Fossils Are Generally Defined As Any Direct Or Indirect Evidence of Pre-Historic Life (Excluding Those Fossil-Like Objects That

Total Page:16

File Type:pdf, Size:1020Kb

Fossils Are Generally Defined As Any Direct Or Indirect Evidence of Pre-Historic Life (Excluding Those Fossil-Like Objects That 1 Diversity of Seed Plants and their Systematics Gymnosperms I Fossils Dr. NUPUR BHOWMIK Department of Botany University of Allahabad Senate Hall Allahabad – 211002 [email protected] Date of submission: 27/06/2006 2 Fossils Fossils are generally defined as any direct or indirect evidence of pre-historic life (excluding those fossil-like objects that have collected on earth since the beginning of recorded history, approximately 6000 years) found in rocks extending from Arctic to the Antarctic. The exposed strata of rock containing fossils may be found along rivers, streams, along sea-shores, in excavations etc. Some fossils have been used to identify stratigraphic layers of earth’s surface and have been called as “index fossils”. A good "index fossil" is abundantly represented in the rock strata and can be easily identified. Pollen grains and spores have been used as "index" fossils in biostratigraphy and in correlation of rock units. Some megafossils such as leaves and seeds have aided in correlating rock units that are widely separated geographically. A vast majority of plant fossils are preserved in sedimentary rocks. Formation of sedimentary rock occurs when deposition of rock particles of various sizes collects in a body of water. The particles are derived from erosion of igneous, metamorphic or other sedimentary rocks by agents of denudation like wind, water, freezing, erupting volcanoes and movement of glaciers. Moving water carries sand grains, silt particles, pebbles, seeds, leaves, twigs etc. and slows down when it meets a body of standing water such as pond, lake or sea, where the load begins to be dropped or to sediment out. The heavier particles are dropped first, closer to the shore and lighter particles are dropped farther from shore. In this way a delta is built up. This deltaic sediment may become converted into sedimentary rock – the sand becoming sandstone and the mud becoming shale. Often plant parts carried by the stream, sinks along with mud and sand and if not decayed, become incorporated into the sediment and finally included in the rock. As sediments accumulate, water is squeezed out of them, so they become much more compact and plant fragments contained within them become flattened. But plant fossils are preserved in a variety of ways and different kinds of physical and chemical processes are involved at the time of preservation. Moreover, plant fossils are formed under very special environmental conditions, usually a swampy environment where deposited plant parts remains undisturbed and intact in a deep body of acidic water. Acidity being formed by decomposition of metabolic wastes. In such an acidic environment rate of activity of decomposers becomes restricted and anaerobic organisms contribute little to the decay process. The swamps also have sedimentary material like soluble silicates, carbonates, iron compounds or other minerals. A lower pH (increase in acidity) enhances deposition of insoluble compounds into the plant parts – permineralizig them. Plant parts are preserved as compressions in sedimentary rocks if there is abundance of sedimentary material like silt, clay or fine grained sand in the environment (see figs. 1C, 2A, 3I). As the plant parts accumulate in the body of water, they become covered with the sediment and entombed in the subsequently formed rocks. Sometimes parts like twigs, seeds and fruits are also found preserved in the environments other than swamps. They may have been retrieved from sediments in the floors of desert caves, where high temperature and low humidity of desert environment and protection of the cave eliminated decomposition. Another excellent means of preservation was by-refrigeration when organisms become trapped in snow and ice- fields of Siberia like the mammoth which has been preserved for thousands of years. Even tillites deposited at the time of glacial retreat during the Pleistocene glaciation contained unaltered branches and trunks of trees. Besides these, preservation has also occurred in oil saturated environment where large tree trunks about 100 million years old have been found preserved in black, gooey oil at the base of Cretaceous oil sands of northern Alberta. Ancient environments that allowed excellent preservation of plant parts resulted in different categories of fossilization. Schopf (1975) recognized four distinct modes of preservation (see figs 1,2 & 3) : A. Petrifaction : Where cellular permineralization of plant parts occurred due to infiltration of soluble silicates, carbonates, iron compounds etc. The dissolved minerals permeated all the cells and tissue systems. Later, precipitation of dissolved minerals formed a rock matrix supporting the plant tissues and hardening of plant fragment took place from within and outside. Cell walls consisting of organic matter becoming chemically altered and intercellular spaces and lumens became filled with mineral material. By this process sometimes various cellular contents got preserved which included structures like starch grains, nuclei, various types of membranes, tapetal deposits, megagametophytes of seed plants etc. When mineral was completely solidified, plant fragment became entombed within solid rock. (see figs. 1A,B,D; 2A-D) Permineralized specimens revealed not only external but also internal form of plants and were most useful when studying internal structure. 3 To study petrifactions, thin sections of the rock are cut by special saws to allow passage of transmitted light. The cut surface of the rock is opaque and to make it further transparent, cut surface is ground with a grinding machine, so that more light can pass through the rock and the rock is thin enough to be examined with a microscope. Usually, study of permineralizations are made by the peel technique which is a simple method for preparing sections of petrified materials. A few examples of silicified permineralizations (see figs. 1A,B) are the Devoinan Rhynie Cherts, Precambrian Gunflint Cherts, Triassic woods from petrified forests of Arizona, the giant tertiary Sequoia trunks in the Yellowstone Park and silicified specimens from Tertiary Deccan Intertrappean series of India. Coal deposits formed by fossilization of tropical forests are sometimes associated with calcareous specimens commonly called Coal balls. They have also been of immense help in Palaeobotanical studies. Coal balls are found only in the Carboniferous rocks associated with seams of bituminous coal. (see fig. 1D) They are variously shaped (often spherical or ovoid) limestone rocks containing within them, plant parts generally preserved with cellular details in calcium carbonate. Coal balls represent peat that was infiltrated by carbonate before there was extensive compaction of the plants within them. They provide detailed information that helps in investigating reproductive biology of plants that lived in peat swamps or they may reveal ontogeny and phylogeny of Carboniferous plants. B. Compression : Coalified compression fossils are formed when plants get deposited in sedimentary environment. Sedimentary rocks generally preserve fossil plants. (see figs. 1C, 2A, 3I) Formation of sedimentary rocks takes place by accumulation of small rock particles derived by weathering. Plant parts are fossilized in areas where sediment is accumulating usually in a delta, where course of the river constantly shifts. The delta remains undisturbed for sometime and plant fragments carried to abandoned water bodies where a high concentration of sediment buries the plant parts and fills in the water body. Compressions may also be formed in lagoons, along the meandering rivers, ponds, swamps or other situations. As sediments accumulate water is squeezed out of them and they become more compact and plant fragments contained within the sediments become flattened. Cell walls of plant parts soften and then collapse becoming squashed. In the meantime there is loss of gas, moisture and other soluble materials because of pressure exerted by accumulated sediments and water. The residues are altered and consolidated to form a carbonaceous film that conforms to the original outline of the plant part involved. This is one of the most common type of fossils and is called a compression. Most well preserved compressions are found in clay or shale. (see fig. 1C) Sometimes fossils represent compression of plants growing near an area of volcanic activity. These compressions are found in consolidated volcanic ash. The rain water rand ash make a fine grained mud that picks up and buries plant parts as it moves down the slope. When the mud hardens, it entombs pieces of plant material. Other unique forms of sedimentary rocks containing plant and animal fossils are diatomite and amber. Diatomite, a rock formed from cell walls of a group of unicellular algae called diatoms. They occur in abundance in fresh water and marine environments. On dying, the highly resistant silica cell walls of diatoms become deposited on bottoms of lakes, seas and oceans, where with the passage of time and consolidation they form a white, light weight sedimentary rock called, diatomite. Diatomite is fine-grained, may contain well preserved remains of fossilized plants and animals. It is an unusual situation where sedimentary matrix is composed of fossils in which fossils are embedded. Amber is a semiprecious stone of rare beauty. It is a sedimentary material formed from fossilized plant resins that have undergone chemical change during the process of fossilization. Because of its sticky nature when it was produced
Recommended publications
  • A Comparative Study of the Primary Vascular System Of
    Amer. J. Bot. 55(4): 464-472. 1!16'>. A COMPARATIVE STUDY OF THE PRIMARY VASCULAR SYSTE~1 OF CONIFERS. III. STELAR EVOLUTION IN GYMNOSPERMS 1 KADAMBARI K. NAMBOODIRI2 AND CHARLES B. BECK Department of Botany, University of Michigan, Ann Arbor ABST RAe T This paper includes a survey of the nature of the primary vascular system in a large number of extinct gymnosperms and progymnosperms. The vascular system of a majority of these plants resembles closely that of living conifers, being characterized, except in the most primitive forms which are protostelic, by a eustele consisting of axial sympodial bundles from which leaf traces diverge. The vascular supply to a leaf originates as a single trace with very few exceptions. It is proposed that the eustele in the gyrr.nosperms has evolved directly from the protostele by gradual medullation and concurrent separation of the peripheral conducting tissue into longitudinal sympodial bundles from which traces diverge radially. A subsequent modification results in divergence of traces in a tangential plane, The closed vascular system of conifers with opposite and whorled phyllotaxis, in which the vascular supply to a leaf originates as two traces which subsequently fuse, is considered to be derived from the open sympodial system characteristic of most gymnosperms. This hypothesis of stelar evolution is at variance with that of Jeffrey which suggests that the eustele of seed plants is derived by the lengthening and overlapping of leaf gaps in a siphonostele followed by further reduction in the resultant vascular bundles. This study suggests strongly that the "leaf gap" of conifers and other extant gymnosperms is not homologous with that of siphonostelic ferns and strengthens the validity of the view that Pterop­ sida is an unnatural group.
    [Show full text]
  • Prepared in Cooperation with the Lllinois State Museum, Springfield
    Prepared in cooperation with the lllinois State Museum, Springfield Richard 1. Leary' and Hermann W. Pfefferkorn2 ABSTRACT The Spencer Farm Flora is a compression-impression flora of early Pennsylvanian age (Namurian B, or possibly Namurian C) from Brown County, west-central Illinois. The plant fossils occur in argillaceous siltstones and sand- stones of the Caseyville Formation that were deposited in a ravine eroded in Mississippian carbonate rocks. The plant-bearing beds are the oldest deposits of Pennsylva- nian age yet discovered in Illinois. They were formed be- fore extensive Pennsylvanian coal swamps developed. The flora consists of 29 species and a few prob- lematical forms. It represents an unusual biofacies, in which the generally rare genera Megalopteris, Lesleya, Palaeopteridium, and Lacoea are quite common. Noegger- athiales, which are seldom present in roof-shale floras, make up over 20 percent of the specimens. The Spencer Farm Flora is an extrabasinal (= "upland1') flora that was grow- ing on the calcareous soils in the vicinity of the ravine in which they were deposited. It is suggested here that the Noeggerathiales may belong to the Progymnosperms and that Noeggerathialian cones might be derived from Archaeopteris-like fructifica- tions. The cone genus Lacoea is intermediate between Noeggerathiostrobus and Discini tes in its morphology. Two new species, Lesleya cheimarosa and Rhodeop- teridi urn phillipsii , are described, and Gulpenia limbur- gensis is reported from North America for the first time. INTRODUCTION The Spencer Farm Flora (table 1) differs from other Pennsylvanian floras of the Illinois Basin. Many genera and species in the Spencer Farm Flora either have not been found elsewhere in the basin or are very l~uratorof Geology, Illinois State Museum, Springfield.
    [Show full text]
  • Dr. Sahanaj Jamil Associate Professor of Botany M.L.S.M. College, Darbhanga
    Subject BOTANY Paper No V Paper Code BOT521 Topic Taxonomy and Diversity of Seed Plant: Gymnosperms & Angiosperms Dr. Sahanaj Jamil Associate Professor of Botany M.L.S.M. College, Darbhanga BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants UNIT- I BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants Classification of Gymnosperms. # Robert Brown (1827) for the first time recognized Gymnosperm as a group distinct from angiosperm due to the presence of naked ovules. BENTHAM and HOOKSER (1862-1883) consider them equivalent to dicotyledons and monocotyledons and placed between these two groups of angiosperm. They recognized three classes of gymnosperm, Cyacadaceae, coniferac and gnetaceae. Later ENGLER (1889) created a group Gnikgoales to accommodate the genus giankgo. Van Tieghem (1898) treated Gymnosperm as one of the two subdivision of spermatophyte. To accommodate the fossil members three more classes- Pteridospermae, Cordaitales, and Bennettitales where created. Coulter and chamberlain (1919), Engler and Prantl (1926), Rendle (1926) and other considered Gymnosperm as a division of spermatophyta, Phanerogamia or Embryoptyta and they further divided them into seven orders: - i) Cycadofilicales ii) Cycadales iii) Bennettitales iv) Ginkgoales v) Coniferales vi) Corditales vii) Gnetales On the basis of wood structure steward (1919) divided Gymnosperm into two classes: - i) Manoxylic ii) Pycnoxylic The various classification of Gymnosperm proposed by various workers are as follows: - i) Sahni (1920): - He recognized two sub-divison in gymnosperm: - a) Phylospermae b) Stachyospermae BOTANY PG SEMESTER – II, PAPER –V BOT521: Taxonomy and Diversity of seed plants ii) Classification proposed by chamber lain (1934): - He divided Gymnosperm into two divisions: - a) Cycadophyta b) Coniterophyta iii) Classification proposed by Tippo (1942):- He considered Gymnosperm as a class of the sub- phylum pteropsida and divided them into two sub classes:- a) Cycadophyta b) Coniferophyta iv) D.
    [Show full text]
  • Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation
    i1 Ecological Sorting of Vascular Plant Classes During the Paleozoic Evolutionary Radiation William A. DiMichele, William E. Stein, and Richard M. Bateman DiMichele, W.A., Stein, W.E., and Bateman, R.M. 2001. Ecological sorting of vascular plant classes during the Paleozoic evolutionary radiation. In: W.D. Allmon and D.J. Bottjer, eds. Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York. pp. 285-335 THE DISTINCTIVE BODY PLANS of vascular plants (lycopsids, ferns, sphenopsids, seed plants), corresponding roughly to traditional Linnean classes, originated in a radiation that began in the late Middle Devonian and ended in the Early Carboniferous. This relatively brief radiation followed a long period in the Silurian and Early Devonian during wrhich morphological complexity accrued slowly and preceded evolutionary diversifications con- fined within major body-plan themes during the Carboniferous. During the Middle Devonian-Early Carboniferous morphological radiation, the major class-level clades also became differentiated ecologically: Lycopsids were cen- tered in wetlands, seed plants in terra firma environments, sphenopsids in aggradational habitats, and ferns in disturbed environments. The strong con- gruence of phylogenetic pattern, morphological differentiation, and clade- level ecological distributions characterizes plant ecological and evolutionary dynamics throughout much of the late Paleozoic. In this study, we explore the phylogenetic relationships and realized ecomorphospace of reconstructed whole plants (or composite whole plants), representing each of the major body-plan clades, and examine the degree of overlap of these patterns with each other and with patterns of environmental distribution. We conclude that 285 286 EVOLUTIONARY PALEOECOLOGY ecological incumbency was a major factor circumscribing and channeling the course of early diversification events: events that profoundly affected the structure and composition of modern plant communities.
    [Show full text]
  • An Overview of the Fossil Record of Climbers: Bejucos, Sogas, Trepadoras, Lianas, Cipós, and Vines
    Rev. bras. paleontol. 12(2):149-160, Maio/Agosto 2009 © 2009 by the Sociedade Brasileira de Paleontologia doi:10.4072/rbp.2009.2.05 AN OVERVIEW OF THE FOSSIL RECORD OF CLIMBERS: BEJUCOS, SOGAS, TREPADORAS, LIANAS, CIPÓS, AND VINES ROBYN J. BURNHAM Museum of Paleontology, University of Michigan 1109 Geddes Avenue, Ann Arbor, MI 48109-1079, USA. [email protected] ABSTRACT – One of the most obvious life forms in tropical forests today is the liana, which laces together tree canopies and climbs the dark interiors of forests with snake-like stems. Lianas are ecologically important in extant, forested ecosystems, both intact and disturbed. Their contribution to forest diversity, food resources, structural complexity, and plant-animal interactions are recognized, but rarely studied. Climbers (woody lianas and herbaceous vines) are viewed as everything from diversity contributors to forest growth inhibitors by modern ecologists and systematists. Climbers take advantage of the structural support of trees to invest proportionately more in vegetative and reproductive organs, resulting in proliferation at the individual and species level. Today the climbing habit is dominated by angiosperm species, with only a minor contribution from ferns plus a single non-angiosperm seed plant genus, Gnetum. This contribution reports the establishment of the newly established database, Fossil Record of Climbers (FRC) that documents more than 1100 records of climbing plants from the Paleozoic to the Quaternary using published literature on the fossil record. The diversity of climbers in the fossil record prior to the evolution of angiosperms is explored, posing the hypothesis that climbers of the past had a similarly important role in tropical forests, at least in the Paleozoic.
    [Show full text]
  • Characteristics of the Mississippian-Pennsylvanian Boundary and Associated Coal-Bearing Rocks in the Southern Appalachians
    CHARACTERISTICS OF THE MISSISSIPPIAN-PENNSYLVANIAN BOUNDARY AND ASSOCIATED COAL-BEARING ROCKS IN THE SOUTHERN APPALACHIANS By Kenneth J. England, William H. Gillespie, C. Blaine Cecil, and John F. Windolph, Jr. U.S. Geological Survey and Thomas J. Crawford West Georgia College with contributions by Cortland F. Eble West Virginia Geological Survey Lawrence J. Rheams Alabama Geological Survey and Roger E. Thomas U.S. Geological Survey USQS Open-File Report 85-577 1985 This report la preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or atratlgraphic nomenclature. CONTENTS Page Characteristics of the Mississippian-Pennsylvanian boundary and associated coal-bearing strata in the central Appalachian basin. Kenneth J. Englund and Roger E. Thomas.................................... 1 Upper Mississippian and Lower Pennsylvanian Series in the southern Appalachians. Thomas J. Crawford........................................................ 9 Biostratigraphic significance of compression-impression plant fossils near the Mississippian-Pennsylvanian boundary in the southern Appalachians. William H. Gillespie, Thomas J. Crawford and Lawrence J. Rheams........... 11 Miospores in Pennsylvanian coal beds of the southern Appalachian basin and their stratigraphic implications. Cortland F. Eble, William H. Gillespie, Thomas J. Crawford, and Lawrence J. Rheams...................................................... 19 Geologic controls on sedimentation and peat formation in the Carboniferous of the Appalachian
    [Show full text]
  • Early Seed Plants from Western Gondwana: Paleobiogeographical and Ecological Implications Based on Tournaisian (Lower Carboniferous) Records from Argentina
    Palaeogeography, Palaeoclimatology, Palaeoecology 417 (2015) 210–219 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early seed plants from Western Gondwana: Paleobiogeographical and ecological implications based on Tournaisian (Lower Carboniferous) records from Argentina C. Prestianni a,⁎, J.J. Rustán b,d, D. Balseiro b,c,E.Vaccarib,d, A.F. Sterren b,c, P. Steemans e, C. Rubinstein f,R.A.Astinib a Paleontology Department, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium b Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), CONICET-Universidad Nacional de Córdoba, Edificio CICTERRA Av. Vélez Sarsfield 1611, X5016GCA, Ciudad Universitaria, Córdoba, Argentina c Centro de Investigaciones Paleobiológicas (CIPAL), FCEFyN, Universidad Nacional de Córdoba, Av. Velez Sarsfield 299, 5000, Córdoba, Argentina d Universidad Nacional de La Rioja, Av. René Favaloro s/n 5300, La Rioja, Argentina e Unité de Paléobiogéologie, Paléopalynologie et Paléobotanique, Dpt. de Géologie, Université de Liege, B18/P40 Boulevard du Rectorat, 4000 Liege, Belgium f Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA): CCT CONICET-Mendoza, Av. Ruiz Leal s/n, Parque General San Martín M5502IRA, Mendoza, Argentina article info abstract Article history: The oldest seed occurrences in Western Gondwana have been recognized in a new stratigraphic section located Received 28 May 2014 in Western Argentina (Precordillera Basin). Palynological evidence indicates an Early Mississippian (probably Received in revised form 21 October 2014 Tournaisian) age for this new succession. The two identified early seeds generas, Pseudosporogonites cf. hallei Accepted 29 October 2014 and Warsteinia sancheziae n. sp. were up to now considered as restricted to the Devonian of Laurussia.
    [Show full text]
  • Lyginopteris Royalii Sp. Nov. from the Upper Mississippian of North America
    Review of Palaeobotany and Palynology 116 (2001) 159±173 www.elsevier.com/locate/revpalbo Lyginopteris royalii sp. nov. from the Upper Mississippian of North America Alexandru Mihail Florian Tomescu*, Gar W. Rothwell, Gene Mapes Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA Received 22 August 2000; accepted for publication 6 February 2001 Abstract A new species of the seed fern Lyginopteris is described from a nodule in Upper Mississippian (middle Chesterian-Namurian A) shales of the Fayetteville Formation in northwestern Arkansas. The pyritized stem is 29 cm long and slightly compressed, with a diameter of about 11 £ 5 mm, and shows seven diverging leaf bases. The primary xylem of the specimen is eustelic. Foliar bundles extend through ®ve internodes before entering the rachis bases; they do not divide along their trajectory through the stem. Phyllotaxis of the specimen approaches 2/5. Longitudinally oriented sclerenchyma strands accompany the diverging foliar vascular bundles adaxially in the cortex, and are incorporated in the outer cortex above the level of foliar rachis divergence. In contrast to previously described Lyginopteris species, this species lacks capitate epidermal glands. A Lygino- pteris type rachis with a paired vascular bundle is preserved in the same nodule. Coprolites probably produced by oribatid mites are present in different tissues of the stem. The study of the leaf trace divergence necessitated the use of a deformation model to help reconstruct the original position of the cauline bundles in the compressed stele. This occurrence of Lyginopteris con®rms earlier reports of the genus from North America and emphasizes that it was not restricted to Western Europe.
    [Show full text]
  • Studies of Paleozoic Seed Ferns: Anatomy and Morphology of Morphology of Microspermopteris Aphyllum
    Amer. J. Bot. 63(10): 1302-1310. 1976. STUDIES OF PALEOZOIC SEED FERNS: ANATOMY AND MORPHOLOGY OF MICROSPERMOPTERIS APHYLLUM1 THOMAS N. TAYLOR AND RUTH A. STOCKEY Departmentof Botany,The Ohio State University,Columbus 43210 A B S T R A C T The discoveryof numerousspecimens of the monostelicpteridosperm genus Microspermop- teris in Pennsylvaniancoal ball petrifactionsfrom the Lewis Creek and What Cheer localities providesadditional information about the anatomicaland morphologicalvariability within thegenus. Specimensare now knownup to 1.1 cm in diam thatbear epidermalappendages in theform of variously-shapedtrichomes. The externalsurface of the stemis furtherornamented by longitudinalflaps of corticaltissue. Petiolesexhibiting a singleC-shaped vascular strand with abaxial protoxylemare producedin a 2/5 phyllotaxy.Large petiole bases that clasp the stemproduce primary pinnae alternately. The presenceof axillarybranching appears simi- lar to thatreported in Callistophytonand Lyginopteris. Triarchto polyarchadventitious roots, some withsecondary tissues, are producedat both nodal and internodalregions. Of the cur- rentlyrecognized monostelic seed ferngenera, Microspermopteris is most similarto Heter- angium. Informationis presentedthat supportscurrent ideas regardingthe evolutionof the gymnospermiceustele from protostelic Devonian ancestors. THE GENUS MICROSPERMOPTERISwas initiallyde- axes representingnumerous orders of branching. scribedby Baxter (1949) frompetrifaction ma- Specimens were collected fromthe What Cheer terial collected fromthe
    [Show full text]
  • Triassic Floras of Antarctica: Plant Diversity and Distribution in High Paleolatitude Communities
    PALAIOS, 2011, v. 26, p. 522–544 Research Article DOI: 10.2110/palo.2010.p10-122r TRIASSIC FLORAS OF ANTARCTICA: PLANT DIVERSITY AND DISTRIBUTION IN HIGH PALEOLATITUDE COMMUNITIES IGNACIO H. ESCAPA,1,2* EDITH L. TAYLOR,1 RUBE´ NCU´ NEO,2 BENJAMIN BOMFLEUR,1,3 JULIE BERGENE,1 RUDOLPH SERBET,1 and THOMAS N. TAYLOR 1 1Department of Ecology and Evolutionary Biology, and Natural History Museum and Biodiversity Institute, University of Kansas, Lawrence 66045-7534, USA, [email protected], [email protected], [email protected], [email protected], [email protected]; 2CONICET—Museo Paleontolo´gico Egidio Feruglio, Trelew, Chubut, 9100, Argentina, [email protected]; 3Forschungsstelle fu¨r Pala¨obotanik am Institut fu¨r Geologie und Pala¨ontologie, Westfa¨lische Wilhelms-Universita¨t Mu¨nster, Hindenburgplatz 57, D-48143 Mu¨nster, Germany, [email protected] ABSTRACT number of Antarctic plant fossils during his career. His collection—now at the University of Kansas—includes plants preserved as impressions Continental Triassic sequences in Antarctica are among the most and compressions, palynological samples, and silicified wood from continuous and best represented in Gondwana. Triassic fossil plants have numerous sites, including southern and northern Victoria Land (SVL, been collected sporadically from Antarctica since the beginning of the NVL) and the CTM. twentieth century, but our knowledge of the vegetation during this time Certainly one of the most significant contributions of Schopf’s has dramatically increased during the last three decades. Here we review fieldwork in Antarctica was the discovery of permineralized peat from the fossil record of Triassic plants as representatives of natural groups two sites in the CTM (Schopf, 1970, 1978).
    [Show full text]
  • Pteridophytes, Gymnosperms and Paleobotany)
    PLANT DIVERSITY-II (PTERIDOPHYTES, GYMNOSPERMS AND PALEOBOTANY) UNIT I: PTERIDOPHYTES General characters, Reimer’s classification (1954). Telome concept. Sporangium development – Eusporangiate type and Leptosporangiate type. Apogamy, Apospory, Heterospory and Seed habit. Detailed account on stellar evolution. UNIT II: Brief account of the morphology, structure and reproduction of the major groups- Psilophytopsida, Psilotopsida, Lycopsida, Sphenopsida and Pteropsida. (Individual type stydy is not necessary). Economic importance of Gymnoperms. UNIT III: GYMNOSPERMS General characters – Classification of Gymnosperms (Sporne, 1965), Orgin and Phylogeny of Gymnosperms, Gymnosperms compared with Pteridophytes and Angiosperms- Economic Importance of Gymnosperms. UNIT IV: A general account of distribution, morphology, anatomy, reproduction and life cycle of the following major groups – Cycadopsida (Pteridospermales, Bennettitales, Pentaxylales, Cycadales) Coniferopsida (Cordaitales, Coniferales, Ginkgoales) and Gnetopsida (Gneales). UNIT V: PALEOBOTANY Concept of Paleobotany= Geological time scale- Fossil- Fossilization- Compressions, Incrustation, Casts, Molds, Petrifactions, Compactions and Caol balls. Detailed study of the fossil forms- Pteridophytes: Lepidodendron, Calamites. Gymnosperms: Lyginopteris, Cordaites. Role of fossil in oil exploration and coa excavation, Paleopaynology. Prepared by: Unit I and II 1. Dr. A.Pauline Fathima Mary, Guest Lecturer in Botany K. N. Govt. Arts College(W), Auto., Thanjavur. Unit III and IV 1. Dr. S.Gandhimathi, Guest Lecturer in Botany, K. N. Govt. Arts College(W), Auto., Thanjavur. Unit V: 1. Dr. G.Santhi, Head and Assistant professor of Botany, K. N. Govt. Arts College(W), Auto., Thanjavur. Reference: 1. Rashid, A, (2007), An Introduction to Peridophytes- Vikas Publications, New Delhi. 2. Sporne, K.R. (1975). The Morphology of Pteridophytes, London. 3. Coultar, J. M. and Chamberin, C, J. (1976). Morphology of Gymnosperms.
    [Show full text]
  • Nomenclature of Fossils
    Nomenclature of Fossils The whole plant is not preserved, but only detached plant parts like stem, root, cone, leaf, etc. are preserved as fossils. These detached plant parts are being discovered in different times by different authors. Thus, the detached plant parts or organs are given name on the basis of Binomial Nomenclature (“generic and specific name”) acc.to rules of International Code of Botanical Nomenclature which have been framed for living plants. The first valid description of Lepidodendron came into existence from the publication of Sternberg in 1820. Thus, this date has been considered as the starting point of palaeobotanical nomenclature. Each detached organs or fragments is given a different name. Each of these names acquires the status of a genus. The generic name in fossils is applicable for only a plant part like root, stem, leaf, cone or other organ, without indicating to what plant is belongs. Thus, the genus is termed form genus or artificial genus in contrast to natural genus for living plants. A form genus cannot reliably be assigned to a single family; however, it may be assigned to an order or other higher taxonomical rank. For example, Stigmaria is a form genus of the order Lepidodendrales which cannot be assigned to any one of the three families: Lepidodendraceae, Sigillariaceae or Bothrodendraceae. When the relationships among different organs like stem, root, leaf and reproductive structures are established and can be assigned to the same family, then the genera can be called organ genera. For example, stem genus Bucklandia, leaf genus Ptilophyllum, male fructification Weltrichia and female fructification Williamsonia are genetically related and assigned to the same family Williamsoniaceae.
    [Show full text]