Invivo and Systematic Analysis of Random Multigenic Deletions

Total Page:16

File Type:pdf, Size:1020Kb

Invivo and Systematic Analysis of Random Multigenic Deletions bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427453; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Invivo and systematic analysis of random multigenic deletions associated with 2 human diseases during epithelial morphogenesis using Drosophila 3 4 Usha Nagarajan*1, Shanmugasundaram Pakkiriswami*2 ,Sandiya Srinivasan3^, Niveditha 5 Ramkumar3^, Rajeswari Rajaraman3^, Swaminathan Sethuraman1, Kumarasamy Thangaraj *3 6 7 1Central University of Haryana, Department of Biochemistry, Mahendragarh, Haryana, 123029 8 India 9 2Department of Biochemistry and Molecular Biology, Dalhousie University, Dalhousie Medicine 10 New Brunswick, Saint John, NB, E2L4L5,Canada, 11 3 School of Chemical and Biotechnology (SCBT), SASTRA University, Thanjavur, 613401, India. 12 4Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500 007, India. 13 14 Correspondence to: [email protected] [email protected], [email protected] 15 16 Abstract 17 Random loss of multigenic loci on chromosomes, a crucial drive for evolution, occurs 18 frequently in all living organisms. Analysis of such chromosomal disruption and 19 understanding the consequences of their impact on the growth and development of 20 multicellular organisms is challenging. In this report, we have addressed this issue 21 using invivo mosaic analysis of deficiency lines in Drosophila. Genes on fly 22 deficiency lines were compared with human orthologs for their implications in 23 disease development during cytoskeletal processes and epithelial morphogenesis. 24 The cytoskeletal phenotypes from the fly has been utilized to predict the function of 25 human orthologs. In addition, as these Drosophila deficiency lines are equivalent to 26 human microdeletions, based on the clonal behaviour and phenotypes generated, a 27 systematic analysis has been carried out to establish the critical loci that correspond 28 to Microdeletion Syndromes and Mendelian Disorders in humans. Further we have 29 drawn the synteny that exists between these chromosomes and have identified 30 critical region corresponding to defects. A few potential candidates that might have 31 an implication in epithelial morphogenesis are also identified. 32 33 34 35 36 Introduction 37 Contiguous-gene deletion syndromes or multigenic deletion syndromes display 38 extremely variable clinical symptoms depending on the genes lost in the loci (Rauch 39 et al., 2001; Slavotinek, 2012). A great deal of evidence shows that random loss of 40 genes or spontaneous changes on chromosomes (like virus-mediated mutagenesis 41 in humans causing chromatid breakages, translocations, duplications, 42 deficiencies/deletions leads to developmental anomalies and growth defects 43 (Fortunato and Spector, 2003). “Less-is-more” hypothesis insists that gene loss is an 44 engine for evolutionary change and disease development (Olson, 1999; Olson and 45 Varki, 2003). Despite the fact that the adaptive role of gene loss has formed the 46 basis for evolution, impact of their adaptive biological functions on individual integrity 47 and stability remains elusive. Just as how loss and gain of Homeotic genes and their 48 clusters prove fundamental for the evolution of body shape and size (Ruddle et al., bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427453; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 49 1994), the loss and gain of genes implicated in epithelial morphogenesis also 50 influence the integrity of body size and shape (Schock and Perrimon, 2002). In a 51 multicellular organism, epithelial morphogenesis is an inevitable process in which 52 epithelia, tissues that line the organ and body surfaces, determine organ-to-body 53 shape and size (Gumbiner BM.1992; Schock and Perrimon, 2002). Of all the 54 factors implicated in this process, cytoskeletal components that balance rigidity and 55 flexibility of the cell, play a critical role in maintaining organ size and growth of the 56 organism (Knust, 2005; Gibson and Perrimon, 2005; Shen and Dahmann, 2005; 57 Donohoe et al., 2018). Defects during this process lead to loss of tissue integrity; 58 development of genetic disorders and diseases (Olson and Varki, 2003; Knust, 2005 59 in Birchmeier and Birchmeier, 2005). 60 61 Compared to loss of individual essential genes and frameshift mutations, gains and 62 losses of multiple (more than one) genes bring about greater dramatic genetic 63 repercussions. Random loss of contiguous (loss of genes in the same order) genes 64 would disrupt the normal development, affecting growth and patterning of the tissue, 65 which otherwise occur concurrently. Loss of such contiguous genes that may occur 66 due to any kind of genetic aberrations might regulate both cell-autonomous and non- 67 autonomous functions of the tissue giving rise to heterogeneity in cell population 68 (mosaicism). It is intriguing to understand the influence of such sudden, random loss 69 of genes causing mosaicism and to compare their effect with other organisms. 70 71 Genomic studies suggest that genetic mosaicism is a very common phenomenon 72 during epithelial morphogenesis. Although such lesions to the genome are random 73 and generally asymptomatic in initial stages, affected individuals subsequently 74 develop varying levels of metabolic disorders and disabilities (Chial, 2008). Also, 75 since such incidences occur sporadically, chances of undertaking systematic 76 analysis is very low or may not be feasible. In the past, rigorous systematic analysis 77 of genes (Reiter et al., 2001) and genetic screening (St Johnson, 2002; Yamamoto 78 et al., 2014) have been undertaken to understand genes implicated in disease 79 development and their functions. However, how these individuals subjected to such 80 sudden and random loss of genes manage without their gene function and what 81 impact does it have on the individual is not clear. In multigenic deletions, the 82 synergistic and antagonistic effect of genes in maintaining homeostasis or disease 83 development and the alternate pathways that operate to compensate the loss is not 84 known yet. Although it is intriguing to understand the consequence of random loss of 85 multiple genes that leads to defects and genetic disorders, it is extremely 86 challenging. 87 88 We hypothesized that those limitations can be overcome and unanswered questions 89 can be addressed by using the available Drosophila deficiency line collections, one 90 of the unique genetic tools well-utilized extensively for genetic screening, mapping 91 and characterization processes. Two types of molecularly defined deficiency lines, 92 whose details including ends of the genes lost as well as cytological location on the bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427453; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 93 chromosome are known, are available (Ryder et al., 2004; Parks et al., 2004; Cook 94 et al., 2012; Roote and Russell, 2012). In addition, as chromosomes of these 95 deletion-bearing fly stocks resemble those chromosomes with microdeletion or 96 chromosomal deletions of contiguous genes (loss of genes in the same order) in 97 other organisms, the collection has been utilized for systematic and comparative 98 analysis to establish the critical loci that correspond to Mendelian Disorders and 99 Microdeletion Syndromes in humans. 100 101 Based on this logic, in this work, we set out a pilot project by subjecting these 102 deficiency lines for mitotic clonal analyses in Drosophila wing imaginal discs to 103 identify and understand their role in cytoskeletal organization during epithelial 104 morphogenesis. Clonal analysis technique allows to analyse behaviour of two 105 different population of cells in a tissue (Lee and Luo, 2001; Wu and Luo, 2006; 106 Smith-Bolton et al., 2009; Rodriguez et al., 2012; Powell and Piddini, 2016). Here we 107 have utilized this property to understand the behaviour of randomly eliminated 108 genes, thereby identify the critical gene in that locus implicated in epithelial 109 morphogenesis. During this process of clonal analysis, we have also followed the 110 cytoskeletal defects produced by these deficiency lines. We also undertook a 111 systematic functional analysis of the genes in the fly deficiency lines, compared them 112 with human orthologs and analysed their implications in cytoskeletal processes and 113 epithelial morphogenesis. Further we have drawn the synteny that exist between 114 these chromosomes and identified critical region of epithelial defects. Here, in this 115 report, few potential candidates that might have an implication in epithelial 116 morphogenesis are discussed. 117 118 Results and Discussion 119 (i) Recombination of Deletion-bearing chromosomes with FRT chromosomes 120 and generation of mitotic clones 121 To address the behavioural property of the tissue subjected to multigenic deletions 122 we generated mitotic clones using the available deficiency lines in Drosophila wing 123 imaginal discs. We recombined X and II chromosome deficiency lines with their 124 respective FRT chromosomes. We have subjected ~67 FRT-recombined X 125 chromosome
Recommended publications
  • Epithelia and Gastrointestinal Function
    CHAPTER 18 Epithelia and gastrointestinal function Jerrold R. Turner University of Chicago, Chicago, IL, USA Chapter menu Organization of the gut wall, 317 Epithelial barrier and disease , 326 Organization of epithelial cells and sheets, 318 Integration of mucosal function, 329 Mucosal barriers, 322 Further reading, 329 All cavities within the alimentary tract, from the small ducts An underlying layer of fibroconnective tissue called the sub- and acini of the pancreas to the gastric lumen, are lined by mucosa, which contains nerves, vessels, and lymphatics, sup- sheets of polarized epithelial cells. Common to all of these epi- ports the mucosa. The submucosa rests on the muscularis thelia is the ability to create selective barriers that separate propria, which is composed of two or three layers of smooth luminal and tissue spaces. Most epithelia are also able to direct muscle and is home to the myenteric plexus (see Chapters 1, 15, vectorial transport of solutes and solvents. These essential func- and 16). In most instances, gastrointestinal organs are encased tions are based on the structural polarity of individual cells, the by an outermost delicate layer of fibrofatty tissue, the serosa, complex organization of membranes, cell–cell and cell–substrate encircled by a continuous layer of mesothelial cells. In areas interactions, and interactions with other cell types. This chapter where no serosa exists, as in portions of the esophagus and the reviews intestinal wall structure and examines how mucosal distal colorectum, fibrofatty tissues interface with the external functions are supported by the organization of the gut and the portion of the muscularis propria.
    [Show full text]
  • Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle
    Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle Slim Ben-Jemaa, Gabriele Senczuk, Elena Ciani, Roberta Ciampolini, Gennaro Catillo, Mekki Boussaha, Fabio Pilla, Baldassare Portolano, Salvatore Mastrangelo To cite this version: Slim Ben-Jemaa, Gabriele Senczuk, Elena Ciani, Roberta Ciampolini, Gennaro Catillo, et al.. Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle. Frontiers in Genetics, Frontiers, 2021, 10.3389/fgene.2021.675569. hal-03210766 HAL Id: hal-03210766 https://hal.inrae.fr/hal-03210766 Submitted on 28 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH published: 28 April 2021 doi: 10.3389/fgene.2021.675569 Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle Slim Ben-Jemaa 1, Gabriele Senczuk 2, Elena Ciani 3, Roberta
    [Show full text]
  • Posters A.Pdf
    INVESTIGATING THE COUPLING MECHANISM IN THE E. COLI MULTIDRUG TRANSPORTER, MdfA, BY FLUORESCENCE SPECTROSCOPY N. Fluman, D. Cohen-Karni, E. Bibi Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel In bacteria, multidrug transporters couple the energetically favored import of protons to export of chemically-dissimilar drugs (substrates) from the cell. By this function, they render bacteria resistant against multiple drugs. In this work, fluorescence spectroscopy of purified protein is used to unravel the mechanism of coupling between protons and substrates in MdfA, an E. coli multidrug transporter. Intrinsic fluorescence of MdfA revealed that binding of an MdfA substrate, tetraphenylphosphonium (TPP), induced a conformational change in this transporter. The measured affinity of MdfA-TPP was increased in basic pH, raising a possibility that TPP might bind tighter to the deprotonated state of MdfA. Similar increases in affinity of TPP also occurred (1) in the presence of the substrate chloramphenicol, or (2) when MdfA is covalently labeled by the fluorophore monobromobimane at a putative chloramphenicol interacting site. We favor a mechanism by which basic pH, chloramphenicol binding, or labeling with monobromobimane, all induce a conformational change in MdfA, which results in deprotonation of the transporter and increase in the affinity of TPP. PHENOTYPE CHARACTERIZATION OF AZOSPIRILLUM BRASILENSE Sp7 ABC TRANSPORTER (wzm) MUTANT A. Lerner1,2, S. Burdman1, Y. Okon1,2 1Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel, 2The Otto Warburg Center for Agricultural Biotechnology, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel Azospirillum, a free-living nitrogen fixer, belongs to the plant growth promoting rhizobacteria (PGPR), living in close association with plant roots.
    [Show full text]
  • Mathematics, Developmental Biology and Tumour Growth
    CONTEMPORARY MATHEMATICS 492 >Ì i>ÌVÃ]Ê iÛi«iÌ>Ê }ÞÊ>`Ê/ÕÕÀÊÀÜÌ 1*q,- ÊÕÃÊ°Ê->Ì>Ê-ÕiÀÊ-V Ê -i«ÌiLiÀÊ£££x]ÊÓääÈ 1ÛiÀÃ`>`ÊÌiÀ>V>Êij`iâÊ*i>Þ] ->Ì>`iÀ]Ê-«> iÀ>`ÊÀ?`iâ }ÕiÊ°ÊiÀÀiÀ `ÌÀà iÀV>Ê>Ì i>ÌV>Ê-ViÌÞ ,i>Ê-Vi`>`Ê>Ìi?ÌV>Ê Ã«>> American Mathematical Society This page intentionally left blank Mathematics, Developmental Biology and Tumour Growth This page intentionally left blank CONTEMPORARY MATHEMATICS 492 Mathematics, Developmental Biology and Tumour Growth UIMP–RSME Lluis A. Santaló Summer School September 11-15, 2006 Universidad Internacional Menéndez Pelayo, Santander, Spain Fernando Giráldez Miguel A. Herrero Editors American Mathematical Society Real Sociedad Matemática Española American Mathematical Society Providence, Rhode Island Editorial Board of Contemporary Mathematics Dennis DeTurck, managing editor George Andrews Abel Klein Martin J. Strauss Editorial Committee of the Real Sociedad Matem´atica Espa˜nola Guillermo P. Curbera, Director Luis Al´ıas Linares Alberto Elduque Palomo Emilio Carrizosa Priego Pablo Pedregal Tercero Bernardo Cascales Salinas Rosa Mar´ıa Mir´o-Roig Javier Duoandikoetxea Zuazo Juan Soler Vizca´ıno 2000 Mathematics Subject Classification. Primary 34K10, 34K25, 35B40, 35F25, 92C50. Library of Congress Cataloging-in-Publication Data UIMP-RSME Santal´o Summer School (2006 : Universidad Internacional Men´endez Pelayo) Mathematics, developmental biology, and tumour growth : UIMP-RSME Santal´o Summer School, September 11–15, 2006, Universidad Internacional Men´endez Pelayo, Santander, Spain / Fernando Gir´aldez, Miguel A. Herrero, editors. p. cm. — (Contemporary mathematics ; v. 492) Includes bibliographical references and index. ISBN 978-0218-4663-6 (alk. paper) 1. Carcinogenesis—Mathematical models—Congresses.
    [Show full text]
  • Structural Insights Into Notum Covalent Inhibition
    pubs.acs.org/jmc Article Structural Insights into Notum Covalent Inhibition ∥ ∥ ∥ Yuguang Zhao, Fredrik Svensson, David Steadman, Sarah Frew, Amy Monaghan, Magda Bictash, Tiago Moreira, Rod Chalk, Weixian Lu, Paul V. Fish,* and E. Yvonne Jones* Cite This: https://doi.org/10.1021/acs.jmedchem.1c00701 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The carboxylesterase Notum hydrolyzes a palmitoleate moiety from Wingless/Integrated(Wnt) ligands and deactivates Wnt signaling. Notum inhibitors can restore Wnt signaling which may be of therapeutic benefit for pathologies such as osteoporosis and Alzheimer’s disease. We report the identification of a novel class of covalent Notum inhibitors, 4-(indolin-1-yl)-4- oxobutanoate esters. High-resolution crystal structures of the Notum inhibitor complexes reveal a common covalent adduct formed between the nucleophile serine-232 and hydrolyzed butyric esters. The covalent interaction in solution was confirmed by mass spectrometry analysis. Inhibitory potencies vary depending on the warheads used. Mechanistically, the resulting acyl-enzyme intermediate carbonyl atom is positioned at an unfavorable angle for the approach of the active site water, which, combined with strong hydrophobic interactions with the enzyme pocket residues, hinders the intermediate from being further processed and results in covalent inhibition. These insights into Notum catalytic inhibition may guide development of more potent Notum inhibitors. ■ INTRODUCTION key mediator for adenomatous polyposis coli (Apc)-mutated tumor cell fixation and tumor formation, while Notum Secreted Wingless/Integrated(Wnt) morphogens are key 31 1 inhibitors abrogate the ability of Apc-mutant cells to expand. components of Wnt signaling. Wntproteinsarepost- These pieces of evidence highlight the importance of Notum as translationally modified with a palmitoleic acid (PAM) moiety a novel target for drug discovery.
    [Show full text]
  • Mouse Notum Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Notum Knockout Project (CRISPR/Cas9) Objective: To create a Notum knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Notum gene (NCBI Reference Sequence: NM_175263 ; Ensembl: ENSMUSG00000042988 ) is located on Mouse chromosome 11. 12 exons are identified, with the ATG start codon in exon 2 and the TAG stop codon in exon 12 (Transcript: ENSMUST00000106178). Exon 2~12 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a null mutation display perinatal lethality, abnormal kidney development, and impaired tracheal cartilage development. Mice homozygous for a gene trapped allele exhibit abnormal dentin development, periodontal inflammation, tooth decay and increased bone mineral density. Exon 2 starts from about 0.07% of the coding region. Exon 2~12 covers 100.0% of the coding region. The size of effective KO region: ~6114 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 11 12 Legends Exon of mouse Notum Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix.
    [Show full text]
  • EGF Shifts Human Airway Basal Cell Fate Toward a Smoking-Associated Airway Epithelial Phenotype
    EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype Renat Shaykhiev1, Wu-Lin Zuo1, IonWa Chao, Tomoya Fukui, Bradley Witover, Angelika Brekman, and Ronald G. Crystal2 Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065 Edited* by Michael J. Welsh, Howard Hughes Medical Institute, Iowa City, IA, and approved May 29, 2013 (received for review February 19, 2013) The airway epithelium of smokers acquires pathological phenotypes, phosphorylation, indicative of EGFR receptor activation, has including basal cell (BC) and/or goblet cell hyperplasia, squamous been observed in airway epithelial cells exposed to cigarette metaplasia, structural and functional abnormalities of ciliated cells, smoke in vitro (26, 27). decreased number of secretoglobin (SCGB1A1)-expressing secretory Based on this knowledge, we hypothesized that smoking- cells, and a disordered junctional barrier. In this study, we hypoth- induced changes in the EGFR pathway are relevant to the EGFR- fi esized that smoking alters airway epithelial structure through dependent modi cation of BCs toward the abnormal differentia- modification of BC function via an EGF receptor (EGFR)-mediated tion phenotypes present in the airway epithelium of smokers. mechanism. Analysis of the airway epithelium revealed that EGFR is In this study, we provide evidence that although EGFR is ex- pressed predominantly in BCs, smoking induces expression of enriched in airway BCs, whereas its ligand EGF is induced by smoking EGF in ciliated
    [Show full text]
  • Identification of Biomarkers of Intrahepatic Cholangiocarcinoma Via Integrated Analysis of Mrna and Mirna Microarray Data
    MOLECULAR MEDICINE REPORTS 15: 1051-1056, 2017 Identification of biomarkers of intrahepatic cholangiocarcinoma via integrated analysis of mRNA and miRNA microarray data YAQING CHEN1, DAN LIU2, PENGFEI LIU3, YAJING CHEN4, HUILING YU5 and QUAN ZHANG6 1Department of VIP Ward, Affiliated Hospital of Hebei University, Baoding, Hebei 071000; 2Department of Ultrasonic Imaging, Zhuhai People's Hospital, Zhuhai, Guangdong 519000; 3Department of Lymphoma, Sino‑US Center of Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060; 4Department of Internal Medicine, Baoding Xiongxian County Hospital; Departments of 5Gastroenterology and 6Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China Received November 6, 2015; Accepted November 7, 2016 DOI: 10.3892/mmr.2017.6123 Abstract. The present study aimed to identify potential thera- were obtained. Functional enrichment analysis indicated that peutic targets of intrahepatic cholangiocarcinoma (ICC) via DEGs were primarily enriched in biological processes and integrated analysis of gene (transcript version) and microRNA pathways associated with cell activity or the immune system. (miRNA/miR) expression. The miRNA microarray dataset A total of 63 overlaps were obtained among DEGs, ASGs and GSE32957 contained miRNA expression data from 16 ICC, target genes of DEMs, and a regulation network that contained 7 mixed type of combined hepatocellular-cholangiocarcinoma 243 miRNA-gene regulation pairs was constructed between (CHC), 2 hepatic adenoma, 3 focal nodular hyperplasia (FNH) these overlaps and DEMs. The overlapped genes, including and 5 healthy liver tissue samples, and 2 cholangiocarci- sprouty-related EVH1 domain containing 1, protein phosphate noma cell lines.
    [Show full text]
  • Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
    Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation.
    [Show full text]
  • Towards a Bioinformatics of Patterning: a Computational Approach to Understanding Regulative Morphogenesis
    156 Research Article Towards a bioinformatics of patterning: a computational approach to understanding regulative morphogenesis Daniel Lobo, Taylor J. Malone and Michael Levin* Tufts Center for Regenerative and Developmental Biology, and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA *Author for correspondence ([email protected]) Biology Open 2, 156–169 doi: 10.1242/bio.20123400 Received 22nd October 2012 Accepted 1st November 2012 Summary The mechanisms underlying the regenerative abilities of the planarian regeneration dataset to illustrate a proof-of- certain model species are of central importance to the basic principle of this novel bioinformatics of shape; we developed understanding of pattern formation. Complex organisms such a software tool to facilitate the formalization and mining of as planaria and salamanders exhibit an exceptional capacity the planarian experimental knowledge, and cured a database to regenerate complete body regions and organs from containing all of the experiments from the principal amputated pieces. However, despite the outstanding bottom- publications on planarian regeneration. These resources are up efforts of molecular biologists and bioinformatics focused freely available for the regeneration community and will at the level of gene sequence, no comprehensive mechanistic readily assist researchers in identifying specific functional model exists that can account for more than one or two data in planarian experiments. More importantly, these aspects
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • A Novel PLEKHA7 Interactor at Adherens Junctions
    Thesis PDZD11: a novel PLEKHA7 interactor at adherens junctions GUERRERA, Diego Abstract PLEKHA7 is a recently identified protein of the AJ that has been involved by genetic and genomic studies in the regulation of miRNA signaling and cardiac contractility, hypertension and glaucoma. However, the molecular mechanisms behind PLEKHA7 involvement in tissue physiology and pathology remain unknown. In my thesis I report novel results which uncover PLEKHA7 functions in epithelial and endothelial cells, through the identification of a novel molecular interactor of PLEKHA7, PDZD11, by yeast two-hybrid screening, mass spectrometry, co-immunoprecipitation and pulldown assays. I dissected the structural basis of their interaction, showing that the WW domain of PLEKHA7 binds to the N-terminal region of PDZD11; this interaction mediates the junctional recruitment of PDZD11, identifying PDZD11 as a novel AJ protein. I provided evidence that PDZD11 forms a complex with nectins at AJ, its PDZ domain binds to the PDZ-binding motif of nectins. PDZD11 stabilizes nectins promoting the early steps of junction assembly. Reference GUERRERA, Diego. PDZD11: a novel PLEKHA7 interactor at adherens junctions. Thèse de doctorat : Univ. Genève, 2016, no. Sc. 4962 URN : urn:nbn:ch:unige-877543 DOI : 10.13097/archive-ouverte/unige:87754 Available at: http://archive-ouverte.unige.ch/unige:87754 Disclaimer: layout of this document may differ from the published version. 1 / 1 UNIVERSITE DE GENÈVE FACULTE DES SCIENCES Section de Biologie Prof. Sandra Citi Département de Biologie Cellulaire PDZD11: a novel PLEKHA7 interactor at adherens junctions THÈSE Présentée à la Faculté des sciences de l’Université de Genève Pour obtenir le grade de Doctor ès science, mention Biologie par DIEGO GUERRERA de Benevento (Italie) Thèse N° 4962 GENÈVE Atelier d'impression Repromail 2016 1 Table of contents RÉSUMÉ ..................................................................................................................
    [Show full text]