The Recycling Potential of Wood Waste Into Wood-Wool/Cement Composite

Total Page:16

File Type:pdf, Size:1020Kb

The Recycling Potential of Wood Waste Into Wood-Wool/Cement Composite The recycling potential of wood waste into wood-wool/cement composite Citation for published version (APA): Berger, F., Gauvin, F., & Brouwers, H. J. H. J. (2020). The recycling potential of wood waste into wood- wool/cement composite. Construction and Building Materials, 260, [119786]. https://doi.org/10.1016/j.conbuildmat.2020.119786 Document license: CC BY DOI: 10.1016/j.conbuildmat.2020.119786 Document status and date: Published: 10/11/2020 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 26. Sep. 2021 Construction and Building Materials 260 (2020) 119786 Contents lists available at ScienceDirect Construction and Building Materials journal homepage: www.elsevier.com/locate/conbuildmat The recycling potential of wood waste into wood-wool/cement composite ⇑ F. Berger, F. Gauvin , H.J.H. Brouwers Department of the Built Environment, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands highlights Wood waste is used as a substitute for spruce in WWCB. Wood waste from pallet wood has a microstructure similar to spruce. Strands made from wood waste have good compatibility with cement. Up to 30% of wood waste can be used in WWCB without decreasing the properties. The environmental assessment shows no hazardous leaching from these composites. article info abstract Article history: Nowadays, the recycling potential of wood waste is still limited and in a resource cascading approach, Received 3 October 2019 recycling wood waste in cement composite materials, such as wood wool cement board (WWCB) appears Received in revised form 14 May 2020 as a promising solution. The quality of the wood waste is the main factor leading to the instability of the Accepted 30 May 2020 final product which can affect the mechanical properties or the wood cement compatibility. However, the possibility to recycle wood waste as a spruce replacement for WWCB manufacture needs more investi- gation in order to assess the impact of wood waste on the mechanical performances of the final product, Keywords: but also to characterize the behavior of hazardous substances embodied in a cement matrix. This paper Circular economy addresses the characterization of two types of wood waste, from pallets and demolition waste and their Natural fibers Treated wood influence on the manufacturing process, mechanical properties and chemical compatibility when used in Cement composite WWCB. A comprehensive approach is provided to define the influence of wood waste on the hydration Leaching reaction of the cement and the chemical and physical properties of the composite are assessed by isother- Mechanical testing mal calorimetry, leaching measurement and microscopy. Finally, the mechanical properties of WWCB are tested for different wood waste content in order to define the best wood/wood waste ratio and thereby confirming the possibility to reuse the wood waste in fiber/cement composite for building application. Ó 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1. Introduction ment that can conduct to health and environmental issues during the end of life of wood [6]. Currently, wood waste can be either Nowadays, wood waste represents an important economic and used as energy recovery (e.g., following the Renewable Energy environmental issue. Recently, a study has estimated that 50 mil- Directives) or reused as a building material. However, several envi- lion cubic meters of wood waste are generated each year in the ronmental assessments show contradictory results about these European Union [1]. Currently, the recycling potential of wood two options because of the presence of contaminants in wood waste is still low, mainly caused by a lack of sustainable reusing products, which limits considerably the recycling or reuse of wood or recycling applications [2,3]. In fact, the main part of wood waste waste [7]. can be treated in different ways (e.g., heat, chemical or mechanical This current study focuses on the possibility to find sustainable treatment) and this involves a large amount of preservative- applications in order to recycle wood waste into wood-cement treated wood that contains organic and inorganic contaminants composites. In these applications, wood is turned into wool, which [4,5]. Those contaminants represent a real issue in waste manage- are thin strands of wood of 0.5–3 mm of thickness and can be used in state-of-the-art materials. Wood wool cement boards (WWCB) are an example of advanced wood-cement composites. They are ⇑ Corresponding author. E-mail address: [email protected] (F. Gauvin). made of wood wool which is usually spruce (softwood) or poplar https://doi.org/10.1016/j.conbuildmat.2020.119786 0950-0618/Ó 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 2 F. Berger et al. / Construction and Building Materials 260 (2020) 119786 (hardwood), mixed with a binder which is commonly ordinary worldwide [27,32]. The wood from pallets is generally only heat- Portland cement (OPC) or white cement (WC) [8]. Since 1940, treated for environmental and recycling reasons leading to a clean WWCBs are commonly used in Europe and Asia, thanks to their wood resource for biomass or reuse applications. Moreover, soft- good resistance to decay and insects but also for their good thermal wood is mostly used for pallet manufacturers in the EU, with dif- and acoustical insulating properties and low density (300–500 kg/ ferent species such as Southern yellow pine, Douglas pine or fir. m3) [9,10]. WWCBs are used for many applications, such as ceiling However, the use of hardwood has risen in the last decade because tiles, insulation wall panels with better physical properties than of its large availability in the US. Contrariwise, construction and conventional medium density fiberboards while being more sus- demolition wood waste show different issues for sustainable recy- tainable [11]. Additionally, WWCB’s structure is an excellent sub- cling solutions. strate for air purification by photocatalysis, showing that this Currently, it is still impossible to predict the behavior of the type of composite can be a great prospect of many advanced appli- treated wood into WWCB, these results show a positive future cations in the future [12]. for using wood waste in WWCB. In this study, the mechanical Nowadays, the wood used for the manufacture of WWCB comes and chemical properties of the two wood waste samples provided from forest harvesting only [2], because a slight change (e.g., com- by Nedvang (Pallets and C&D) are studied in order to compare position, structure, water content, age...) in the wood can signifi- them with conventional spruce wood, used as a reference. The cantly affect the overall properties of the composite, which wood-cement compatibility is assessed as well as the leaching explains why using anything else than raw spruce or poplar is a behavior of the wood waste by various methods, such as pH mea- great challenge [13,14]. Indeed, heterogeneity of wood waste is a surement, isothermal calorimetry and scanning electron micro- critical factor because, as shown in several studies, depending on scopy (SEM). Then, wood strands are processed and studied the wood species, its hygroscopic behavior, cement compatibility (mechanical behavior, microstructure). Thereafter, the mechanical, and effect on cement hydration can be significantly different due physical and leaching properties of WWCB manufactured with dif- to the carbohydrate and saccharides contents in the fibers but also ferent percentages of wood waste (steps of 10% until 100%) are because of the different morphologies of the wood strands [15–17]. compared to conventional and commercial WWCBs. In addition, the use of wood waste can generate environmental issue because of the various treatments of the wood which leads 2. Methodology to numerous contaminants that can be leached out, disturbing the wood cement compatibility and also limiting the potential range 2.1. Materials of application due to the toxicity of the waste [18–22]. On the other hand, some studies show favorable results and good potential for In this study, the spruce wood is taken as reference in the form the use of wood waste into wood cement composite, since its of Excelsior wood wool (or also called strand in this study) and is mechanical proprieties are very closed to commercial wood prod- provided by Knauf Insulation.
Recommended publications
  • FAOSTAT-Forestry Definitions
    FOREST PRODUCTS DEFINITIONS General terms FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Item Item Code Definition code coniferous C Coniferous All woods derived from trees classified botanically as Gymnospermae, e.g. Abies spp., Araucaria spp., Cedrus spp., Chamaecyparis spp., Cupressus spp., Larix spp., Picea spp., Pinus spp., Thuja spp., Tsuga spp., etc. These are generally referred to as softwoods. non-coniferous NC Non-Coniferous All woods derived from trees classified botanically as Angiospermae, e.g. Acer spp., Dipterocarpus spp., Entandrophragma spp., Eucalyptus spp., Fagus spp., Populus spp., Quercus spp., Shorea spp., Swietonia spp., Tectona spp., etc. These are generally referred to as broadleaves or hardwoods. tropical NC.T Tropical Tropical timber is defined in the International Tropical Timber Agreement (1994) as follows: “Non-coniferous tropical wood for industrial uses, which grows or is produced in the countries situated between the Tropic of Cancer and the Tropic of Capricorn. The term covers logs, sawnwood, veneer sheets and plywood. Plywood which includes in some measure conifers of tropical origin shall also be covered by the definition.” For the purposes of this questionnaire, tropical sawnwood, veneer sheets and plywood shall also include products produced in non-tropical countries from imported tropical roundwood. Please indicate if statistics provided under "tropical" in this questionnaire may include species or products beyond the scope of this definition. Year Data are requested for the calendar year (January-December) indicated. 2 Transactions FAOSTAT - Forestry JOINT FOREST SECTOR QUESTIONNAIRE Element Element Code Definition code 5516 Production Quantity Removals The volume of all trees, living or dead, that are felled and removed from the forest, other wooded land or other felling sites.
    [Show full text]
  • Wood Identification and Chemistry' Covers the Physicalproperties and Structural Features of Hardwoods and Softwoods
    11 DOCUMENT RESUME ED 031 555 VT 007 853 Woodworking Technology. San Diego State Coll., Calif. Dept. of Industrial Arts. Spons Agency-Office of Education (DHEA Washington, D.C. Pub Date Aug 68 Note-252p.; Materials developed at NDEA Inst. for Advanced Studyin Industrial Arts (San Diego, June 24 -Au9ust 2, 1968). EDRS Price MF -$1.00 He -$13.20 Descriptors-Curriculum Development, *Industrial Arts, Instructional Materials, Learning Activities, Lesson Plans, Lumber Industry, Resource Materials, *Resource Units, Summer Institutes, Teaching Codes, *Units of Study (Sublect Fields), *Woodworking Identifiers-*National Defense Education Act TitleXIInstitute, NDEA TitleXIInstitute, Woodworking Technology SIX teaching units which were developed by the 24 institute participantsare given. "Wood Identification and Chemistry' covers the physicalproperties and structural features of hardwoods and softwoods. "Seasoning" explainsair drying, kiln drying, and seven special lumber seasoning processes. "Researchon Laminates" describes the bending of solid wood and wood laminates, beam lamination, lamination adhesives,. andplasticlaminates."Particleboard:ATeachingUnitexplains particleboard manufacturing and the several classes of particleboard and theiruses. "Lumber Merchandising" outhnes lumber grades andsome wood byproducts. "A Teaching Unitin Physical Testing of Joints, Finishes, Adhesives, and Fasterners" describes tests of four common edge pints, finishes, wood adhesives, and wood screws Each of these units includes a bibhography, glossary, and student exercises (EM) M 55, ...k.",z<ONR; z _: , , . "'zr ss\ ss s:Ts s , s' !, , , , zs "" z' s: - 55 Ts 5. , -5, 5,5 . 5, :5,5, s s``s ss ' ,,, 4 ;.< ,s ssA 11111.116; \ ss s, : , \s, s's \ , , 's's \ sz z, ;.:4 1;y: SS lza'itVs."4,z ...':',\\Z'z.,'I,,\ "t"-...,,, `,.
    [Show full text]
  • CHINA: FOREST PROFILE1 China Has a Great Variety of Forest Types
    CHINA MARKET PROFILE CHINA MARKET PROFILE CHINA: FOREST PROFILE1 China has a great variety of forest types. In the northern cold temperate zone, the forest is composed of coniferous trees, followed by a mixed forest of deciduous and broad-leaved trees in the temperate zone. The warm temperate zone is dominated by a deciduous broad-leaved forest, evergreen broad-leaved forest in the subtropical zone and finally rain forest and monsoon in the tropical zone. Yunnan and Chinese red pine as well as oak, larch and Chinese fir are some of the most common trees to be found in China. CHINA’S FOREST DISTRIBUTION Forest Cover 2000 Distribution of land cover/use % (1996) Forests are organized into three types. State Forests account for by far the greatest part, with 70 % of total ´000 ha Forest Other Wooded Land Other land timber reserves. There are also Collective Forest Farms China 163,480 17.5 3.7 79.6 and Co-operative and Industrial Forest Farms. A total of Asia 547,791 17.8 4.6 78.3 131 forest bureaus have been created, and engage in World 3,869,453 29.4 11.2 58.6 activities relating to industry, especially logging. To ensure the availability of forest resources, 4,256 State Forest Farms and 110,000 Collective Farms have been established across the country. China presently has around 14 percent forest cover, almost evenly divided between coniferous and broadleaved forests. The largest forests are in the northeast and inner Mongolian provinces; the ten southern provinces; and Sichuan and Yunnan provinces.
    [Show full text]
  • ISPM 39. International Movement of Wood
    S URE S ENG TARY MEA TARY I AN S 39 ONAL STANDARD FOR PHYTO FOR STANDARD ONAL I INTERNAT movement of wood wood of movement International ISPM 39 ENG This page is intentionally left blank INTERNATIONAL STANDARDS FOR PHYTOSANITARY MEASURES ISPM 39 International movement of wood Produced by the Secretariat of the International Plant Protection Convention Adopted 2017; published 2017 © FAO 2017 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, 2017 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Production of Wood Wool Cement Board and Wood Strand Cement Board (Eltoboard) on One Plant and Applications of the Products
    Page 206 November 15-18, 2006 São Paulo – Brazil PRODUCTION OF WOOD WOOL CEMENT BOARD AND WOOD STRAND CEMENT BOARD (ELTOBOARD) ON ONE PLANT AND APPLICATIONS OF THE PRODUCTS. ING. G.J. (GERRY) VAN ELTEN Eltomation BV, Tromplaan 3, P.O. Box 183, 3780 BD Voorthuizen, Holland ABSTRACT At earlier conferences of renowned international organisations such as the FAO, IIBCC and WAEP, extensive information has been published on the properties, production and applications of Wood Wool Cement Board (WWCB), with a density of approximately 400 kg/m³, for industrial applications and Low Cost Housing. See references (1) to (5). At this conference first the production of WWCB on a fully automatic high production plant will be explained and some pictures of the most common applications of WWCB in Western Europe will be shown as well as of a new large WWCB Prefab Element building system in Sweden. Furthermore information will be provided on a in 1982 completed large complex of Low Cost Houses in Moreda Del Vale near Porto Alegre Brasil, using WWCB, for the walls with concrete frames according to the proven Climatex System. Thereafter the extra equipment will be explained needed for the combined production of the new Wood Strand Cement Board (EltoBoard), with a density of approximately 1100 kg/m³, on a standard 60 cm WWCB plant making it a WWCB-EltoBoard plant. Also some of the applications of EltoBoard in the Philippines will be illustrated. Finally the production of 120-125 cm (respectively 4’) wide WWCB and EltoBoard on a new 120-125 cm (4’) WWCB-EltoBoard plant will be explained.
    [Show full text]
  • Board Materials from Wood Residues
    UNITED STATES DEPARTMENT OF AGRICULTURE • FOREST SERVICE • FOREST PRODUCTS LABORATORY • MADISON, WIS. U. S. D. A. FOREST SERVICE RESEARCH NOTE F PL -045 Rev. July 1971 1 BOARD MATERIALS FROM WOOD RESIDUES By WAYNE C. LEWIS, Engineer Forest Products Laboratory, Forest Service U.S. Department of Agriculture ---- About 9 billion square feet of various types of wood-base fiber and particle panel materials are manufactured each year in the United States. Wood sub­ stance in one form or another is the principal raw material for all hardboard and particleboard. About two-thirds of the insulating board produced also is wood based; the remainder is made from bagasse (waste from sugar cane) and waste paper. Use of these products has increased about 50 percent during the past 7 years so their potential for utilization of residues is most important. The total wood requirements for board manufacture based on plant capacity in 1970 are estimated at more than 16,500 tons (dry wood basis) per day. Total daily productive capacity in final board, including that from other agricultural fiber, is about 15,000 tons. Of this, at least one-half are residues from some other type of forest products manufacturing operation. Principal sources of residue raw material for board manufacture include the following: (1) Waste veneer, cores, and clippings from the manufacture of plywood. (2) Slabs, edgings, and trim from lumber production. (3) Green and dry planer-mill shavings from lumber production. (4) Logs of little-used species or logging residues. (5) Sawdust, shavings, and whole-wood scrap from millwork production. (6) Scrap from furniture manufacture.
    [Show full text]
  • TT-096, Wood Structural Panels and Phytosanitary Control
    Technical Topics TT-096 OCTOBER 2016 Wood Structural Panels and Phytosanitary Control The export and import of wood products creates the potential that unwanted organisms, such as insects, are also transported, thereby creating a risk of infestation. To reduce this risk, various national and international regulatory bodies develop phytosanitary control measures for the import/export of woody materials. The possibility of insect infestation from wood structural panels, such as structural plywood and oriented strand board (OSB), is greatly diminished by the manufacturing processes. The result of the various wood structural wood panel manufacturing processes destroys organisms that may be present in the wood before processing. This destruction is assured by a number of severe environments that the raw materials experience during the manufacturing process. These environments of typical manufacturing are briefly described below: • Prior to processing, logs are typically cured in hot water or high temperature steam chambers to facilitate the veneer cutting or strand generation process. • For veneer production, the logs are then inserted in a high speed lathe and veneers (from 1/10 to 3/16 inch thick) are cut. The strands used in OSB are cut by a series of high speed knives that slice off strands that are approxi- mately 0.025 inch thick. • Veneer is dried at temperatures between 325°F and 350°F. The veneer stays in the dryer for 6 to 15 minutes. Strands, on the other hand, are dried at temperatures of 600°F to 1200°F as it passes through a rotary or screen dryer. • The veneers are then assembled into plywood blanks and pressed at 150 to 210 psi at press temperatures of 325° to 375°F until the panel is elevated to a minimum of 220°F at the core of the panel.
    [Show full text]
  • D1.3.1 Analysis of Current Uses of Wood and Cork in the Sudoe
    D1.3.1 ANALYSIS OF CURRENT USES OF WOOD AND CORK IN THE SUDOE SPACE IMIP-SOE3/P3/E0963 Project funded by the Interreg Sudoe programme through the European Regional Development Funds (ERDF) PROJECT CONTEXT Project acronym IMIP Project title Innovative Eco-Construction System Based on Interlocking Modular Insulation Wood & Cork-Based Panels Project code SOE3/P3/E0963 Coordinator Universitat Politècnica de València (UPV), ITACA Duration 1 May 2020 – 30 April 2023 (36 months) Working Package (WP) WP.1 Integral design of the sustainable construction system value chain Deliverable D1.3.1 Analysis of current uses of wood and cork in the Sudoe space Summary The deliverable is designed to demonstrate the main uses and features of pinewood and cork in the SUDOE space, highlighting mainly the use of these materials in construction. The main wood products used are saw wood, glued laminated timber, Laminated Veneer Lumber, Cross- Laminated Timber, Parallel-Strand Lumber and Laminated Strand Lumber, Natural wood veneer, Wood I-BEAMS Joists, Particle Board or Chipboard, Oriented Strand Board, Fibreboard, Medium Density Fibreboard, Plywood, Wood-wool and wood-fibre insulation panels, Stressed-Skin Panels and Expanded agglomerated cork. Delivery date 01/2021 WP Leader ISA Activity coordinator ISA Main authors Gominho, J.1; Miranda, I.1; Solange Araújo1 Contributing authors Brunet-Navarro, P.2; Lanvin, J.D.3; Luengo, E.4; Sánchez-González, M.5; 1 Instituto Superior de Agronomia (ISA), Universidade de Lisboa (Ulisboa) 2 Universitat Politècnica de València
    [Show full text]
  • IS 3308 (1981): Specification for Wood Wool Building Slabs [CED 20: Wood and Other Lignocellulosic Products]
    इंटरनेट मानक Disclosure to Promote the Right To Information Whereas the Parliament of India has set out to provide a practical regime of right to information for citizens to secure access to information under the control of public authorities, in order to promote transparency and accountability in the working of every public authority, and whereas the attached publication of the Bureau of Indian Standards is of particular interest to the public, particularly disadvantaged communities and those engaged in the pursuit of education and knowledge, the attached public safety standard is made available to promote the timely dissemination of this information in an accurate manner to the public. “जान का अधकार, जी का अधकार” “परा को छोड न 5 तरफ” Mazdoor Kisan Shakti Sangathan Jawaharlal Nehru “The Right to Information, The Right to Live” “Step Out From the Old to the New” IS 3308 (1981): Specification for wood wool building slabs [CED 20: Wood and other Lignocellulosic products] “ान $ एक न भारत का नमण” Satyanarayan Gangaram Pitroda “Invent a New India Using Knowledge” “ान एक ऐसा खजाना > जो कभी चराया नह जा सकताह ै”ै Bhartṛhari—Nītiśatakam “Knowledge is such a treasure which cannot be stolen” IS :3308-1981 Indian Standard SPECIFICATION FOR WOOD WOOL BUILDING SLABS (First Revision) Wood Products Sectional Committee, BDC 20 Chairman SHRI A. C. SEKHAR 26 S. B. H. Colony, Srinagar P. O., Hyderabad 500873 Members Representing AST DIRECTOR( SPECIFICATION) Ministry of Railways ( Railway Board ) RDSO, LUCKNOW SHRI J. BAIN Indian Tea Association, Calcutta SHRI P. R.
    [Show full text]
  • International Movement of Wood
    S URE S ENG TARY MEA TARY I AN S 39 ONAL STANDARD FOR PHYTO FOR STANDARD ONAL I INTERNAT movement of wood wood of movement International ISPM 39 ENG This page is intentionally left blank INTERNATIONAL STANDARDS FOR PHYTOSANITARY MEASURES ISPM 39 International movement of wood Produced by the Secretariat of the International Plant Protection Convention Adopted 2017; published 2017 © FAO 2017 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. © FAO, 2017 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Suitability of Sawdust from Three Tropical Timbers for Wood-Cement Composites
    This is a repository copy of Suitability of sawdust from three tropical timbers for wood-cement composites. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127772/ Version: Accepted Version Article: Antwi-Boasiako, C, Ofosuhene, L and Boadu, KB (2018) Suitability of sawdust from three tropical timbers for wood-cement composites. Journal of Sustainable Forestry, 37 (4). pp. 414-428. ISSN 1054-9811 https://doi.org/10.1080/10549811.2018.1427112 (c) 2018, Taylor & Francis. This is an Accepted Manuscript of an article published by Taylor & Francis in the Journal of Sustainable Forestry on 24 January 2018, available online: https://doi.org/10.1080/10549811.2018.1427112 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Suitability of the sawdust from three types of wood for wood-cement composites CHARLES ANTWI-BOASIAKO1*, LINDA OFOSUHENE1 and KWADWO B. BOADU1 1Department of Wood Science and Technology, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi-Ghana.
    [Show full text]
  • Wood Wool Cement Boards in Construction, finishing and Acoustics Book of Technical Solutions WOOD WOOL CEMENT BOARDS APPLICATION in CONSTRUCTION
    Wood wool cement boards in construction, finishing and acoustics Book of technical solutions WOOD WOOL CEMENT BOARDS APPLICATION IN CONSTRUCTION Ministry of Education and Science of the Russian Federation State Federal-Funded Educational Institution of Higher Professional Training “Saint Petersburg State Architectural and Construction University” Metal and wooden structures department 190005 Saint Petersburg, build.4, 2-ya Krasnoarmeyskaya str., tel +7 (812) 575 05 38 REVIEW of Fibrolit’s, Ltd book of technical solutions for the wood wool cement boards application in construction The specialists of Saint Petersburg State Architectural and Construction University took part in this book of technical solutions development since the institution mentioned holds a competency certificate for such works performance. The book material is presented at a professional level and contains a clear and well-illustrated survey related both to the production technology of wood wool cement boards and such boards application in construction industry. In order to achieve a successful selling of the mill’s products the technical solutions were developed and presented in a form of drawings of various elements of building structures produced with the use of wood wool cement boards. The drawings comply with requirements of the Unified system of engineering drawings and contain recommended practice for the rational use of the wood wool cement boards in construction of buildings and structures with varying degree of fire resistance. Head of Metal and wooden structures
    [Show full text]