156 Research Article Towards a bioinformatics of patterning: a computational approach to understanding regulative morphogenesis Daniel Lobo, Taylor J. Malone and Michael Levin* Tufts Center for Regenerative and Developmental Biology, and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA *Author for correspondence (
[email protected]) Biology Open 2, 156–169 doi: 10.1242/bio.20123400 Received 22nd October 2012 Accepted 1st November 2012 Summary The mechanisms underlying the regenerative abilities of the planarian regeneration dataset to illustrate a proof-of- certain model species are of central importance to the basic principle of this novel bioinformatics of shape; we developed understanding of pattern formation. Complex organisms such a software tool to facilitate the formalization and mining of as planaria and salamanders exhibit an exceptional capacity the planarian experimental knowledge, and cured a database to regenerate complete body regions and organs from containing all of the experiments from the principal amputated pieces. However, despite the outstanding bottom- publications on planarian regeneration. These resources are up efforts of molecular biologists and bioinformatics focused freely available for the regeneration community and will at the level of gene sequence, no comprehensive mechanistic readily assist researchers in identifying specific functional model exists that can account for more than one or two data in planarian experiments. More importantly, these aspects