Morphometric Characters and Meristic Counts of Black Chin Tilapia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
B. Quantitative Characters Morphometric & Meristics Laboratory
Lab. No. 2 B. Quantitative Characters Morphometric & Meristics laboratory Taxonomic Characters The first step in successfully working with fishes is correct identification. Similar species require in depth examination to discern the few differentiating characteristics. Many times these examinations require accurate measurements and counts of fin ray elements. Objectives: The purpose of this lab is to introduce students to these characters. Quantitative Characters Quantitative characters are usually expressed as numbers, these include a measurable and countable characters. Morphometrics are measurable characters or length-based measures of specific body parts, such as total length of the body or diameter of the eye. These characters are usually measured in the millimeter scale. Meristics are counts of things which occur more than once, but a variable number of times between species (and sometimes within species). These include counts of fin elements, i.e.: the number of dorsal fin spines and rays. NOTICE Spines are hard, pinlike projections, while rays are soft and brush-like Occasionally, fins will be a mix of both spines and rays; however, spines are ALWAYS the most forward structures (closest to the head) on the fin. The table below helps you to differentiate between a spine and a ray Spines Rays Hard and pointed Segmented Unsegmented Sometimes branched Unbranched Bilateral with left and right halves Solid Because they are already dimensionless, meristic measurements can be compared directly. 8 Lab. No. 2 Laboratory exercise In this exercise we will be making various measurements and counts on several species of fish. Record the appropriate information in the attached table. Procedure—Morphology • Each group is equipped with: • Dissecting microscope • Needle probe • Dissecting tray • Scissors • Petri dish • Scalpel • Calipers • Slides and coverslips • Forceps (fine tip and blunt tip) • Latex gloves (optional) Each team should get a fish. -
The Genetic Basis of Morphometric and Meristic Traits in Rainbow Trout (Oncorhynchus Mykiss)
Central Annals of Aquaculture and Research Research Article *Corresponding author Domitilla Pulcini, Department of Biology, “Tor Vergata” University of Rome, Consiglio per la Ricerca in The Genetic Basis of Agricoltura e l’Analisi dell’Economia Agraria, Via Salaria 31, 00016, Monterotondo (Rome), Italy, Tel: 39-06- 90090263; Email: Morphometric and Meristic Submitted: 30 September 2016 Accepted: 18 October 2016 Traits in Rainbow Trout Published: 21 October 2016 ISSN: 2379-0881 (Oncorhynchus mykiss) Copyright © 2016 Pulcini et al. Domitilla Pulcini1,2*, Kristofer Christensen3, Paul A. Wheeler3, OPEN ACCESS Tommaso Russo2, and Gary H. Thorgaard3 1,2Department of Biology, “Tor Vergata” University of Rome, Italy Keywords 3School of Biological Sciences and Center for Reproductive Biology, Washington State • Domestication University, USA • Geometric morphometrics • QTL • Meristics Abstract • Salmonids In fishes, body shape, is a complex trait involving several genetic and environmental • Shape factors. Understanding the genetic basis of phenotypic variation in body form could lead to breeding strategies aimed at adapting body shape to captive environments. In the present study, QTLs associated with morphometric and meristic traits in rainbow trout were identified using a genetic linkage map created from a cross of two clonal lines divergent for morphology and life history (wild steelhead trout and domesticated rainbow trout). Genome regions associated with differences in morphological (body depth, mouth orientation, caudal peduncle shape, anal and dorsal fin length) and meristic (number of skeletal elements of median and paired fins and of caudal fin) characters were identified. The identification of genomic locations influencing body morphology, even if only at a gross level, could be of pivotal importance to direct breeding strategies in commercial hatcheries towards the production of more desirable body types. -
Variation of the Spotted Sunfish, Lepomis Punctatus Complex
Variation of the Spotted Sunfish, Lepomis punctatus Complex (Centrarehidae): Meristies, Morphometries, Pigmentation and Species Limits BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY The scientific publication of the Alabama Museum of Natural History. Richard L. Mayden, Editor, John C. Hall, Managing Editor. BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY is published by the Alabama Museum of Natural History, a unit of The University of Alabama. The BULLETIN succeeds its predecessor, the MUSEUM PAPERS, which was terminated in 1961 upon the transfer of the Museum to the University from its parent organization, the Geological Survey of Alabama. The BULLETIN is devoted primarily to scholarship and research concerning the natural history of Alabama and the midsouth. It appears irregularly in consecutively numbered issues. Communication concerning manuscripts, style, and editorial policy should be addressed to: Editor, BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY, The University of Alabama, Box 870340, Tuscaloosa, AL 35487-0340; Telephone (205) 348-7550. Prospective authors should examine the Notice to Authors inside the back cover. Orders and requests for general information should be addressed to Managing Editor, BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY, at the above address. Numbers may be purchased individually; standing orders are accepted. Remittances should accompany orders for individual numbers and be payable to The University of Alabama. The BULLETIN will invoice standing orders. Library exchanges may be handled through: Exchange Librarian, The University of Alabama, Box 870266, Tuscaloosa, AL 35487-0340. When citing this publication, authors are requested to use the following abbreviation: Bull. Alabama Mus. Nat. Hist. ISSN: 0196-1039 Copyright 1991 by The Alabama Museum of Natural History Price this number: $6.00 })Il{ -w-~ '{(iI1 .....~" _--. -
Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] THE POLITICS AMO ADMINISTRATION OF COhTUNITY DEVELOPMENT IN THE RIVERS STATE OF NIGERIA BY LAURENCE A.8. lYAGOA Submitbed for the Degree of Doctor of Philosophy University of Glasgow Duly 1976 ProQuest Number: 10647271 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uesL ProQuest 10647271 Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLO. ProQuest LLO. -
Morphometric and Meristic Variation in Two
Simon et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2010 11(11):871-879 871 Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) ISSN 1673-1581 (Print); ISSN 1862-1783 (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: [email protected] Morphometric and meristic variation in two congeneric archer fishes Toxotes chatareus (Hamilton 1822) and Toxotes jaculatrix * (Pallas 1767) inhabiting Malaysian coastal waters K. D. SIMON†1, Y. BAKAR2, S. E. TEMPLE3, A. G. MAZLAN†‡4 (1Marine Science Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia) (2Biology Programme, School of Biological Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia) (3School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia) (4Marine Ecosystem Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia) †E-mail: [email protected]; [email protected] Received Feb. 18, 2010; Revision accepted Aug. 3, 2010; Crosschecked Oct. 8, 2010 Abstract: A simple yet useful criterion based on external markings and/or number of dorsal spines is currently used to differentiate two congeneric archer fish species Toxotes chatareus and Toxotes jaculatrix. Here we investigate other morphometric and meristic characters that can also be used to differentiate these two species. Principal component and/or discriminant functions revealed that meristic characters were highly correlated with pectoral fin ray count, number of lateral line scales, as well as number of anal fin rays. The results indicate that T. chatareus can be distin- guished from T. -
The Challenges of Developing Buguma Town As a Secondary City in Rivers State Nigeria
KIU Journal of Social Sciences KIU Journal of Social Sciences Copyright©2019 Kampala International University ISSN: 2413-9580; 5(2): 19–30 The Challenges of Developing Buguma Town as a Secondary City in Rivers State Nigeria VICTOR OWITUBO CHARLES, NALUBA GOODY NWIEKPIGI Ignatius Ajuru University of Education, Rumuolumeni, Port Harcourt Abstract. This study investigated the challenges Keywords: Challenges, Secondary, City, of developing Buguma as a secondary city in Developing. Rivers State. This study made use of public opinion survey research design with a sample 1. Introduction size of 200 respondents. Data was sourced from the research instrument known as developing 1.1 Background and Overview Buguma Secondary City Questionnaire (DBSCQ) designed along the Likert-type 4-point The philosophy underlying regional planning scale rating. Data was analyzed with both programmes is that the problems of urban and descriptive and inferential statistics. Simple rural areas are intricately connected and should percentage was used to analyze the descriptive be so solved within a regional framework and inferential statistics. Simple percentage was (Slatter 2012, World Bank, 2011). Similarly, used to analyze the socio-demographic global economic activities and population background of the respondents while mean and dynamics are increasingly concentrated in big standard deviation were used to analyze the cities and as a result, urban research has tended research questions. One way analysis of variance to focus on large metropolitan areas at the (ANOVA) was used to analyze the hypotheses. expense of secondary cities which have been a The results of the study revealed that majority of rediscovery of the city in academic discourse the respondents were male 108 (54%); were (Marais, Rooyen, Lenka and Cloete. -
National Inland Waterways Authority
Part I Establishment of the National Inland Waterways Authority 1. Establishment of the National 2. Objectives of the Authority 3. Establishment and composition Inland Waterways Authority of the Board of the Authority 4. Tenure of office of members of 5. Remuneration. 6. Termination of Board the Board membership 7. Frequency of Board attendance Part II Functions and powers 8. General functions of the 9. Other functions and powers of Authority the Authority Part III Declaration of Navigable Waterways 10. Declaration of navigable 11. Area under control of the 12. Right to land use for navigable waterways Authority purposes including right of way 13. Right to land within right of way. Part IV Staff of the Authority 14. Appointment, etc. of the 15. Appointment of secretary 16. Conditions of service of staff. Managing Director and other staff of the Authority 17. Application of Pensions Act. Part V Financial provisions 18. Fund of the Authority. 19. Surplus funds. 20. Borrowing power. 21. Annual estimates, accounts and 22. Annual reports. audit. Part VI Miscellaneous 23. Offences and penalties 24. Power to own land. 25. Power to accept gifts. 26. Time limitation of suits against 27. Dissolution of Inland 28. Power to make regulations the Authority. Waterways Department and transfer of assets and liability 29. Interpretation. 30. Short title Schedules First Schedule Supplementary provisions relating to the Authority Second Schedule Federal navigable waterways Third Schedule River ports whose approaches are exempted from the control of the Authority Fourth Schedule Assets of the Department vested in the Authority An Act to establish the National Inland Waterways Authority with responsibility, among other things, to improve and develop inland waterways for Navigation. -
California Fish and Game “Conservation of Wildlife Through Education”
Summer 2015 159 CALIFORNIA FISH AND GAME “Conservation of Wildlife Through Education” Volume 101 Summer 2015 Number 3 Published Quarterly by the California Department of Fish and Wildlife 160 CALIFORNIA FISH AND GAME Vol. 101, No. 3 STATE OF CALIFORNIA Jerry Brown, Governor CALIFORNIA NATURAL RESOURCES AGENCY John Laird, Secretary for Natural Resources FISH AND GAME COMMISSION Jack Baylis, President Jim Kellogg, Vice President Jacque Hostler-Carmesin, Member Anthony C. Williams, Member Eric Sklar, Member Sonke Mastrup, Executive Director DEPARTMENT OF FISH AND WILDLIFE Charlton “Chuck” Bonham, Director CALIFORNIA FISH AND GAME EDITORIAL STAFF Vern Bleich ........................................................................................Editor-in-Chief Carol Singleton ........................ Office of Communication, Education and Outreach Jeff Villepique, Steve Parmenter ........................................... Inland Deserts Region Scott Osborn, Laura Patterson, Joel Trumbo ................................... Wildlife Branch Dave Lentz, Kevin Shaffer ............................................................. Fisheries Branch Peter Kalvass, Nina Kogut .................................................................Marine Region James Harrington .......................................Office of Spill Prevention and Response Cherilyn Burton ...................................................................... Native Plant Program Summer 2015 161 VOLUME 101 SUMMER 2015 NUMBER 3 Published Quarterly by STATE OF CALIFORNIA CALIFORNIA -
A Dissertation Entitled Evolution, Systematics
A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could -
World Rural Observations 2016;8(1) 27
World Rural Observations 2016;8(1) http://www.sciencepub.net/rural Spatial Patterns Of Community Conflicts (1990-2015) And Its Implication To Rural Development In Rivers State Samuel Bankole Arokoyu and *Evangeline Nkiruka Ochulor Department of Geography and Environmental Science Faculty of Social Science, University of Port Harcourt, Rivers State [email protected] Abstract: Community conflict patterns and frequency vary in space and thus the use of Geographic Information Systems (GIS) in conflict management is highly required in contemporary time. This study therefore investigated the spatial pattern and variations in the frequency of community conflict in Rivers State, Nigeria between 1990 and 2015. The locations of all communities that have experienced conflict were mapped with global positioning system. Imageries of rural development indices (infrastructural poverty index and accessibility) and land sat images of 2014 for land use patterns were acquired for the study from United States Geological Survey. The spatial pattern of communal conflicts was analysed using nearest neighbour statistic while the relationship between frequency of community conflicts and rural development was analysed using Spearman rank correlation. Findings reveal that the pattern of distribution of communities that have experienced communal conflicts is random (Nearest Neighbour Ratio = 1.0). More communal conflicts occurred in the upland areas (65.5%) while the swamp areas experienced comparatively lower communal conflicts (34.5%). Inter community conflict was highest in Khana and Gokana LGAs while intra community conflict was highest in Obio Akpor LGA. The community conflict hotspots were in Ogbogoro, Okrika Town, Egbema and Ogbakiri. The correlation coefficient between frequency of conflict and infrastructural poverty was negative and low. -
Acipenser Brevirostrum
AR-405 BIOLOGICAL ASSESSMENT OF SHORTNOSE STURGEON Acipenser brevirostrum Prepared by the Shortnose Sturgeon Status Review Team for the National Marine Fisheries Service National Oceanic and Atmospheric Administration November 1, 2010 Acknowledgements i The biological review of shortnose sturgeon was conducted by a team of scientists from state and Federal natural resource agencies that manage and conduct research on shortnose sturgeon along their range of the United States east coast. This review was dependent on the expertise of this status review team and from information obtained from scientific literature and data provided by various other state and Federal agencies and individuals. In addition to the biologists who contributed to this report (noted below), the Shortnose Stugeon Status Review Team would like to acknowledge the contributions of Mary Colligan, Julie Crocker, Michael Dadswell, Kim Damon-Randall, Michael Erwin, Amanda Frick, Jeff Guyon, Robert Hoffman, Kristen Koyama, Christine Lipsky, Sarah Laporte, Sean McDermott, Steve Mierzykowski, Wesley Patrick, Pat Scida, Tim Sheehan, and Mary Tshikaya. The Status Review Team would also like to thank the peer reviewers, Dr. Mark Bain, Dr. Matthew Litvak, Dr. David Secor, and Dr. John Waldman for their helpful comments and suggestions. Finally, the SRT is indebted to Jessica Pruden who greatly assisted the team in finding the energy to finalize the review – her continued support and encouragement was invaluable. Due to some of the similarities between shortnose and Atlantic sturgeon life history strategies, this document includes text that was taken directly from the 2007 Atlantic Sturgeon Status Review Report (ASSRT 2007), with consent from the authors, to expedite the writing process. -
METHODOLOGICAL EXPLANATIONS Morphometrics and Meristics
METHODOLOGICAL EXPLANATIONS Version 1.1 (20.6.2016) Morphometrics and meristics Bojan Marčeta Morphometrics Morphometrics refer to the quantitative data which can be measured. There are two ways of measuring: in a straight line or around the circumference of the body. For example in a straight line the length of the specimen can be measured, while the extent of the body is measured around its circumference. The measurements of the specimen sizes or its parts is differing according the taxonomical group to which species is belonging. Meristics Meristics refer to the quantitative data which can be counted. Examples of such data are number of scales, spines etc. - 1 - Meristics refer to the quantitative data which can be counted. Examples of such data are number of scales, spines etc. Methodological explanations, version 1.0 (Ljubljana, 20.6.2016) Morphometrics and meristics Gastropoda acronym measurement description SL Shell length / SH Shell height / - 2 - Methodological explanations, version 1.0 (Ljubljana, 20.6.2016) Morphometrics and meristics Bivalvia - other bivalves Adapted from Poutiers, 1987 (Ref#5053) acronym measurement description SL Shell length / SH Shell height / SW Shell width / - 3 - Methodological explanations, version 1.0 (Ljubljana, 20.6.2016) Morphometrics and meristics Sepia acronym measurement description TL Total length / ML Mantle length / - 4 - Methodological explanations, version 1.0 (Ljubljana, 20.6.2016) Morphometrics and meristics Loliginidae acronym measurement description TL Total length / ML Mantle length