Medicinal Chemistry and Drug Discovery in an Opening Era
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Natural Variation in Caenorhabditis Elegans Responses to the Anthelmintic Emodepside
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425329; this version posted January 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Natural variation in Caenorhabditis elegans responses to the anthelmintic 2 emodepside 3 4 Janneke Wita, Steffen R. Hahnela, Briana C. Rodrigueza, and Erik. C. Andersena,‡ 5 aMolecular Biosciences, Northwestern University, Evanston, IL 60208 6 7 ‡Corresponding Author: 8 Erik C. Andersen, Ph.D. 9 Department of Molecular Biosciences 10 Northwestern University 11 4619 Silverman Hall 12 2205 Tech Drive 13 Evanston, IL 60208 14 847-467-4382 15 [email protected] 16 17 Janneke Wit: 0000-0002-3116-744X 18 Steffen R. Hahnel: 0000-0001-8848-0691 19 Briana C. Rodriguez: 0000-0002-5282-0815 20 Erik C. Andersen: 0000-0003-0229-9651 21 22 Journal: IJP DDR 23 Keywords: Emodepside, natural variation, C. elegans, anthelmintics, hormetic effect 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425329; this version posted January 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 Graphical abstract 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.05.425329; this version posted January 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Posters A.Pdf
INVESTIGATING THE COUPLING MECHANISM IN THE E. COLI MULTIDRUG TRANSPORTER, MdfA, BY FLUORESCENCE SPECTROSCOPY N. Fluman, D. Cohen-Karni, E. Bibi Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel In bacteria, multidrug transporters couple the energetically favored import of protons to export of chemically-dissimilar drugs (substrates) from the cell. By this function, they render bacteria resistant against multiple drugs. In this work, fluorescence spectroscopy of purified protein is used to unravel the mechanism of coupling between protons and substrates in MdfA, an E. coli multidrug transporter. Intrinsic fluorescence of MdfA revealed that binding of an MdfA substrate, tetraphenylphosphonium (TPP), induced a conformational change in this transporter. The measured affinity of MdfA-TPP was increased in basic pH, raising a possibility that TPP might bind tighter to the deprotonated state of MdfA. Similar increases in affinity of TPP also occurred (1) in the presence of the substrate chloramphenicol, or (2) when MdfA is covalently labeled by the fluorophore monobromobimane at a putative chloramphenicol interacting site. We favor a mechanism by which basic pH, chloramphenicol binding, or labeling with monobromobimane, all induce a conformational change in MdfA, which results in deprotonation of the transporter and increase in the affinity of TPP. PHENOTYPE CHARACTERIZATION OF AZOSPIRILLUM BRASILENSE Sp7 ABC TRANSPORTER (wzm) MUTANT A. Lerner1,2, S. Burdman1, Y. Okon1,2 1Department of Plant Pathology and Microbiology, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel, 2The Otto Warburg Center for Agricultural Biotechnology, Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel Azospirillum, a free-living nitrogen fixer, belongs to the plant growth promoting rhizobacteria (PGPR), living in close association with plant roots. -
Natural Variation in Caenorhabditis Elegans Responses to the Anthelmintic Emodepside
International Journal for Parasitology: Drugs and Drug Resistance 16 (2021) 1–8 Contents lists available at ScienceDirect International Journal for Parasitology: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Natural variation in Caenorhabditis elegans responses to the anthelmintic emodepside Janneke Wit, Briana C. Rodriguez, Erik C. Andersen * Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA ARTICLE INFO Treatment of parasitic nematode infections depends primarily on the use of anthelmintics. However, this drug Keywords: arsenal is limited, and resistance against most anthelmintics is widespread. Emodepside is a new anthelmintic Emodepside drug effective against gastrointestinal and filarialnematodes. Nematodes that are resistant to other anthelmintic Natural variation drug classes are susceptible to emodepside, indicating that the emodepside mode of action is distinct from C. elegans previous anthelmintics. The laboratory-adapted Caenorhabditis elegans strain N2 is sensitive to emodepside, and + Anthelmintics genetic selection and in vitro experiments implicated slo-1, a large K conductance (BK) channel gene, in emo Hormetic effect depside mode of action. In an effort to understand how natural populations will respond to emodepside, we measured brood sizes and developmental rates of wild C. elegans strains after exposure to the drug and found natural variation across the species. Some of the observed variation in C. elegans emodepside responses correlates with amino acid substitutions in slo-1, but genetic mechanisms other than slo-1 coding variants likely underlie emodepside resistance in wild C. elegans strains. Additionally, the assayed strains have higher offspring pro duction in low concentrations of emodepside (a hormetic effect). We find that natural variation affects emo depside sensitivity, supporting the suitability of C. -
Procox (As Published in May 2011)
3 May 2011 EMA/CVMP/236066/2011 Veterinary Medicines and Product Data Management Scientific discussion This module reflects the initial scientific discussion for the approval of Procox (as published in May 2011). For information on changes after this date please refer to module 8. 1. Summary of the dossier Procox, an oral suspension, contains the active substances emodepside and toltrazuril and is presented in bottles of 7.5 ml or 20 ml. The target species is dogs (puppies). It is indicated for dogs suffering from, or at risk from, mixed parasitic infections caused by roundworms and coccidia of certain specified species. The applicant for this veterinary medicinal product is Bayer Animal Health GmbH, Germany. The product was eligible for the Centralised procedure under Article 3 of Regulation (EC) No 726/2004. The two active substances in Procox are emodepside (0.9 mg/ml) and toltrazuril (18 mg/ml). Emodepside is a depsipeptide antiparasiticide which acts at the neuromuscular junction by stimulating presynaptic receptors belonging to the secretin receptor family, resulting in paralysis and death of the parasites. Toltrazuril is an anticoccidial which acts against all intracellular development stages of the coccidia, resulting in their death. The benefits of Procox are its efficacy against the replication of coccidia and the shedding of oocysts at all stages of coccidial infection. The most common side effects are slight and transient digestive tract disorders, such as vomiting or loose stools. The approved indication is: For dogs, when mixed parasitic infections caused by roundworms and coccidia of the following species are suspected or demonstrated: Roundworms (Nematodes): - Toxocara canis (mature adult, immature adult, L4) - Uncinaria stenocephala (mature adult) - Ancylostoma caninum (mature adult) Coccidia: - Isospora ohioensis complex - Isospora canis Procox is effective against the replication of Isospora and also against the shedding of oocysts. -
SOP Cl01b V1.2
CLINICAL TRIAL PROTOCOL A Phase 1, Single-Blind, Randomized, Placebo Controlled, Parallel-Group, Multiple-Dose-Escalation Study to Investigate Safety, Tolerability, and Pharmacokinetics of Emodepside (BAY 44-4400) After Oral Dosing in Healthy Male Subjects Short title Safety, tolerability and PK of multiple-ascending doses of emodepside Name of product(s) Emodepside (BAY 44-4400) Drug Class Anthelmintic cyclooctadepsipeptide Phase 1 Indication Treatment of onchocerciasis (river blindness) and potentially other filarial diseases including lymphatic filariasis Clinical Trial Protocol DNDI-EMO-02 Number EudraCT 2017-003020-75 Sponsor DNDi, Chemin Louis Dunant, 15, 1202 Geneva, Switzerland Phone : +41 22 906 9230 Global/National Dr Jeremy Dennison, Hammersmith Medicines Research, Coordinating Cumberland Avenue, London, NW10 7EW, Investigator/Principal United Kingdom Investigator Phone : +4420 8961 4130 Clinical Trial Protocol Version 5, 25 July 2018 Version / Date Protocol Amendment Amendment 4 Number / Date The information contained in this document is confidential. It is to be used by Investigators, potential Investigators, consultants, or applicable independent ethics committees. It is understood that this information will not be disclosed to others without written authorisation from DNDi, except where required by applicable local laws Confidential Page 1 of 84 Protocol template_Version 1.2_24 April 2014 Protocol number (DNDI-EMO-02) Emodepside (BAY 44-4400) Protocol Version/Date: Version 5, 25 July 2018 CONTACT DETAILS Principal Investigator: -
Review Article a BRIEF REVIEW on the MODE of ACTION of ANTINEMATODAL DRUGS
Acta Veterinaria-Beograd 2017, 67 (2), 137-152 UDK: 615.284.03 DOI: 10.1515/acve-2017-0013 Review article A BRIEF REVIEW ON THE MODE OF ACTION OF ANTINEMATODAL DRUGS ABONGWA Melanie, MARTIN Richard J., ROBERTSON Alan P.* Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA (Received 01 May, Accepted 24 May 2017) Anthelmintics are some of the most widely used drugs in veterinary medicine. Here we review the mechanism of action of these compounds on nematode parasites. Included are the older classes of compounds; the benzimidazoles, cholinergic agonists and macrocyclic lactones. We also consider newer anthelmintics, including emodepside, derquantel and tribendimidine. In the absence of vaccines for most parasite species, control of nematode parasites will continue to rely on anthelmintic drugs. As a consequence, vigilance in detecting drug resistance in parasite populations is required. Since resistance development appears almost inevitable, there is a continued and pressing need to fully understand the mode of action of these compounds. It is also necessary to identify new drug targets and drugs for the continued effective control of nematode parasites. Key words: anthelmintic, parasite, benzimidazoles, avermectins, cholinergic, emodepside, derquantel INTRODUCTION Anthelmintics are drugs that are used to treat infections caused by parasitic worms (helminths) [1]. There are three major groups of helminths namely: nematodes (roundworms), trematodes (fl ukes) and cestodes (tapeworms). These groups of helminths are divided into two phyla; nematodes (roundworms) and platyhelminths (trematodes and cestodes) [2]. Anthelmintics either kill worms or cause their expulsion from the body, without causing any signifi cant damage to the host [3]. -
Mathematics, Developmental Biology and Tumour Growth
CONTEMPORARY MATHEMATICS 492 >Ì i>ÌVÃ]Ê iÛi«iÌ>Ê }ÞÊ>`Ê/ÕÕÀÊÀÜÌ 1*q,- ÊÕÃʰÊ->Ì>Ê-ÕiÀÊ-V Ê -i«ÌiLiÀÊ£££x]ÊÓääÈ 1ÛiÀÃ`>`ÊÌiÀ>V>Êij`iâÊ*i>Þ] ->Ì>`iÀ]Ê-«> iÀ>`ÊÀ?`iâ }ÕiʰÊiÀÀiÀ `ÌÀà iÀV>Ê>Ì i>ÌV>Ê-ViÌÞ ,i>Ê-Vi`>`Ê>Ìi?ÌV>Ê Ã«>> American Mathematical Society This page intentionally left blank Mathematics, Developmental Biology and Tumour Growth This page intentionally left blank CONTEMPORARY MATHEMATICS 492 Mathematics, Developmental Biology and Tumour Growth UIMP–RSME Lluis A. Santaló Summer School September 11-15, 2006 Universidad Internacional Menéndez Pelayo, Santander, Spain Fernando Giráldez Miguel A. Herrero Editors American Mathematical Society Real Sociedad Matemática Española American Mathematical Society Providence, Rhode Island Editorial Board of Contemporary Mathematics Dennis DeTurck, managing editor George Andrews Abel Klein Martin J. Strauss Editorial Committee of the Real Sociedad Matem´atica Espa˜nola Guillermo P. Curbera, Director Luis Al´ıas Linares Alberto Elduque Palomo Emilio Carrizosa Priego Pablo Pedregal Tercero Bernardo Cascales Salinas Rosa Mar´ıa Mir´o-Roig Javier Duoandikoetxea Zuazo Juan Soler Vizca´ıno 2000 Mathematics Subject Classification. Primary 34K10, 34K25, 35B40, 35F25, 92C50. Library of Congress Cataloging-in-Publication Data UIMP-RSME Santal´o Summer School (2006 : Universidad Internacional Men´endez Pelayo) Mathematics, developmental biology, and tumour growth : UIMP-RSME Santal´o Summer School, September 11–15, 2006, Universidad Internacional Men´endez Pelayo, Santander, Spain / Fernando Gir´aldez, Miguel A. Herrero, editors. p. cm. — (Contemporary mathematics ; v. 492) Includes bibliographical references and index. ISBN 978-0218-4663-6 (alk. paper) 1. Carcinogenesis—Mathematical models—Congresses. -
Structural Insights Into Notum Covalent Inhibition
pubs.acs.org/jmc Article Structural Insights into Notum Covalent Inhibition ∥ ∥ ∥ Yuguang Zhao, Fredrik Svensson, David Steadman, Sarah Frew, Amy Monaghan, Magda Bictash, Tiago Moreira, Rod Chalk, Weixian Lu, Paul V. Fish,* and E. Yvonne Jones* Cite This: https://doi.org/10.1021/acs.jmedchem.1c00701 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The carboxylesterase Notum hydrolyzes a palmitoleate moiety from Wingless/Integrated(Wnt) ligands and deactivates Wnt signaling. Notum inhibitors can restore Wnt signaling which may be of therapeutic benefit for pathologies such as osteoporosis and Alzheimer’s disease. We report the identification of a novel class of covalent Notum inhibitors, 4-(indolin-1-yl)-4- oxobutanoate esters. High-resolution crystal structures of the Notum inhibitor complexes reveal a common covalent adduct formed between the nucleophile serine-232 and hydrolyzed butyric esters. The covalent interaction in solution was confirmed by mass spectrometry analysis. Inhibitory potencies vary depending on the warheads used. Mechanistically, the resulting acyl-enzyme intermediate carbonyl atom is positioned at an unfavorable angle for the approach of the active site water, which, combined with strong hydrophobic interactions with the enzyme pocket residues, hinders the intermediate from being further processed and results in covalent inhibition. These insights into Notum catalytic inhibition may guide development of more potent Notum inhibitors. ■ INTRODUCTION key mediator for adenomatous polyposis coli (Apc)-mutated tumor cell fixation and tumor formation, while Notum Secreted Wingless/Integrated(Wnt) morphogens are key 31 1 inhibitors abrogate the ability of Apc-mutant cells to expand. components of Wnt signaling. Wntproteinsarepost- These pieces of evidence highlight the importance of Notum as translationally modified with a palmitoleic acid (PAM) moiety a novel target for drug discovery. -
Mouse Notum Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Notum Knockout Project (CRISPR/Cas9) Objective: To create a Notum knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Notum gene (NCBI Reference Sequence: NM_175263 ; Ensembl: ENSMUSG00000042988 ) is located on Mouse chromosome 11. 12 exons are identified, with the ATG start codon in exon 2 and the TAG stop codon in exon 12 (Transcript: ENSMUST00000106178). Exon 2~12 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a null mutation display perinatal lethality, abnormal kidney development, and impaired tracheal cartilage development. Mice homozygous for a gene trapped allele exhibit abnormal dentin development, periodontal inflammation, tooth decay and increased bone mineral density. Exon 2 starts from about 0.07% of the coding region. Exon 2~12 covers 100.0% of the coding region. The size of effective KO region: ~6114 bp. The KO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 11 12 Legends Exon of mouse Notum Knockout region Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. -
Identification of Biomarkers of Intrahepatic Cholangiocarcinoma Via Integrated Analysis of Mrna and Mirna Microarray Data
MOLECULAR MEDICINE REPORTS 15: 1051-1056, 2017 Identification of biomarkers of intrahepatic cholangiocarcinoma via integrated analysis of mRNA and miRNA microarray data YAQING CHEN1, DAN LIU2, PENGFEI LIU3, YAJING CHEN4, HUILING YU5 and QUAN ZHANG6 1Department of VIP Ward, Affiliated Hospital of Hebei University, Baoding, Hebei 071000; 2Department of Ultrasonic Imaging, Zhuhai People's Hospital, Zhuhai, Guangdong 519000; 3Department of Lymphoma, Sino‑US Center of Lymphoma and Leukemia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060; 4Department of Internal Medicine, Baoding Xiongxian County Hospital; Departments of 5Gastroenterology and 6Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China Received November 6, 2015; Accepted November 7, 2016 DOI: 10.3892/mmr.2017.6123 Abstract. The present study aimed to identify potential thera- were obtained. Functional enrichment analysis indicated that peutic targets of intrahepatic cholangiocarcinoma (ICC) via DEGs were primarily enriched in biological processes and integrated analysis of gene (transcript version) and microRNA pathways associated with cell activity or the immune system. (miRNA/miR) expression. The miRNA microarray dataset A total of 63 overlaps were obtained among DEGs, ASGs and GSE32957 contained miRNA expression data from 16 ICC, target genes of DEMs, and a regulation network that contained 7 mixed type of combined hepatocellular-cholangiocarcinoma 243 miRNA-gene regulation pairs was constructed between (CHC), 2 hepatic adenoma, 3 focal nodular hyperplasia (FNH) these overlaps and DEMs. The overlapped genes, including and 5 healthy liver tissue samples, and 2 cholangiocarci- sprouty-related EVH1 domain containing 1, protein phosphate noma cell lines. -
Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation. -
Towards a Bioinformatics of Patterning: a Computational Approach to Understanding Regulative Morphogenesis
156 Research Article Towards a bioinformatics of patterning: a computational approach to understanding regulative morphogenesis Daniel Lobo, Taylor J. Malone and Michael Levin* Tufts Center for Regenerative and Developmental Biology, and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA *Author for correspondence ([email protected]) Biology Open 2, 156–169 doi: 10.1242/bio.20123400 Received 22nd October 2012 Accepted 1st November 2012 Summary The mechanisms underlying the regenerative abilities of the planarian regeneration dataset to illustrate a proof-of- certain model species are of central importance to the basic principle of this novel bioinformatics of shape; we developed understanding of pattern formation. Complex organisms such a software tool to facilitate the formalization and mining of as planaria and salamanders exhibit an exceptional capacity the planarian experimental knowledge, and cured a database to regenerate complete body regions and organs from containing all of the experiments from the principal amputated pieces. However, despite the outstanding bottom- publications on planarian regeneration. These resources are up efforts of molecular biologists and bioinformatics focused freely available for the regeneration community and will at the level of gene sequence, no comprehensive mechanistic readily assist researchers in identifying specific functional model exists that can account for more than one or two data in planarian experiments. More importantly, these aspects