Posters A.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Posters A.Pdf INVESTIGATING THE COUPLING MECHANISM IN THE E. COLI MULTIDRUG TRANSPORTER, MdfA, BY FLUORESCENCE SPECTROSCOPY N. Fluman, D. Cohen-Karni, E. Bibi Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel In bacteria, multidrug transporters couple the energetically favored import of protons to export of chemically-dissimilar drugs (substrates) from the cell. By this function, they render bacteria resistant against multiple drugs. In this work, fluorescence spectroscopy of purified protein is used to unravel the mechanism of coupling between protons and substrates in MdfA, an E. coli multidrug transporter. Intrinsic fluorescence of MdfA revealed that binding of an MdfA substrate, tetraphenylphosphonium (TPP), induced a conformational change in this transporter. The measured affinity of MdfA-TPP was increased in basic pH, raising a possibility that TPP might bind tighter to the deprotonated state of MdfA. Similar increases in affinity of TPP also occurred (1) in the presence of the substrate chloramphenicol, or (2) when MdfA is covalently labeled by the fluorophore monobromobimane at a putative chloramphenicol interacting site. We favor a mechanism by which basic pH, chloramphenicol binding, or labeling with monobromobimane, all induce a conformational change in MdfA, which results in deprotonation of the transporter and increase in the affinity of TPP. PHENOTYPE CHARACTERIZATION OF AZOSPIRILLUM BRASILENSE Sp7 ABC TRANSPORTER (wzm) MUTANT A. Lerner1,2, S. Burdman1, Y. Okon1,2 1Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel, 2The Otto Warburg Center for Agricultural Biotechnology, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel Azospirillum, a free-living nitrogen fixer, belongs to the plant growth promoting rhizobacteria (PGPR), living in close association with plant roots. These bacteria are able to exert beneficial effects on plant growth and yield of many crops of agronomic importance under a variety of environmental and soil conditions. These positive effects are mainly as a result of morphological and physiological changes of the inoculated plant roots, with enhanced water and mineral uptake. Plant growth promoting substances produced by the bacteria seems to be at least partially responsible for these effects. Azospirillum cells are surrounded by a thick, dense, and tightly cell-bound layer of capsular polysaccharide (CPS) and by an outer lighter exopolysaccharide (EPS) layer bound to the cell. The EPS is involved in the attachment of Azospirillum to the plant root. Several genes involved in the Azospirillum brasilense-plant root interaction are carried on a 90 MDa plasmid called p90. p90 carries also genes involved in motility, adsorption to roots, colony morphology and genes belonging to the glycosyl- or mannosyl transferase, sugar dehydratase families and genes involved in the ABC transporter-dependent pathway (wzm and wzt). These ATP binding cassette (ABC) superfamily transporters (or traffic ATPases) are frequently involved in the translocation of complex carbohydrates across the cytoplasmic membrane. An A. brasilense wzm mutant was generated and its phenotype in comparison with the wild type strain Sp7 was evaluated. The wzm mutant was more resistance to heat, osmotic shock, osmotic pressure, desiccation and starvation but was more sensitive to elevated levels on NaCl, UV radiation and hydrogen peroxide. Differences in sensitivity to antibiotics and growth on different carbon sources were observed between the two strains. The wzm mutants also exhibited changes in cell morphology and motility. IDENTIFICATION AND CHARACTERIZATION OF THE CARBOHYDRATE ABC TRANSPORTERS IN CLOSTRIDIUM THERMOCELLUM Y. Nataf1, S. Shulami1, S. Yaron1, F. Stahl2, R. Lamed5, E.A. Bayer4, T.H. Scheper2, A.L. Sonenshien3, Y. Shoham1 1Department of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa, Israel, 2Institute of Technical Chemistry, University of Hannover, Germany, 3Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA, 4Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel, 5Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel Clostridium thermocellum is an anaerobe thermophilic bacterium which efficiently degrades crystalline cellulose to soluble cellodextrins and is capable of producing ethanol. This bacterium produces a unique enzymatic complex, termed cellulosome, which integrates many glycoside hydrolases and mediates the attachment of the complex to cellulose. C. thermocellum is capable of assimilating cellodextrins which undergo phosphorylitic cleavage within the cell. This metabolic pathway allows the cell to obtain more ATP per sugar unit, since only one ATP molecule is required for the uptake of relatively large cellodextrins. Based on the recent published genome sequence of C. thermocellum, seven putative extracellular sugar binding proteins (SBP1-7) which are part of an ABC transport systems were identified. These His-tags fused proteins were purified and their ability to bind different sugars was tested using Isothermal Titration Calorimeter (ITC), Differential Scanning Calorimeter (DSC) and fluorescence quenching. Four of the binding proteins bind cellodextrins and one SPB binds laminaribiose. The ITC results indicated that all of the binding interactions were exothermic. The highest Kb values of SBP3, SBP4 and SBP5 analyses were gained with cellopentaose, suggesting that these proteins prefer to bind five sugar units. SBP7 binds only cellotriose and SBP6 interacts best with laminarbiose. Northern blot analysis indicated that the sbp3, sbp4 and sbp5 genes are part of 3.1kb, 4.0kb, and 3.3kb transcriptional units, respectively. Based on the genome sequence and the Northern blot results it appears that the ABC transporter genes are cotranscribed. E. COLI MULTIDRUG TRANSPORTER MdfA IS A MONOMER N. Sigal, O. Lewinson, S.G. Wolf, E. Bibi Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel MdfA is a 410-residue-long secondary multidrug transporter from E. coli. Cells expressing MdfA from a multicopy plasmid exhibit resistance against a diverse group of toxic compounds, including neutral and cationic ones, because of active multidrug export. As a prerequisite for high-resolution structural studies and a better understanding of the mechanism of substrate recognition and translocation by MdfA, we investigated its biochemical properties and overall structural characteristics. To this end, we purified the beta-dodecyl maltopyranoside (DDM)-solubilized protein using a 6-His tag and metal affinity chromatography, and size exclusion chromatography (SE-HPLC). Purified MdfA was analyzed for its DDM and phospholipid (PL) content, and tetraphenylphosphonium (TPP+)-binding activity. The results are consistent with MdfA being an active monomer in DDM solution. Furthermore, an investigation of two-dimensional crystals by electron crystallography and 3D reconstruction lent support to the notion that MdfA may also be monomeric in reconstituted proteoliposomes. PROTEIN ACETYLATION/DEACETYLATION IN THE EXTREMELY HALOPHILIC ARCHAEON HALOFERAX VOLCANII N. Altman-Price, S. Barak Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel Protein acetylation and deacetylation reactions are known for sometime to be involved in many regulatory processes in eukaryotes. Recently it was shown that similar reactions have regulatory roles also in bacteria and archaea Sequence analysis of the haloarchaeon Haloferax volcanii genome enabled the identification of three putative protein acetyltransferases of the GCN5 family (Pat1, Pat2 and Elp3) and two deacetylases; (Sir2 and HdaI). Intriguingly, the gene that encodes for HdaI shares an operon with an archaeal histone homologue. We have used a gene knockout method to determine whether these putative genes are essential, and found that whereas Sir2 knockout strain can grow normally, HdaI deletion is lethal. Moreover, the specific HdaI inhibitor Trichostatin A inhibits cell growth. We also showed that Pat2 and Elp3 are “synthetic lethals”. Genetic analysis of the histone gene has shown that it is essential for growth. Site directed mutagenesis of the two unique lysine residues of the histone established a link between the histone and the acetylation/deacetylation processes in Haloferax volcanii. Changing any of the lysine residues to glutamine made the cells more sensitive to Trichostatin A while mutagenesis of the lysine in the C-terminal domain to arginine rendered the cells more resistant to that drug. IDENTIFICATION AND CHARACTERIZATION OF EXTREMOPHILE YEAST STRAINS L. Avrahami, A. Grabelsky, D. Engelberg, S. Braun Department of Biological Chemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Israel Given the global climate changes, a most urgent challenge of biotechnology research is finding extremophile strains. In the agriculture industry, for example, there is a concerning decrease in yields due to global warming. Obtaining extremophile strains is not trivial because their properties may be obtained by a combination of many genetic and epigenetic modifications. In natural extremophiles, the properties are a result of hundreds of millions of years of evolutionary selection.
Recommended publications
  • Analysis of Trans Esnps Infers Regulatory Network Architecture
    Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Anat Kreimer All rights reserved ABSTRACT Analysis of trans eSNPs infers regulatory network architecture Anat Kreimer eSNPs are genetic variants associated with transcript expression levels. The characteristics of such variants highlight their importance and present a unique opportunity for studying gene regulation. eSNPs affect most genes and their cell type specificity can shed light on different processes that are activated in each cell. They can identify functional variants by connecting SNPs that are implicated in disease to a molecular mechanism. Examining eSNPs that are associated with distal genes can provide insights regarding the inference of regulatory networks but also presents challenges due to the high statistical burden of multiple testing. Such association studies allow: simultaneous investigation of many gene expression phenotypes without assuming any prior knowledge and identification of unknown regulators of gene expression while uncovering directionality. This thesis will focus on such distal eSNPs to map regulatory interactions between different loci and expose the architecture of the regulatory network defined by such interactions. We develop novel computational approaches and apply them to genetics-genomics data in human. We go beyond pairwise interactions to define network motifs, including regulatory modules and bi-fan structures, showing them to be prevalent in real data and exposing distinct attributes of such arrangements. We project eSNP associations onto a protein-protein interaction network to expose topological properties of eSNPs and their targets and highlight different modes of distal regulation.
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Dendritic Cell Differentiation Induced − Critical Role of AZI2 in GM-CSF
    Critical Role of AZI2 in GM-CSF−Induced Dendritic Cell Differentiation Masahiro Fukasaka, Daisuke Ori, Tatsukata Kawagoe, Satoshi Uematsu, Kenta Maruyama, Toshihiko Okazaki, This information is current as Tatsuya Kozaki, Tomoko Imamura, Sarang Tartey, Takashi of September 27, 2021. Mino, Takashi Satoh, Shizuo Akira and Osamu Takeuchi J Immunol published online 22 April 2013 http://www.jimmunol.org/content/early/2013/04/23/jimmun ol.1203155 Downloaded from Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 24, 2013, doi:10.4049/jimmunol.1203155 The Journal of Immunology Critical Role of AZI2 in GM-CSF–Induced Dendritic Cell Differentiation Masahiro Fukasaka,*,† Daisuke Ori,*,‡,x Tatsukata Kawagoe,*,1 Satoshi Uematsu,*,2 Kenta Maruyama,* Toshihiko Okazaki,*,† Tatsuya Kozaki,* Tomoko Imamura,*,‡,x Sarang Tartey,*,‡,x Takashi Mino,‡,x Takashi Satoh,* Shizuo Akira,*,{ and Osamu Takeuchi*,‡,x TNFR-associated factor family member–associated NF-kB activator (TANK)–binding kinase 1 (TBK1) is critical for the activation of IFN regulatory factor 3 and type I IFN production upon virus infection.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Molecular Basis for the Distinct Cellular Functions of the Lsm1-7 and Lsm2-8 Complexes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.055376; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes Eric J. Montemayor1,2, Johanna M. Virta1, Samuel M. Hayes1, Yuichiro Nomura1, David A. Brow2, Samuel E. Butcher1 1Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. 2Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. Correspondence should be addressed to E.J.M. ([email protected]) and S.E.B. ([email protected]). Abstract Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2′,3′ cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines.
    [Show full text]
  • Sox2-RNA Mechanisms of Chromosome Topological Control in Developing Forebrain
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.22.307215; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Sox2-RNA mechanisms of chromosome topological control in developing forebrain Ivelisse Cajigas1, Abhijit Chakraborty2, Madison Lynam1, Kelsey R Swyter1, Monique Bastidas1, Linden Collens1, Hao Luo1, Ferhat Ay2,3, Jhumku D. Kohtz1,4 1Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Department of Human Molecular Genetics, Stanley Manne Children's Research Institute 2430 N Halsted, Chicago, IL 60614 2Centers for Autoimmunity and Cancer Immunotherapy, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA 3School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA 4To whom correspondence should be addressed: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.22.307215; this version posted September 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary Precise regulation of gene expression networks requires the selective targeting of DNA enhancers. The Evf2 long non-coding RNA regulates Dlx5/6 ultraconserved enhancer(UCE) interactions with long-range target genes, controlling gene expression over a 27Mb region in mouse developing forebrain. Here, we show that Evf2 long range gene repression occurs through multi-step mechanisms involving the transcription factor Sox2, a component of the Evf2 ribonucleoprotein complex (RNP).
    [Show full text]
  • Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
    www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g.
    [Show full text]
  • Mathematics, Developmental Biology and Tumour Growth
    CONTEMPORARY MATHEMATICS 492 >Ì i>ÌVÃ]Ê iÛi«iÌ>Ê }ÞÊ>`Ê/ÕÕÀÊÀÜÌ 1*q,- ÊÕÃÊ°Ê->Ì>Ê-ÕiÀÊ-V Ê -i«ÌiLiÀÊ£££x]ÊÓääÈ 1ÛiÀÃ`>`ÊÌiÀ>V>Êij`iâÊ*i>Þ] ->Ì>`iÀ]Ê-«> iÀ>`ÊÀ?`iâ }ÕiÊ°ÊiÀÀiÀ `ÌÀà iÀV>Ê>Ì i>ÌV>Ê-ViÌÞ ,i>Ê-Vi`>`Ê>Ìi?ÌV>Ê Ã«>> American Mathematical Society This page intentionally left blank Mathematics, Developmental Biology and Tumour Growth This page intentionally left blank CONTEMPORARY MATHEMATICS 492 Mathematics, Developmental Biology and Tumour Growth UIMP–RSME Lluis A. Santaló Summer School September 11-15, 2006 Universidad Internacional Menéndez Pelayo, Santander, Spain Fernando Giráldez Miguel A. Herrero Editors American Mathematical Society Real Sociedad Matemática Española American Mathematical Society Providence, Rhode Island Editorial Board of Contemporary Mathematics Dennis DeTurck, managing editor George Andrews Abel Klein Martin J. Strauss Editorial Committee of the Real Sociedad Matem´atica Espa˜nola Guillermo P. Curbera, Director Luis Al´ıas Linares Alberto Elduque Palomo Emilio Carrizosa Priego Pablo Pedregal Tercero Bernardo Cascales Salinas Rosa Mar´ıa Mir´o-Roig Javier Duoandikoetxea Zuazo Juan Soler Vizca´ıno 2000 Mathematics Subject Classification. Primary 34K10, 34K25, 35B40, 35F25, 92C50. Library of Congress Cataloging-in-Publication Data UIMP-RSME Santal´o Summer School (2006 : Universidad Internacional Men´endez Pelayo) Mathematics, developmental biology, and tumour growth : UIMP-RSME Santal´o Summer School, September 11–15, 2006, Universidad Internacional Men´endez Pelayo, Santander, Spain / Fernando Gir´aldez, Miguel A. Herrero, editors. p. cm. — (Contemporary mathematics ; v. 492) Includes bibliographical references and index. ISBN 978-0218-4663-6 (alk. paper) 1. Carcinogenesis—Mathematical models—Congresses.
    [Show full text]
  • Structural Insights Into Notum Covalent Inhibition
    pubs.acs.org/jmc Article Structural Insights into Notum Covalent Inhibition ∥ ∥ ∥ Yuguang Zhao, Fredrik Svensson, David Steadman, Sarah Frew, Amy Monaghan, Magda Bictash, Tiago Moreira, Rod Chalk, Weixian Lu, Paul V. Fish,* and E. Yvonne Jones* Cite This: https://doi.org/10.1021/acs.jmedchem.1c00701 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The carboxylesterase Notum hydrolyzes a palmitoleate moiety from Wingless/Integrated(Wnt) ligands and deactivates Wnt signaling. Notum inhibitors can restore Wnt signaling which may be of therapeutic benefit for pathologies such as osteoporosis and Alzheimer’s disease. We report the identification of a novel class of covalent Notum inhibitors, 4-(indolin-1-yl)-4- oxobutanoate esters. High-resolution crystal structures of the Notum inhibitor complexes reveal a common covalent adduct formed between the nucleophile serine-232 and hydrolyzed butyric esters. The covalent interaction in solution was confirmed by mass spectrometry analysis. Inhibitory potencies vary depending on the warheads used. Mechanistically, the resulting acyl-enzyme intermediate carbonyl atom is positioned at an unfavorable angle for the approach of the active site water, which, combined with strong hydrophobic interactions with the enzyme pocket residues, hinders the intermediate from being further processed and results in covalent inhibition. These insights into Notum catalytic inhibition may guide development of more potent Notum inhibitors. ■ INTRODUCTION key mediator for adenomatous polyposis coli (Apc)-mutated tumor cell fixation and tumor formation, while Notum Secreted Wingless/Integrated(Wnt) morphogens are key 31 1 inhibitors abrogate the ability of Apc-mutant cells to expand. components of Wnt signaling. Wntproteinsarepost- These pieces of evidence highlight the importance of Notum as translationally modified with a palmitoleic acid (PAM) moiety a novel target for drug discovery.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Mouse Notum Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Notum Knockout Project (CRISPR/Cas9) Objective: To create a Notum knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Notum gene (NCBI Reference Sequence: NM_175263 ; Ensembl: ENSMUSG00000042988 ) is located on Mouse chromosome 11. 12 exons are identified, with the ATG start codon in exon 2 and the TAG stop codon in exon 12 (Transcript: ENSMUST00000106178). Exon 2~12 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a null mutation display perinatal lethality, abnormal kidney development, and impaired tracheal cartilage development. Mice homozygous for a gene trapped allele exhibit abnormal dentin development, periodontal inflammation, tooth decay and increased bone mineral density. Exon 2 starts from about 0.07% of the coding region. Exon 2~12 covers 100.0% of the coding region. The size of effective KO region: ~6114 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 11 12 Legends Exon of mouse Notum Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix.
    [Show full text]
  • The Microbiota-Produced N-Formyl Peptide Fmlf Promotes Obesity-Induced Glucose
    Page 1 of 230 Diabetes Title: The microbiota-produced N-formyl peptide fMLF promotes obesity-induced glucose intolerance Joshua Wollam1, Matthew Riopel1, Yong-Jiang Xu1,2, Andrew M. F. Johnson1, Jachelle M. Ofrecio1, Wei Ying1, Dalila El Ouarrat1, Luisa S. Chan3, Andrew W. Han3, Nadir A. Mahmood3, Caitlin N. Ryan3, Yun Sok Lee1, Jeramie D. Watrous1,2, Mahendra D. Chordia4, Dongfeng Pan4, Mohit Jain1,2, Jerrold M. Olefsky1 * Affiliations: 1 Division of Endocrinology & Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California, USA. 2 Department of Pharmacology, University of California, San Diego, La Jolla, California, USA. 3 Second Genome, Inc., South San Francisco, California, USA. 4 Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA. * Correspondence to: 858-534-2230, [email protected] Word Count: 4749 Figures: 6 Supplemental Figures: 11 Supplemental Tables: 5 1 Diabetes Publish Ahead of Print, published online April 22, 2019 Diabetes Page 2 of 230 ABSTRACT The composition of the gastrointestinal (GI) microbiota and associated metabolites changes dramatically with diet and the development of obesity. Although many correlations have been described, specific mechanistic links between these changes and glucose homeostasis remain to be defined. Here we show that blood and intestinal levels of the microbiota-produced N-formyl peptide, formyl-methionyl-leucyl-phenylalanine (fMLF), are elevated in high fat diet (HFD)- induced obese mice. Genetic or pharmacological inhibition of the N-formyl peptide receptor Fpr1 leads to increased insulin levels and improved glucose tolerance, dependent upon glucagon- like peptide-1 (GLP-1). Obese Fpr1-knockout (Fpr1-KO) mice also display an altered microbiome, exemplifying the dynamic relationship between host metabolism and microbiota.
    [Show full text]