Peking Man Běijīngrén ​北京人

Total Page:16

File Type:pdf, Size:1020Kb

Peking Man Běijīngrén ​北京人 ◀ Pearl River Comprehensive index starts in volume 5, page 2667. Peking Man Běijīngrén ​北京人 Peking Man is a hominid of the species Homo (1894– 1988) of Uppsala University in Sweden to conduct erectus, discovered in the 1920s in Zhoukou- the excavations. During the first year Zdansky found a dian, not far from Beijing (known then as humanoid tooth, and a second one in 1923, while work- Peking). Remains of more than 40 individu- ing on Zhoukoudian fossils at the laboratory in Uppsala. The discoveries were not made known to Andersson until als have been found dating back c. 670,000– 1926, who then announced the new finds on 22 October of 410,000 years ago, and Chinese researchers that year. The Canadian physician and paleoanthropolo- believe that the species intermittently occu- gist Davidson Black 步达生 (1884– 1934) of the Peking pied the area during this time, using stone Union Medical College examined the finds and wrote the tools and, in its later stages, controlled the first paper on the new species. It was based largely on pho- use of fire. tographs and a written report by Zdansky and published in the journal Nature on 20 November 1926. After the an- nouncement American paleontologist Amadeus William Grabau 葛利普 (1870–1946) of Peking University coined he term Peking Man refers to a hominid—a​­ species the popular name “Peking Man,” and Black gave the find of the family Hominidae to which humans and its official name, Sinantrophus pekinensis, though it later their closest fossil ancestors belong—​­discovered was changed to Homo erectus pekinensis. during excavations that were begun in 1921 in Zhoukou- Joint excavations by China and Western nations were dian 周口店, Hebei Province, approximately 50 kilome- set up at Zhoukoudian. A third tooth was found in 1927 by ters southwest of Beijing. The area, declared a UNESCO Swedish paleontologist Birger Bohlin 步林 (1898– 1990), World Heritage Site in 1987, has yielded remains of more and at the end of 1929, the first skullcap was identified than forty individuals dating back to 670,000– 410,000 by the Chinese paleontologist Pei Wenzhong 裴文中 years before the present (an alternative dating puts the (1904–1982). Based on the new finds, Black concluded that remains at 580,000– 230,000 years ago), and Chinese re- Peking Man was similar to Java Man, or Pithecanthropus searchers believe that Peking Man intermittently occu- erectus, a hominid first found in Indonesia in 1891. Both pied the area during this time. finds were later confirmed to be of the same species, and The excavations at Zhoukoudian were initiated by renamed Homo erectus. Erectus finds have also been made Swedish geologist and archaeologist Johan Gunnar An- in Africa, and most paleontologists believe today that dersson 安特生 (1874– 1960), who while working for Homo erectus evolved and spread from Africa to Eurasia. the Geological Survey of China had shown a profound During the Japanese occupation of China and World War interest in surveying fossil deposits in China. He re- II, the remains from the Peking Man discovery—​­apart cruited Austrian paleontologist Otto Zdansky师丹斯基 from three teeth stored in Uppsala—​­disappeared in an 1735 © 2009 by Berkshire Publishing Group LLC T 1736 Berkshire Encyclopedia of China 宝 库 山 中 华 全 书 The excavation site at Zhoukoudian in 1921 (with Otto Zdansky to the far left), the year he uncovered a single tooth, the first evidence of Peking Man. In the center below is Walter Granger from the American Museum of Natural History in New York, who visited Zhoukoudian to introduce modern excavation techniques. From Children of the Yellow Earth (1934). With permission from The Museum of Far Eastern Antiquities, Stockholm. attempt to smuggle the remains to safety in the United scrapers made of flakes of various sizes that have been States. New finds since have been made in Zhoukoudian found on the site. In 1931 Black reported the presence of and in other parts of China to confirm the existence of what he believed to be burned animal bones and black- the species. ened layers containing quantities of carbon inside the Peking Man had a long, low skull that was remark- cave deposits. Although no real hearths were found, it ably thick, with a large brow ridge above the eye sockets. was believed that Black’s report indicated that Peking Its brain size varied from 915 to 1,225 cubic centimeters, Man was able to control the use of fire. The evidence for compared with an average cranial capacity of about 1,350 this assertion was questioned in the 1980s and 1990s in a cubic centimeters in modern humans. report by American archaeologists and anthropologists It used stone tools, as evidenced by the large num- Lewis Binford and Nancy Stone, and later by a team led ber of chopping tools made of sandstone or quartz, and by Steve Weiner of the Weizmann Institute of Science in © 2009 by Berkshire Publishing Group LLC Peking Man n Běijīngrén n 北京人 1737 Israel. The first study did, however, acknowledge episodes occur. A long-​­held claim that Peking Man may have been of roasting horse heads in the later phases of the occupa- the forefather of the people in Asia has been contradicted tion, and the latter noted burned animal bones in associa- by recent DNA research. tion with stone tools nearby. Jan ROMGARD A theory that Peking Man was a cannibal that lived in a cave on the site was put forward first in the late 1920s by Henri Breuil 步日耶 (1877– 1961) and in the 1930s by Further Reading Franz Weidenreich 魏登瑞 (1873– 1948), who continued Andersson, J .G. (1934). Children of the yellow earth: Stud- Black’s work after his death in 1934. Weidenreich con- ies in prehistoric China. London: Kegan Paul, Trench, cluded that many remains found in the cave bore traces Trubner. of physical wounds and that some of the crania seemed to Boaz, N. T., & Ciochon, R. L. (2004). Dragon Bone Hill: have been broken, presumably to reach the brain within. An ice-​­age saga of Homo erectus. Oxford, U.K.: Ox- Pei Wenzhong early disagreed with this conclusion and ford University Press. suggested instead that these skeletal wounds could have Jia Lanpo & Huang Weiwen. (1990). The story of Peking Man: From archaeology to mystery. Oxford, U.K.: Ox- resulted from hyenas dragging their victims to the cave ford University Press. and eating them there. Pei’s view won fresh support in Reader, J. (1981). Missing links: The hunt for earliest man. the 1980s and 1990s from research conducted by Binford Boston: Little Brown. and Stone, whose examinations of bite and tool marks on Schmalzer, S. (2008). The people’s Peking Man: Popular animal bones furthermore indicated that Peking Man was science and human identity in twentieth-​­century China. a scavenger instead of a hunter and that the cave mostly Chicago and London: The University of Chicago was occupied by denning animals. However, a cranium Press. discovered in 1966 has recently been shown to have marks Shapiro, H. L. (1974). Peking Man. New York: Simon & from stone tools, indicating that cannibalism in fact did Schuster. Share the Encyclopedia of China: Teachers are welcome to make up to 10 copies of no more than 3 articles for distribution in a single course or program. For further permissions, please visit www.copyright.com. PDFs available from www. berkshirepublishing.com. © Get Permissions Peking University ▶ © 2009 by Berkshire Publishing Group LLC.
Recommended publications
  • H. Erectus 1  H
    Today in Astronomy 106: apes to modern humans Meet the hominids. Brains, diet and toolmaking: going where natural selection fears to tread. Genetic diversity in Africa, the Saharan bottleneck, and the spread of humanity. Selections from The Dawn of Man, The spread of in 2001: A Space Odyssey, by languages. Stanley Kubrick (1968). 13 June 2011 Astronomy 106, Summer 2011 1 Monkeys to hominids Once bipedal hominids began to Evans 2002 appear in newly-drier East Africa, many gene mutations were naturally selected which accelerated the differences between them and the apes. Distinct process from steady rate of increased difference in junk DNA. Most evident in parts of genes called human accelerated regions (HARs), of which 55 have been noted. 13 June 2011 Astronomy 106, Summer 2011 2 Monkeys to hominids (continued) HARs were discovered in 2006 by Katie Pollard (UCSF), as one of the first huge achievements +2 of the new science of genomics. HAR1, chromosome 20, for example: • Present in reptiles onward. • Base-pair difference between chimpanzees and chickens: 2. • Base-pair difference +18 between chimpanzees and humans: 18. 13 June 2011 Astronomy 106, Summer 2011 3 6 Africa’s Hominidae Ardepithecus 5 All bipedal and tail-less: Ardepithecus: several species 4 known mostly by femurs. Australopithecus Australopithecus afarensis (or Paranthropus) (e.g. Lucy), africanus, 3 Myr robustus, bosei. Evolved ago toward bigger teeth. 2 Homo Homo rudolfensis, habilis/ergaster, erectus, 1 heidelbergensis, neanderthalensis, 0 sapiens. Evolved toward bigger brains. Genetic difference (schematic) 13 June 2011 Astronomy 106, Summer 2011 4 6 Evolution of diet 5 As they walked from tree to tree, hominids gradually were selected for eating more than 4 fruit and leave, this also allowed A.
    [Show full text]
  • Language Evolution to Revolution: from a Slowly Developing Finite Communication System with Many Words to Infinite Modern Language
    bioRxiv preprint doi: https://doi.org/10.1101/166520; this version posted July 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Language evolution to revolution: from a slowly developing finite communication system with many words to infinite modern language Andrey Vyshedskiy1,2* 1Boston University, Boston, USA 2ImagiRation LLC, Boston, MA, USA Keywords: Language evolution, hominin evolution, human evolution, recursive language, flexible syntax, human language, syntactic language, modern language, Cognitive revolution, Great Leap Forward, Upper Paleolithic Revolution, Neanderthal language Abstract There is overwhelming archeological and genetic evidence that modern speech apparatus was acquired by hominins by 600,000 years ago. There is also widespread agreement that modern syntactic language arose with behavioral modernity around 100,000 years ago. We attempted to answer two crucial questions: (1) how different was the communication system of hominins before acquisition of modern language and (2) what triggered the acquisition of modern language 100,000 years ago. We conclude that the communication system of hominins prior to 100,000 years ago was finite and not- recursive. It may have had thousands of words but was lacking flexible syntax, spatial prepositions, verb tenses, and other features that enable modern human language to communicate an infinite number of ideas. We argue that a synergistic confluence of a genetic mutation that dramatically slowed down the prefrontal cortex (PFC) development in monozygotic twins and their spontaneous invention of spatial prepositions 100,000 years ago resulted in acquisition of PFC-driven constructive imagination (mental synthesis) and converted the finite communication system of their ancestors into infinite modern language.
    [Show full text]
  • Bibliography
    Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza­ Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P.
    [Show full text]
  • Homo Heidelbergensis: the Ot Ol to Our Success Alexander Burkard Virginia Commonwealth University
    Virginia Commonwealth University VCU Scholars Compass Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship 2016 Homo heidelbergensis: The oT ol to Our Success Alexander Burkard Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/auctus Part of the Archaeological Anthropology Commons, Biological and Physical Anthropology Commons, and the Biology Commons © The Author(s) Downloaded from https://scholarscompass.vcu.edu/auctus/47 This Social Sciences is brought to you for free and open access by VCU Scholars Compass. It has been accepted for inclusion in Auctus: The ourJ nal of Undergraduate Research and Creative Scholarship by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Homo heidelbergensis: The Tool to Our Success By Alexander Burkard Homo heidelbergensis, a physiological variant of the species Homo sapien, is an extinct spe- cies that existed in both Europe and parts of Asia from 700,000 years ago to roughly 300,000 years ago (carbon dating). This “subspecies” of Homo sapiens, as it is formally classified, is a direct ancestor of anatomically modern humans, and is understood to have many of the same physiological characteristics as those of anatomically modern humans while still expressing many of the same physiological attributes of Homo erectus, an earlier human ancestor. Since Homo heidelbergensis represents attributes of both species, it has therefore earned the classifica- tion as a subspecies of Homo sapiens and Homo erectus. Homo heidelbergensis, like anatomically modern humans, is the byproduct of millions of years of natural selection and genetic variation. It is understood through current scientific theory that roughly 200,000 years ago (carbon dat- ing), archaic Homo sapiens and Homo erectus left Africa in pursuit of the small and large animal game that were migrating north into Europe and Asia.
    [Show full text]
  • K = Kenyanthropus Platyops “Kenya Man” Discovered by Meave Leaky
    K = Kenyanthropus platyops “Kenya Man” Discovered by Meave Leaky and her team in 1998 west of Lake Turkana, Kenya, and described as a new genus dating back to the middle Pliocene, 3.5 MYA. A = Australopithecus africanus STS-5 “Mrs. Ples” The discovery of this skull in 1947 in South Africa of this virtually complete skull gave additional credence to the establishment of early Hominids. Dated at 2.5 MYA. H = Homo habilis KNM-ER 1813 Discovered in 1973 by Kamoya Kimeu in Koobi Fora, Kenya. Even though it is very small, it is considered to be an adult and is dated at 1.9 MYA. E = Homo erectus “Peking Man” Discovered in China in the 1920’s, this is based on the reconstruction by Sawyer and Tattersall of the American Museum of Natural History. Dated at 400-500,000 YA. (2 parts) L = Australopithecus afarensis “Lucy” Discovered by Donald Johanson in 1974 in Ethiopia. Lucy, at 3.2 million years old has been considered the first human. This is now being challenged by the discovery of Kenyanthropus described by Leaky. (2 parts) TC = Australopithecus africanus “Taung child” Discovered in 1924 in Taung, South Africa by M. de Bruyn. Raymond Dart established it as a new genus and species. Dated at 2.3 MYA. (3 parts) G = Homo ergaster “Nariokotome or Turkana boy” KNM-WT 15000 Discovered in 1984 in Nariokotome, Kenya by Richard Leaky this is the first skull dated before 100,000 years that is complete enough to get accurate measurements to determine brain size. Dated at 1.6 MYA.
    [Show full text]
  • Introduction
    Notes Introduction 1. Hobsbawm 1990, 66. 2. Diamond 1998, 322–33. 3. Fairbank 1992, 44–45. 4. Fei Xiaotong 1989, 1–2. 5. Diamond 1998, 323, original emphasis. 6. Crossley 1999; Di Cosmo 1998; Purdue 2005a; Lavely and Wong 1998, 717. 7. Richards 2003, 112–47; Lattimore 1937; Pan Chia-lin and Taeuber 1952. 8. My usage of the term “geo-body” follows Thongchai 1994. 9. B. Anderson 1991, 86. 10. Purdue 2001, 304. 11. Dreyer 2006, 279–80; Fei Xiaotong 1981, 23–25. 12. Jiang Ping 1994, 16. 13. Morris-Suzuki 1998, 4; Duara 2003; Handler 1988, 6–9. 14. Duara 1995; Duara 2003. 15. Turner 1962, 3. 16. Adelman and Aron 1999, 816. 17. M. Anderson 1996, 4, Anderson’s italics. 18. Fitzgerald 1996a: 136. 19. Ibid., 107. 20. Tsu Jing 2005. 21. R. Wong 2006, 95. 22. Chatterjee (1986) was the first to theorize colonial nationalism as a “derivative discourse” of Western Orientalism. 23. Gladney 1994, 92–95; Harrell 1995a; Schein 2000. 24. Fei Xiaotong 1989, 1. 25. Cohen 1991, 114–25; Schwarcz 1986; Tu Wei-ming 1994. 26. Harrison 2000, 240–43, 83–85; Harrison 2001. 27. Harrison 2000, 83–85; Cohen 1991, 126. 186 • Notes 28. Duara 2003, 9–40. 29. See, for example, Lattimore 1940 and 1962; Forbes 1986; Goldstein 1989; Benson 1990; Lipman 1998; Millward 1998; Purdue 2005a; Mitter 2000; Atwood 2002; Tighe 2005; Reardon-Anderson 2005; Giersch 2006; Crossley, Siu, and Sutton 2006; Gladney 1991, 1994, and 1996; Harrell 1995a and 2001; Brown 1996 and 2004; Cheung Siu-woo 1995 and 2003; Schein 2000; Kulp 2000; Bulag 2002 and 2006; Rossabi 2004.
    [Show full text]
  • The Modern Man: a Revision of His Definition and a New Estimation of His Emergence Date
    9 International Journal of Modern Anthropology Int. J. Mod. Anthrop. 1 : 1-110 (2008) Available online at www.ata.org.tn Original Synthetic Article The modern man: a revision of his definition and a new estimation of his emergence date Hassen Chaabani Hassen Chaabani was born the 07 / 09 / 1947 in Tunis (Tunisia). He is Full Professor and research unit Director at Monastir University. He is the Founder and the President of the Tunisian Association of Anthropology. He is the Founder and the Editor in-Chef of the International Journal of Modern Anthropology. Specialist in Human Genetics, Biological Anthropology and some cultural and religious subjects, he wrote many articles and books. Laboratoire de Génétique Humaine et d'Anthropologie, Faculté de Pharmacie, 5000 Monastir, Tunisia. E.mail: [email protected] Abstract - In spite of important anthropological data stored up to date, the recent human evolution is still a subject of great controversy. Here I present a revision of the definition of modern man and an attempt to estimate the date of his emergence. The anatomical feature criterion cannot be considered as a rigorous criterion for identified modern human fossils from those of earlier Homo peoples. This identification could be carried out indirectly from analysis of cultural products and, if possible, directly by ancient DNA analysis. During the last 20,000 years period, Homo peoples have shown a first real cultural progress, which reflects their possession of the superior level of potential intellectual aptitude that marks the definition of modern man. On the basis of this definition, in agreement with several anthropological basic data, I consider that the real modern man, Homo sapiens sapiens, emerged at about 20,000 years ago.
    [Show full text]
  • Homo Aestheticus’
    Conceptual Paper Glob J Arch & Anthropol Volume 11 Issue 3 - June 2020 Copyright © All rights are reserved by Shuchi Srivastava DOI: 10.19080/GJAA.2020.11.555815 Man and Artistic Expression: Emergence of ‘Homo Aestheticus’ Shuchi Srivastava* Department of Anthropology, National Post Graduate College, University of Lucknow, India Submission: May 30, 2020; Published: June 16, 2020 *Corresponding author: Shuchi Srivastava, Assistant Professor, Department of Anthropology, National Post Graduate College, An Autonomous College of University of Lucknow, Lucknow, India Abstract Man is a member of animal kingdom like all other animals but his unique feature is culture. Cultural activities involve art and artistic expressions which are the earliest methods of emotional manifestation through sign. The present paper deals with the origin of the artistic expression of the man, i.e. the emergence of ‘Homo aestheticus’ and discussed various related aspects. It is basically a conceptual paper; history of art begins with humanity. In his artistic instincts and attainments, man expressed his vigour, his ability to establish a gainful and optimistictherefore, mainlyrelationship the secondary with his environmentsources of data to humanizehave been nature. used for Their the behaviorsstudy. Overall as artists findings was reveal one of that the man selection is artistic characteristics by nature suitableand the for the progress of the human species. Evidence from extensive analysis of cave art and home art suggests that humans have also been ‘Homo aestheticus’ since their origins. Keywords: Man; Art; Artistic expression; Homo aestheticus; Prehistoric art; Palaeolithic art; Cave art; Home art Introduction ‘Sahityasangeetkalavihinah, Sakshatpashuh Maybe it was the time when some African apelike creatures to 7 million years ago, the first human ancestors were appeared.
    [Show full text]
  • Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
    EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).
    [Show full text]
  • The Dates of the Discovery of the First Peking Man Fossil Teeth
    The Dates of the Discovery of the First Peking Man Fossil Teeth Qian WANG,LiSUN, and Jan Ove R. EBBESTAD ABSTRACT Four teeth of Peking Man from Zhoukoudian, excavated by Otto Zdansky in 1921 and 1923 and currently housed in the Museum of Evolution at Uppsala University, are among the most treasured finds in palaeoanthropology, not only because of their scientific value but also for their important historical and cultural significance. It is generally acknowledged that the first fossil evidence of Peking Man was two teeth unearthed by Zdansky during his excavations at Zhoukoudian in 1921 and 1923. However, the exact dates and details of their collection and identification have been documented inconsistently in the literature. We reexamine this matter and find that, due to incompleteness and ambiguity of early documentation of the discovery of the first Peking Man teeth, the facts surrounding their collection and identification remain uncertain. Had Zdansky documented and revealed his findings on the earliest occasion, the early history of Zhoukoudian and discoveries of first Peking Man fossils would have been more precisely known and the development of the field of palaeoanthropology in early twentieth century China would have been different. KEYWORDS: Peking Man, Zhoukoudian, tooth, Uppsala University. INTRODUCTION FOUR FOSSIL TEETH IDENTIFIED AS COMING FROM PEKING MAN were excavated by palaeontologist Otto Zdansky in 1921 and 1923 from Zhoukoudian deposits. They have been housed in the Museum of Evolution at Uppsala University in Sweden ever since. These four teeth are among the most treasured finds in palaeoanthropology, not only because of their scientific value but also for their historical and cultural significance.
    [Show full text]
  • Jade Huang and Chinese Culture Identity: Focus on the Myth of “Huang of Xiahoushi”
    Journal of Literature and Art Studies, June 2016, Vol. 6, No. 6, 603-618 doi: 10.17265/2159-5836/2016.06.003 D DAVID PUBLISHING Jade Huang and Chinese Culture Identity: Focus on the Myth of “Huang of Xiahoushi” TANG Qi-cui, WU Yu-wei Shanghai Jiao Tong University, Shanghai, China This paper focus on the myth of “Huang of Xiahoushi” (夏后氏之璜), focusing on the distribution of Jade Huang (玉璜) since the early neolithic and its process of pluralistic integration. The paper explores the story of ethnic group, cultural identification and the significance of Jade Huang in the discourse construction of etiquette civilization behind the mythic narrative based on multi-evidence method and the local meaning of literature in ancient Chinese context. Keywords: Jade Huang, Huang of Xiahoushi, unified diversity, Chinese identity, etiquette civilization, multi-evidence method Introduction Modern archeological relics including potteries, jades and bronzes bring back the lost history; the process of how Chinese unified diversity took shape in general and the great tradition of jade culture in eight thousand in particular. The handed-down documents echo each other at a distance provide solid evidences for the origin of civilization of rite and music and the core values based on jade belief. Jade Huang is an important one of it. It is illuminated by numerous records about Jade Huang in ancient literature, as well as a large number of archaeology findings past 7,000 years. The paper seeks to focus on the following questions: what is the function of Jade Huang in historic and prehistoric period? Moreover, what is the function of “Huang of Xiahoushi”, which belonged to emperor and symbolized special power in historic documents and myths and legends in ancient china? Jade Huang: Etiquette and Literature Jade Huang (Yu Huang, Semi-circular/annular Jade Pendant) is a type of jade artifact which is seemed to be remotely related to etiquette and literature.
    [Show full text]
  • The Early Paleolithic of China1) HUANG Weiwen2)
    第 四 紀 研 究 (The Quaternary Research) 28 (4) p. 237-242 Nov. 1989 The Early Paleolithic of China1) HUANG Weiwen2) spread widely and existed for a long time. The Introduction deposits contained very rich fossils of mammal. 1. Geographic Distribution and the Types of The fauna exisiting in the stage from the early Deposits to the middle Pleistocene can be at least divided Before the 1940's, only one locality of the into three groups, which have their own Early Paleolithic period was discovered in characteristics and sequence: Nihewan fauna of China. That is Zhoukoudian near Beijing early Pleistocene, Gongwangling (Lantian Man) City (the site of Peking Man). Since the 1950's fauna of the latest stage of early Pleistocene many new localities have been found, of which or the earliest stage of middle Pleistocene and no less than fifteen are relatively important. Zhoukoudian (Peking Man) fauna of the middle These localities spread in North, South and Pleistocene. In the recent years, some scholars Northeast China covering a range from 23°35' to have suggested that locations of Dali and 40°15'N and from 101°58' to 124°8'E which Dingcun which originally recognized as be- includes two climate zones, namely, the sub- longing to the early stage of late Pleistocene tropical zone and warm temperate zone in the should place in the middle Pleistocene, as the eastern part of today's Asia (Fig. 1). latest stage of this epoch (LIU and DING,1984). The localities include three types of deposit: There also existed fluviatile and fluviol- 1) Fluviatile deposit: acustrine deposits of Pleistocene in South Xihoudu (Shanxi), Kehe (Shanxi), Lantian China.
    [Show full text]