar energy, and these articles became To make a critical study of any government basis for active campaigning for renewable policy is not an easy task, especially when one sources of energy. Until then, the Indian investigates activities relating to strategic government had made no move to spend importance. The state acts as if it has some- anything on research and development in solar thing to hide from its own people, and I energy. confirmed with Benn that most policies are conceived and executed without the Alarm bells start ringing knowledge of the citizens. More often than By early 1981, Mrs. Gandhi was back in not, even legislators do not know the official power and her anti-people and undemocratic secrets. In India the citizens have no legal style of governance was evident in a study rights to information and the situation is still released by the Press Council of India in July worse as there exists no group such as a 1981.
Recommended publications
  • Long Term Sustainability of Nuclear Power in India - Prospects and Challenges
    Page | 45 5 LONG TERM SUSTAINABILITY OF NUCLEAR POWER IN INDIA - PROSPECTS AND CHALLENGES Vipin Shukla, Vivek J. Pandya and C. Ganguly ABSTRACT: Nuclear power is emerging as a viable for at least 12 additional indigenous PHWR 700 carbon – free option for India to meet the ever- reactors. The target is to have ~ 45,000 MWe nuclear increasing demand of base – load electricity at an power by 2030. Since the last six years, India has affordable price, in a safe, secured and sustainable also been importing natural uranium oreconcentrate manner. Since the 1970s, India had been pursuing (UOC) and finished natural UO2 pellets tofuel the a self-reliant indigenous nuclear power program ten PHWR 220 units at Rawathbhata, Kakrapara and linking the fuel cycles of Pressurized Heavy Water Narora. India has also been importing enriched UO2 Reactor (PHWR), Fast Breeder Reactor (FBRs) and fuel for the two BWRs at Tarapur and the two VVERs thorium-based self-sustaining breeder in stage 1, 2 at Kudankulunm. The present paper summarizes the and 3 respectively, for efficient utilization of modest on-going and the expanding nuclear power program low grade (0.03-0.06 % U3O8) uranium reserves but in India highlighting the challenges of availability of vast thorium resources. Natural uranium fueled uranium and plutonium for manufacturing nuclear PHWR is the backbone of the program. India has fuels. achieved industrial maturity in PHWR and the related uranium fuel cycle technology. Presently, 21 reactors are in operation, including 16 units of PHWR 220 MWe, 2 units of PHWR 540 MWe, 2 units of Boiling Water Reactor (BWR) 160 MWe and a (Water KEYWORDS Water Energy Reactor) VVER 1000 MWe.
    [Show full text]
  • Cost Reduction and Safety Design Features of New Nuclear Power Plants in India
    XA0201901 Annex 13 Cost reduction and safety design features of new nuclear power plants in India V.K. Sharma Nuclear Power Corporation of India Ltd, India Abstract. Indian Nuclear Power Programme is designed to exploit limited reserves of uranium and extensive resource of thorium. Pressurised heavy water reactors are found most suitable and form the main stay of the first stage of the programme. Thorium utilisation is achieved in the second & third stages. Today India has total installed capacity of 2720 MWe of PHWRs which are operating with high plant load factors of over 80%. Rich experience of construction and operation of over 150 reactor years is being utilised in effecting cost reduction and safety improvements. Standardisation and reduction in gestation period by preproject activities, advance procurement and work packages of engineer, procure, construct and commission are some of the techniques being adopted for cost reduction in the new projects. But the cost of safety is rising. Design basis event of double ended guillotine rupture of primary pressure boundary needs a relook based on current knowledge of material behaviour. This event appears improbable. Similarly some of the safety related systems like closed loop cooling water operating at low temperature and pressure, and low usage factors may be designed as per standard codes without invoking special nuclear requirements. The paper will address these issues and highlight the possible areas for cost reduction both in operating and safety systems. Modern construction and project management techniques are being employed. Gestation period of 5 years and cost of less than US $1400 per KWe are the present targets.
    [Show full text]
  • Nuclear Energy in India's Energy Security Matrix
    Nuclear Energy in India’s Energy Security Matrix: An Appraisal 2 of 55 About the Author Maj Gen AK Chaturvedi, AVSM, VSM was commissioned in Corps of Engineers (Bengal Sappers) during December 1974 and after a distinguished career of 38 years, both within Engineers and the staff, retired in July 2012. He is an alumnus of the College of Military Engineers, Pune; Indian Institute of Technology, Madras; College of Defence Management, Secunderabad; and National Defence College, New Delhi. Post retirement, he is pursuing PhD on ‘India’s Energy Security: 2030’. He is a prolific writer, who has also been quite active in lecture circuit on national security issues. His areas of interests are energy, water and other elements of ‘National Security’. He is based at Lucknow. http://www.vifindia.org © Vivekananda International Foundation Nuclear Energy in India’s Energy Security Matrix: An Appraisal 3 of 55 Abstract Energy is essential for the economic growth of a nation. India, which is in the lower half of the countries as far as the energy consumption per capita is concerned, needs to leap frog from its present position to upper half, commensurate with its growing economic stature, by adopting an approach, where all available sources need to be optimally used in a coordinated manner, to bridge the demand supply gap. A new road map is needed to address the energy security issue in short, medium and long term. Solution should be sustainable, environment friendly and affordable. Nuclear energy, a relatively clean energy, has an advantage that the blueprint for its growth, which was made over half a century earlier, is still valid and though sputtering at times, but is moving steadily as envisaged.
    [Show full text]
  • Risks of Operating Candu 6 Nuclear Power Plants: Gentilly Unit 2 Refurbishment and Its Global Implications
    Risks of Operating Candu 6 Nuclear Power Plants: Gentilly Unit 2 Refurbishment and its Global Implications November 2008 BY GORDON R. THOMPSON Institute for Resource and Security Studies www.greenpeace.ca RISKS OF OPERATING ABSTRACT Operation of any nuclear power plant creates risks. CANDU 6 plants CANDU 6 NUCLEAR POWER PLANTS: pose additional risks arising from their use of natural uranium as fuel and Gentilly Unit 2 Refurbishment and its heavy water as moderator. A CANDU 6 reactor could experience a violent Global Implications power excursion, potentially leading to containment failure and a release of radioactive material to the environment. Spent fuel discharged from a CANDU 6 could be diverted and used to produce plutonium for nuclear BY GORDON R. THOMPSON weapons. Those risks are examined here with special attention to Hydro- Institute for Resource and Security Studies Quebec’s plan for refurbishment and continued operation of the Gentilly 2 plant. That action would lead to continued radiological risk in Quebec Prepared under the sponsorship of and could promote sales of CANDU 6 plants in other countries, thereby Greenpeace Canada contributing to an enhanced risk of nuclear-weapon proliferation. Hydro- Quebec’s plan also faces regulatory risks. Safety issues could increase the © Copyright November 2008 cost of refurbishing Gentilly 2, weakening an already marginal economic case for refurbishment. This report proposes an approach for systematic, GREENPEACE CANADA public assessment of the risks associated with Gentilly 2. 33 Cecil St. Toronto, Ontario ABOUT THE INSTITUTE FOR RESOURCE AND SECURITY STUDIES M5T 1N1 The Institute for Resource and Security Studies (IRSS) is an independent, www.greenpeace.ca nonprofit, Massachusetts corporation, founded in 1984.
    [Show full text]
  • “Advanced” Isn't Always Better
    SERIES TITLE OPTIONAL “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors Edwin Lyman March 2021 © 2021 Union of Concerned Scientists All Rights Reserved Edwin Lyman is the director of nuclear power safety in the UCS Climate and Energy Program. The Union of Concerned Scientists puts rigorous, independent science to work to solve our planet’s most pressing problems. Joining with people across the country, we combine technical analysis and effective advocacy to create innovative, practical solutions for a healthy, safe, and sustainable future. This report is available online (in PDF format) at www.ucsusa.org/resources/ advanced-isnt-always-better and https:// doi.org/10.47923/2021.14000 Designed by: David Gerratt, Acton, MA www.NonprofitDesign.com Cover photo: Argonne National Laboratory/Creative Commons (Flickr) Printed on recycled paper. ii union of concerned scientists [ contents ] vi Figures, Tables, and Boxes vii Acknowledgments executive summary 2 Key Questions for Assessing NLWR Technologies 2 Non-Light Water Reactor Technologies 4 Evaluation Criteria 5 Assessments of NLWR Types 8 Safely Commercializing NLWRs: Timelines and Costs 9 The Future of the LWR 9 Conclusions of the Assessment 11 Recommendations 12 Endnotes chapter 1 13 Nuclear Power: Present and Future 13 Slower Growth, Cost and Safety Concerns 14 Can Non-Light-Water Reactors
    [Show full text]
  • Nuclear Power: India’S Development Imperative
    VIF TASK FORCE REPORT Nuclear Power: India’s Development Imperative Vivekananda International Foundation Nuclear Power: India’s Development Imperative Vivekananda International Foundation 1 2 Table of Contents Task Force Members 5 Acknowledgements 6 Research Assistance 6 Foreword 7 Introductory Comments 9 List of Abbreviations 11 Executive Summary 15 Chapter 1: Global Context 22 1.1 Share of nuclear power in the energy mix 23 1.2 External costs 24 1.3 Cost of large scale integration of nuclear energy 25 1.4 Climate change and IPCC Report 25 1.5 MIT report on the Future of Nuclear Energy in a Carbon-Constrained World 26 1.6 Risk mitigation strategies 27 Chapter 2: Indian Scenario – Challenges and Opportunities 29 2.1 Tariff 32 2.2 Level playing field 32 2.3 Carbon pricing 33 2.4 Energy import bill 34 2.5 Credit vs. indigenisation 35 2.6 Fleet mode construction 35 2.7 Foreign acquisition 36 2.8 Acquisition of uranium assets overseas 36 2.9 Manpower 36 Chapter 3: Progress So Far 37 3.1 1st stage programme based on PHWRs and LWRs 37 3.2 PHWRs to be set up in fleet mode 38 3.3 Light Water Reactor (LWR) to be set up in cooperation with Russian Federation 38 3.4 2nd & 3rd stage programme 38 3 Chapter 4: International Cooperation, its Potential and Limitation 40 4.1 High temperature reactors 41 Chapter 5: Nuclear Industry Eco System 43 5.1 Efficient supply chain management with no bottlenecks 43 5.2 Capacity expansion of vendor base 44 5.3 To improve quality of vendors 45 5.4 Diversification in supply chain across the geopolitical spectrum 45
    [Show full text]
  • The "Self-Limiting" Future of Nuclear Power
    DECEMBER 9, 2011 | No. 738 THE "SELF-LIMITING" FUTURE OF NUCLEAR POWER There are a very large number of studies all of which reach the similar conclusion: THE "SELF-LIMITING" FUTURE energy efficiency programs and renewable power technologies are better than OF NUCLEAR POWER 1 nuclear power plants. The fact that these studies come from a variety of sources, across the political spectrum, and from different disciplines, suggests that there 1. Why does nuclear power is a consensus among abroad base of independent, non-partisan experts that persist 1 nuclear power plants are a poor choice for producing electricity. So why, then, does nuclear power persist? Is it the superficially attractive narrative associated 2. Market Failure and with nuclear energy that conflates it with national progress and pride, alongside Externalities 3 an immensely powerful and effective lobby, a new generation that has either forgotten or never known why it failed previously, deeply rooted habits that favor 3. Subsidies and the giant power stations, and lazy reporting by a credulous press? Socialization of Risk 4 (738.6203) Benjamin K. Sovacool - In Nuclear power generators cannot be 4. Hubris and Technological a chapter of his new book 'Contesting mass-produced. They take much longer Fantasy 6 the Future of Nuclear Power –A Critical to build, and are therefore exposed to Global Assessment of Atomic Energy' escalating interest rates, inaccurate 4.b. Conclusion 9 Benjamin K. Sovacool argues that three demand forecasts, and unforeseen primary culprits exist: the true costs of labor conflicts. Their centralization End notes 9 nuclear energy are not borne by those requires costly and expansive transmis- benefiting from it, resulting in what sion and distribution systems.
    [Show full text]
  • Fast Breeder Reactor Programs: History and Status
    Fast Breeder Reactor Programs: 8 History and Status Thomas B. Cochran, Harold A. Feiveson, Walt Patterson, Gennadi Pshakin, M.V. Ramana, Mycle Schneider, Tatsujiro Suzuki, Frank von Hippel A research report of the International Panel on Fissile Materials February 2010 Research Report 8 International Panel on Fissile Materials Fast Breeder Reactor Programs: History and Status Thomas B. Cochran, Harold A. Feiveson, Walt Patterson, Gennadi Pshakin, M.V. Ramana, Mycle Schneider, Tatsujiro Suzuki, Frank von Hippel www.fissilematerials.org February 2010 © 2010 International Panel on Fissile Materials ISBN 978-0-9819275-6-5 This work is licensed under the Creative Commons Attribution-Noncommercial License. To view a copy of this license, visit www.creativecommons.org/licenses/by-nc/3.0 Table of Contents About the IPFM i 1 Overview: The Rise and Fall of Plutonium Breeder Reactors Frank von Hippel 1 2 Fast Breeder Reactors in France Mycle Schneider 17 3 India and Fast Breeder Reactors M. V. Ramana 37 4 Japan’s Plutonium Breeder Reactor and its Fuel Cycle Tatsujiro Suzuki 53 5 The USSR-Russia Fast-Neutron Reactor Program Gennadi Pshakin 63 6 Fast Breeder Reactors in the United Kingdom Walt Patterson 73 7 Fast Reactor Development in the United States Thomas B. Cochran, Harold A. Feiveson, and Frank von Hippel 89 Contributors 113 Fast Breeder Reactor Programs: History and Status Figures Overview: The Rise and Fall of Plutonium Breeder Reactors Figure 1.1 Plutonium breeding. 3 Figure 1.2 History of the price of uranium. 6 Figure 1.3 Funding in OECD countries. 7 Figure 1.4 Dose rate of separated transuranics.
    [Show full text]
  • India's Baseline Plan for Nuclear Energy Self-Sufficiency
    ANL/NE-09/03 India’s Baseline Plan for Nuclear Energy Self-sufficiency Nuclear Engineering Division Prepared for: National Nuclear Security Administration Office of International Regimes and Agreements National Nuclear Security Administration On the cover India's Nuclear facilities About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 [email protected] Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Officially the Republic of the Union of Myanmar Or the Unio
    UNIT IV INDIA–BURMA RELATIONS Bilateral relations between Myanmar (officially the Republic of the Union of Myanmar or the Union of Burma) and the Republic of India encompass the political, economic and socio- cultural relations that exist between the two neighboring Asian countries. Political relations have improved considerably since 1993, overcoming tensions related to drug trafficking, the suppression of democracy and the rule of the military junta in Myanmar.[1] Political leaders from both countries meet regularly on a bilateral basis and within the ASEAN Plus Six community. Economic relations are considerable with India representing Myanmar's 4th largest export market and the country's 5th largest import partner. The 1,600 km (990 mi) India–Myanmar border separates the Indian states of Mizoram, Manipur, Nagaland and Arunachal Pradesh in Northeast India from Kachin State, Sagaing Region and Chin State in Myanmar/Burma. In addition to the long land border, [2] India and Myanmar also share a maritime border along India's Andaman Islands. Burmese ambassadors at Calcutta in 1882 India - Myanmar/Burmese relations date to antiquity and cultural exchanges included Buddhism and the Burmese script, which was based on the Indian Grantha script. In particular, Theravada Buddhism has tremendously influenced Burmese society and culture for millennia, with around 90% of Burma's population continuing to follow the religion. Myanmar (formerly Burma) was made a province of British India by British rulers and again separated in 1937. It was in Japanese-occupied Burma that Indian nationalist Subhas Chandra Bose delivered his "Give me blood and I will give you freedom!" slogan, and Prime [3] Minister Narendra Modi highlighted Burma's role in the Indian independence movement.
    [Show full text]
  • The Future of Nuclear Energy in India
    AUGUST 2016 The Future of Nuclear Energy in India ANIRUDDH MOHAN The Future of Nuclear Energy in India ANIRUDDH MOHAN ABOUT THE AUTHOR Aniruddh Mohan is a Junior Fellow at the Observer Research Foundation, working on issues related to climate change, India's energy policy, and the politics of nuclear power. His work at ORF currently focuses on the evolving architecture of climate governance following the 2015 Paris agreement on climate change, and the intricacies of the implementation of India's climate commitments. He has previously worked at the Institute for Defence Studies & Analyses (IDSA) and Aon UK. © 2016 Observer Research Foundation. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without permission in writing from ORF. The Future of Nuclear Energy in India ABSTRACT India's Nationally Determined Contribution (NDC) to the United Nations Framework Convention on Climate Change (UNFCCC) outlines its intent to scale up the country's clean-energy capacity. At the same time, India's energy poverty remains a big challenge, and the pursuit of the country's development agenda is contingent on extending energy access to millions of citizens who continue to lack connectivity to the power grid. While successive governments have long touted nuclear power as the solution to India's energy woes, actual performance has merely flattered to deceive. India's waiver from the Nuclear Suppliers' Group and its agreement with the global atomic body, IAEA, have resulted in limited breakthroughs in the last decade. This paper makes projections for the growth of nuclear power in India through to 2050 and examines the factors that will be critical to the country's civil nuclear ambitions.
    [Show full text]
  • Inevitability of Atomic Energy in India's Power Programme
    o INEVITABILITY OF ATOMIC ENERGY IN INDIA'S POWER PROGRAMME by R = Ramanna President, Indian National Science Academy IHEVITABIUTY OF ATOMIC ENERGY IN INDIA'S POWER PROGRAMME R. Ramaana President, Indian National Science Academy 1. INTRODUCTION Atomic energy is going through the third phase of its existence. The first was its discovery and the demonstration of the feasibility of using it to generate electricity«, The second stage was the development of nuclear power technology with due emphasis on the standardization of * nuclear power reactor design, suitable material of construction both on the basis of economics and safety. The third stage is its widespread use, with reference to its economic competitiveness, environmental consequen- ces particularly with respect to other sources of energy and the problems of its utilization till towards the end of foe century and beyond. It is clear that atomic power has come to stay but a dispassionate study of its advantages has yet to be made. I say a dispassionate study because in many countries of the world, there has been much public debate on the hazards of nuclear power, some of which not quite connected with either the"economics or the safety aspects of the technology. I would also like to make it quite clear that though I have been associated with atomic energy matters for nearly thirty years, the case I present here is put forth not as one belonging to the profession,, because any suggestion that I make in this paper with respect to future plane will come into fruition long after I have passed the age of retirement, and I will thus have nothing personal to -2- beneüt by it.
    [Show full text]