Specialty Gases Specialty Gases

Total Page:16

File Type:pdf, Size:1020Kb

Specialty Gases Specialty Gases Specialty Gases Specialty Gases Title page: The atmosphere Sundown in orbit. The earth's atmosphere, photographed from an altitude of 300 kilometers during the D-2 Mission (April/May 1993). A pink-colored layer can be seen about 15 kilometers high. The color indicates particles of sulfuric acid and ammonium sulfate, caused in turn by an immense presence of sulfur particles – released a few days before by the eruption of Mount Pinatubo. Photo with the kind permission of the DLR German Aerospace Center. About This Catalog Many fields of application in high-tech- nology industrial processes, research and development, instrumentation and medicine require high-purity gases, high-quality gas mixtures and appropriate gas handling equipment such as efficient pressure regulators and customized gas supply systems. In this catalog we present the broad range of our product lines and services. We also provide a wealth of important and useful information on the safe handling of our products. Should you have any further questions, we will gladly send you additional detailed information. Our team of qualified specialists near you and in our headquarters will solve your specific problems quickly and precisely. Years of experience and a strongly de- veloped sense of quality, safety and en- vironment form the basis for high customer benefits and long-lasting, successful partnerships. Content Quality, Safety and Environmental Protection . 3 – 5 Pure Gases . 6 – 53 Index . 11 Acetylene to Xenon . 13 – 53 Gas Mixtures / Calibration Gas Mixtures . 54 – 71 Instrumentation Gases . 72 – 77 Gases in Small Containers . 78 – 87 Linde Small Steel Cylinders . 82 Linde minican® pressure cans . 83 Linde Plastigas® bags . 86 Gas Supply Systems . 88 – 95 Specialty Gas Service . 96 - 103 Gas analytical service . 99 Environmentally-compatible disposal and recycling . .101 Containers for Specialty Gases . 104 – 115 Information, Tables and Diagrams . 116 – 137 Order Processing Information and Terms and Conditions . 138 – 142 Extract from the Linde Product Line . 143 1 2 Quality, Safety and Environmental Protection 3 Quality, Safety, Environmental Certificate for our operations in Germany. Similar certificates exist in other countries 4 Quality, Safety and Environmental Protection Quality, safety and environmental protection in the pro- Integrated QSE Management System with duction, transportation and use of our products are an certificate important part of our corporate philosophy. Our new poli- cy in this field (see overleaf) also defines our responsibili- Linde was the first gas company in Germany to introduce a ty to our customers, employees, the authorities, society management system for quality, safety and the environment at large and the environment. (QSE) in its operations and to have it certified for all its busi- ness premises according to DIN EN ISO 9001 (quality ma- nagement), SCC (safety management) and DIN EN ISO 14001 Quality (environmental protection management). Meanwhile a number of operative units in other countries followed this example. We introduced a certified quality management system based on ISO 9001 in most of our group companies world- The aim of our management system is to ensure constant wide. We also meet other specifications, e.g. in the fields of improvement in our internal and external services. We place nuclear technology, medicine and pharmacy as well as for the similar demands on our suppliers, service-providers and sales automotive and semiconductor industries. partners. Our specialty gas activities are, therefore, firmly embedded in a comprehensive quality management system. Customer complaints and deviations from our internal standards are systematically analyzed and detailed corrective and preventative measures introduced. Work processes are Safety regularly checked for efficiency and our employees encour- aged to improve their qualifications. In this way we will con- Safety is of essential importance to our work. The aim of tinually improve our products, processes and services. our publications on the characteristics, transportation and handling of our products is to ensure their safe use. Details on this are included in this catalog. Our customer consultants Advantages to our customers and safety experts will also gladly help you in your individual questions and problems. The general objectives of our integrated QSE Management System are: Environmental protection b Environmentally safe products and services b Safety in their supply and use It is our concern that no harm to the environment b Constant high product quality emanates from our gases at any stage from production and b Individual, competent advice storage through distribution to use and disposal. We realize b Consistent orientation to the needs of our customers this on the basis of applicable laws and in some cases even go beyond them. 5 6 Pure Gases 7 Sample extraction 8 Pure Gases Linde's current product portfolio of pure gases is Purity information: The purity of the gases is indicated by intended to cover as many fields of application in a short suffix serving as an abbreviated indication of the mini- production, work safety, environmental protection mum content of a pure gas. The first digit in the suffix indica- and research and development as possible. Its spe- tes the number of "nines" in the specification of the gas's puri- cial gases for the semiconductor industry are also ty in percent. The second digit indicates the first decimal place included in this chapter. An overview of the most not "nine". The first and second digits are separated by a important information on them is listed under "Elec- point. tronic Gases". Examples: Ethylene 2.8 means 99.8 % purity To aid in finding the gases, the index that follows Argon 6.0 means 99.9999 % purity includes old or customary gas names in addition to presently applicable terminology. The descriptions of Instead of the short suffix, a few gases have an applicati- the gases contain details of their purities, complete on-related suffix, e.g. Nitrogen CO-free. Irrespective of the cylinder information as well as all major gas data and minimum purity indicated in the product description, these properties. Further physical specifications, vapor gases have an especially low residual content of certain other- pressure curves, etc. can be found in the chapter wise troublesome impurities. "Information, Tables and Diagrams". Percentage information: The percentages indicated in Industrial gases and their mixtures are not dealt conjunction with purities or impurities are mole percents (ideal with in detail in this catalog. Separate literature is volume percentages). Extremely low percentages are indicat- available on these gases. An overview of the entire ed in ppm or ppb (1 ppm = 1 part per million = 10-4 %; range of Linde gases is contained at the end of this 1 ppb = 1 part per billion). catalog. Volume information: Unless otherwise expressly stated, Important information for the use of these the following applies: 1m3 of gas is the volume of gas that will fill gases a cube having an edge length of 1 m at a temperature of 15 °C and a pressure of 1 bar. One liter of gas is one thousandth of Definition of purity: The minimum purity of a the gas volume thus defined. Unless otherwise expressly noted, gas refers to the specified impurities that characteri- pressures indicated in bars are absolute pressures. The volume ze the pure gas. The specific limits for the impurities information for gases with a critical temperate Tc ≥ -10 °C is are not exceeded. In the case of gases without given in kg. details on impurities, the specification of their purity is to be seen as a typical value. New color coding In the case of a number of high purity gases, Pursuant to the new EN 1089 Part 3 the color coding is every filled cylinder is accompanied by a certificate effected on the cylinder shoulder. The color of the cylinder of analysis confirming that the maximum limits for shoulder is given for every gas under "Identification". impurities have not been exceeded. This is noted for the gas purities to which it applies. It does not apply Since the standard provides for a transitional period for to "Gases in Small Containers". Cylinder fillings fre- implementation extending to the year 2006, cylinders with the quently display purities that are higher than those old color coding can also be in circulation up to this point in which have been guaranteed. Even if this should time. Both types of cylinder identification are therefore shown occur repeatedly, it should nevertheless not be taken in this catalog. as any assurance of uniformly higher purities. Further information on the change to the new color coding can be obtained from every Linde Sales Center. 9 Leuna Gas Production Center 10 Pure Gases Index (Linde's names for the gases are printed in boldface type) Name PageName Page Name Page Acetylene . .13 Ethene = Ethylene . .27 Nitrogen trifluoride . .26 Ammonia . .13 Ethylene . .27 Octafluorocyclobutane . .26 Argon . .14 Ethylene dichloride = Octafluoropropane . .26 Arsine . .26 Vinyl chloride . .51 Oxygen . .47 Boron trichloride . .26 Ethylene oxide . .28 Phosphine . .26 Boron trifluoride . .16/26 Fluoromethane . .26 Propane . .49 1,3-Butadiene . .16 Germane . .26 Propene = Propylene . .49 Butane . .17 Helium . .29 Propylene . .49 i-Butane = Isobutane . .36 Helium-3 . .32 R 13 = Chlorotrifluoromethane . .26 1-Butene . .17 Hexafluoroethane . .26/32 R 14 = Tetrafluoromethane . .26/51 i-Butene = Isobutene . .37 Hydrogen . .33 R 22 = Chlorodifluoromethane
Recommended publications
  • Bromomethane CAS #: 74-83-9 Revised By: RRD Toxicology Unit Revision Date: August 14, 2015
    CHEMICAL UPDATE WORKSHEET Chemical Name: Bromomethane CAS #: 74-83-9 Revised By: RRD Toxicology Unit Revision Date: August 14, 2015 (A) Chemical-Physical Properties Part 201 Value Updated Value Reference Source Comments Molecular Weight (g/mol) 94.94 94.94 EPI EXP Physical State at ambient temp Liquid Gas MDEQ Melting Point (˚C) 179 -93.70 EPI EXP Boiling Point (˚C) 3.5 3.50 EPI EXP Solubility (ug/L) 1.45E+7 1.52E+07 EPI EXP Vapor Pressure (mmHg at 25˚C) 1672 1.62E+03 EPI EXP HLC (atm-m³/mol at 25˚C) 1.42E-2 7.34E-03 EPI EXP Log Kow (log P; octanol-water) 1.18 1.19 EPI EXP Koc (organic carbon; L/Kg) 14.5 13.22 EPI EST Ionizing Koc (L/kg) NR NA NA Diffusivity in Air (Di; cm2/s) 0.08 1.00E-01 W9 EST Diffusivity in Water (Dw; cm2/s) 8.0E-6 1.3468E-05 W9 EST CHEMICAL UPDATE WORKSHEET Bromomethane (74-83-9) Part 201 Value Updated Value Reference Source Comments Soil Water Partition Coefficient NR NR NA NA (Kd; inorganics) Flash Point (˚C) NA 194 PC EXP Lower Explosivity Level (LEL; 0.1 0.1 CRC EXP unit less) Critical Temperature (K) 467.00 EPA2004 EXP Enthalpy of Vaporization 5.71E+03 EPA2004 EXP (cal/mol) Density (g/mL, g/cm3) 1.6755 CRC EXP EMSOFT Flux Residential 2 m 2.69E-05 2.80E-05 EMSOFT EST (mg/day/cm2) EMSOFT Flux Residential 5 m 6.53E-05 6.86E-05 EMSOFT EST (mg/day/cm2) EMSOFT Flux Nonresidential 2 m 3.83E-05 4.47E-05 EMSOFT EST (mg/day/cm2) EMSOFT Flux Nonresidential 5 m 9.24E-05 1.09E-04 EMSOFT EST (mg/day/cm2) 2 CHEMICAL UPDATE WORKSHEET Bromomethane (74-83-9) (B) Toxicity Values/Benchmarks Source/Reference/ Comments/Notes Part 201 Value Updated Value Date /Issues Reference Dose 1.4E-3 2.0E-2 OPP, 2013 (RfD) (mg/kg/day) Rat subchronic Tier 1 Source: Complete gavage study EPA-OPP: (Danse et al., Basis: OPP is the more current than IRIS, PPRTV and ATSDR.
    [Show full text]
  • SAFETY DATA SHEET Bromomethane (R40 B1) SECTION 1
    SAFETY DATA SHEET Bromomethane (R40 B1) Issue Date: 16.01.2013 Version: 1.0 SDS No.: 000010021848 Last revised date: 02.02.2017 1/17 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifier Product name: Bromomethane (R40 B1) Additional identification Chemical name: Bromomethane Chemical formula: CH3Br INDEX No. 602-002-00-2 CAS-No. 74-83-9 EC No. 200-813-2 REACH Registration No. Not available. 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses: Industrial and professional. Perform risk assessment prior to use. Using gas alone or in mixtures for the calibration of analysis equipment. Using gas as feedstock in chemical processes. Formulation of mixtures with gas in pressure receptacles. Uses advised against Consumer use. 1.3 Details of the supplier of the safety data sheet Supplier Linde Gas GmbH Telephone: +43 50 4273 Carl-von-Linde-Platz 1 A-4651 Stadl-Paura E-mail: [email protected] 1.4 Emergency telephone number: Emergency number Linde: + 43 50 4273 (during business hours), Poisoning Information Center: +43 1 406 43 43 SDS_AT - 000010021848 SAFETY DATA SHEET Bromomethane (R40 B1) Issue Date: 16.01.2013 Version: 1.0 SDS No.: 000010021848 Last revised date: 02.02.2017 2/17 SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Directive 67/548/EEC or 1999/45/EC as amended. T; R23/25 Xi; R36/37/38 Xn; R48/20 Muta. 3; R68 N; R50 N; R59 The full text for all R-phrases is displayed in section 16.
    [Show full text]
  • Conversion of Carbon Dioxide to Acetylene on a Micro Scale
    810 NATURE June 14, 1947 Vol. 159 orbitale of the ethmoid is reduced". In the orang Stainless steel was found to be the most satis­ and the gibbon a large planum orbitale articulates factory furnace material tried. From mild steel in front with the lacrimal, as in man. The figure relatively large amounts of acetylene were produced we give of the orbital wall in Pleaianthropus shows in blank experiments, and a fused silica envelope a condition almost exactly as in man. fitted with a nickel thimble was found, after it had We are here not at present concerned with the been used with calcium and barium metals, to absorb question of whether man and the Australopithecinre carbon dioxide when hot even when no calcium or have arisen from an early anthropoid, or a pre­ barium was present. In carrying out the absorption anthropoid, or an Old World monkey or a tarsioid ; of carbon dioxide by barium metal in the stainless but we think the evidence afforded by this new skull steel furnace it was found that when the pressure of Plesianthropus shows that the Australopithecinre at which the gas was admitted was less than about and man are very closely allied, and that these small­ 10·1 mm. of mercury, the yield of acetylene was brained man-like beings were very nearly human. variable and only about 45 per cent. Good yields R. BROOM were obtained when the carbon dioxide at its full J. T. RoBINSON pressure was admitted to the furnace before raising Transvaal Museum, Pretoria. the temperature above 400° C.
    [Show full text]
  • And Abiogenesis
    Historical Development of the Distinction between Bio- and Abiogenesis. Robert B. Sheldon NASA/MSFC/NSSTC, 320 Sparkman Dr, Huntsville, AL, USA ABSTRACT Early greek philosophers laid the philosophical foundations of the distinction between bio and abiogenesis, when they debated organic and non-organic explanations for natural phenomena. Plato and Aristotle gave organic, or purpose-driven explanations for physical phenomena, whereas the materialist school of Democritus and Epicurus gave non-organic, or materialist explanations. These competing schools have alternated in popularity through history, with the present era dominated by epicurean schools of thought. Present controversies concerning evidence for exobiology and biogenesis have many aspects which reflect this millennial debate. Therefore this paper traces a selected history of this debate with some modern, 20th century developments due to quantum mechanics. It ¯nishes with an application of quantum information theory to several exobiology debates. Keywords: Biogenesis, Abiogenesis, Aristotle, Epicurus, Materialism, Information Theory 1. INTRODUCTION & ANCIENT HISTORY 1.1. Plato and Aristotle Both Plato and Aristotle believed that purpose was an essential ingredient in any scienti¯c explanation, or teleology in philosophical nomenclature. Therefore all explanations, said Aristotle, answer four basic questions: what is it made of, what does it represent, who made it, and why was it made, which have the nomenclature material, formal, e±cient and ¯nal causes.1 This aristotelean framework shaped the terms of the scienti¯c enquiry, invisibly directing greek science for over 500 years. For example, \organic" or \¯nal" causes were often deemed su±cient to explain natural phenomena, so that a rock fell when released from rest because it \desired" its own kind, the earth, over unlike elements such as air, water or ¯re.
    [Show full text]
  • 1,1,1,2-Tetrafluoroethane
    This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Concise International Chemical Assessment Document 11 1,1,1,2-Tetrafluoroethane First draft prepared by Mrs P. Barker and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Institute of Terrestrial Ecology, Huntingdon, United Kingdom Please not that the layout and pagination of this pdf file are not identical to the printed CICAD Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 1998 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organisation (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization
    [Show full text]
  • SAFETY DATA SHEET Difluoromethane (R32) SECTION 1
    SAFETY DATA SHEET Difluoromethane (R32) Issue Date: 16.01.2013 Version: 1.1 SDS No.: 000010021734 Last revised date: 26.11.2018 1/14 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1 Product identifier Product name: Difluoromethane (R32) Other Name: HFC-32 Additional identification Chemical name: Difluoromethane Chemical formula: CH2F2 INDEX No. - CAS-No. 75-10-5 EC No. 200-839-4 REACH Registration No. 01-2119471312-47 1.2 Relevant identified uses of the substance or mixture and uses advised against Identified uses: Industrial and professional. Perform risk assessment prior to use. Refrigerant. Use as an Intermediate (transported, on-site isolated). Use for electronic component manufacture. Using gas alone or in mixtures for the calibration of analysis equipment. Formulation of mixtures with gas in pressure receptacles. Uses advised against Consumer use. 1.3 Details of the supplier of the safety data sheet Supplier Linde Gas GmbH Telephone: +43 50 4273 Carl-von-Linde-Platz 1 A-4651 Stadl-Paura E-mail: [email protected] 1.4 Emergency telephone number: Emergency number Linde: + 43 50 4273 (during business hours), Poisoning Information Center: +43 1 406 43 43 SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 as amended. Physical Hazards Flammable gas Category 1 H220: Extremely flammable gas. Gases under pressure Liquefied gas H280: Contains gas under pressure; may explode if heated. SDS_AT - 000010021734 SAFETY DATA SHEET Difluoromethane (R32) Issue Date: 16.01.2013 Version: 1.1 SDS No.: 000010021734 Last revised date: 26.11.2018 2/14 2.2 Label Elements Signal Words: Danger Hazard Statement(s): H220: Extremely flammable gas.
    [Show full text]
  • Chemistry 234 Chapter 16 Problem Set Electrophilic Aromatic
    Chemistry 234 Chapter 16 Problem Set Electrophilic Aromatic Substitution 1) Predict the product and draw the mechanism for electrophile generation for each of the following reactions. Cl (a) 2 FeCl3 HNO3 (b) H2SO4 SO (c) 3 H2SO4 2) Explain why reaction of benzene with Br2/FeBr3 results in the product bromobenzne instead of 5,6-dibromo-1,3-cyclohexadiene. 3) Predict the product and draw the active electrophile for each reaction shown below. Cl (a) AlCl3 Cl (b) AlCl3 Cl O (c) AlCl3 Page 1 of 13 Chem. 234 – Chapter 16 Problem Set 4) Explain why each of the following substrates do not undergo Freidel-Crafts reactions. NH2 NO2 N(CH3)3 NH 5) Arrange the following benzene substituents in order of reactivity in electrophilic aromatic substitution reactions. O Cl Ph Ph N Ph Ph H O N H S Ph N Ph Ph Ph O O 6) Predict the maJor products when the following benzene derivatives are treated to nitration conditions (HNO3/H2SO4). a. O Br b. NH2 Br c. NO2 Cl 7) Write the full electron pushing mechanism for the nitration of toluene. Page 2 of 13 Chem. 234 – Chapter 16 Problem Set 8) Predict the product(s) when each of the following benzene derivatives is treated to chloroethane and AlCl3. a. Br b. NH2 Cl c. OH Br d. OH Cl Cl e. NO2 Cl Cl f. Br Br g. SO3H Page 3 of 13 Chem. 234 – Chapter 16 Problem Set 9) Predict the product(s) when the following benzene derivatives are subjected to electrophilic chlorination conditions (Cl2, FeCl3).
    [Show full text]
  • Dichlorodifluoromethane Dcf
    DICHLORODIFLUOROMETHANE DCF CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 7.1 Grades of Purity: 99.5% (vol.) Common Synonyms Gas Colorless Faint odor Not flammable 7.2 Storage Temperature: Ambient Arcton 6 4.2 Flammable Limits in Air: Not flammable Eskimon 12 7.3 Inert Atmosphere: No requirement 4.3 Fire Extinguishing Agents: Not F-12 Visible vapor cloud is produced. 7.4 Venting: Safety relief flammable Freon 12 7.5 IMO Pollution Category: Currently not available Frigen 12 4.4 Fire Extinguishing Agents Not to Be Genetron 12 Used: Not flammable 7.6 Ship Type: Currently not available Halon 122 4.5 Special Hazards of Combustion 7.7 Barge Hull Type: 3 Isotron 12 Products: Although nonflammable, Ucon 12 dissociation products generated in a fire may be irritating or toxic. 8. HAZARD CLASSIFICATIONS Notify local health and pollution control agencies. 4.6 Behavior in Fire: Helps extinguish fire. 8.1 49 CFR Category: Nonflammable gas Avoid inhalation. 4.7 Auto Ignition Temperature: Not 8.2 49 CFR Class: 2.2 flammable 8.3 49 CFR Package Group: Not pertinent. Not flammable. 4.8 Electrical Hazards: Not pertinent Fire Cool exposed containers with water. 8.4 Marine Pollutant: No 4.9 Burning Rate: Not flammable 8.5 NFPA Hazard Classification: Not listed 4.10 Adiabatic Flame Temperature: Currently 8.6 EPA Reportable Quantity: 5000 pounds CALL FOR MEDICAL AID. not available Exposure 8.7 EPA Pollution Category: D 4.11 Stoichometric Air to Fuel Ratio: Not VAPOR 8.8 RCRA Waste Number: U075 Not irritating to eyes, nose or throat.
    [Show full text]
  • SAFETY DATA SHEET Halocarbon R-503
    SAFETY DATA SHEET Halocarbon R-503 Section 1. Identification GHS product identifier : Halocarbon R-503 Other means of : Not available. identification Product type : Liquefied gas Product use : Synthetic/Analytical chemistry. SDS # : 007306 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Liquefied gas substance or mixture HAZARDOUS TO THE OZONE LAYER - Category 1 GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May cause frostbite. May displace oxygen and cause rapid suffocation. Harms public health and the environment by destroying ozone in the upper atmosphere. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Always keep container in upright position. Prevention : Not applicable. Response : Not applicable. Storage : Protect from sunlight. Store in a well-ventilated place. Disposal : Refer to manufacturer or supplier for information on recovery or recycling. Hazards not otherwise : Liquid can cause burns similar to frostbite.
    [Show full text]
  • United States Patent Office Patented Feb
    3,794,643 United States Patent Office Patented Feb. 26, 1974 1. 2 3,794,643 aZolinedione derivatives are produced by reacting the QUINAZOLINEDONE DERIVATIVES compounds having the following general formula: Takahiro Yabuuchi, Takarazuka, and Hajime Fujimura, Akira Nakagawa, and Ryuichi Kimura, Kyoto, Japan, assignors to Hisamitsu Pharmaceutical Co., Inc., Tosu, Saga Prefecture, Japan No Drawing. Filed Apr. 20, 1971, Ser. No. 135,693 int, C. C07, 51/48 U.S. C. 260-260 8 Claims ABSTRACT OF THE DISCLOSURE O The present invention relates to novel quinazolinedione R3 R2 derivatives possessing excellent anti-inflammatory action and analgesic action, and process for the production (wherein R2 and/or Rs have the same meaning as men thereof by reacting the compounds having the following 5 tioned above) with the general formula, RX or RSO, general formula, (wherein R represents the same substances as mentioned O above), R represents lower alkyl radical, and X repre C Sents halogen atom). Consequently, the reaction of the present invention can be understood as being alkylation. 20 The abovementioned compounds used as starting reac tion materials in the present invention can be obtained in good yield by reacting N-phenylanthranilic acid or N substituted phenylanthranilic acid with urea. The quinazolinedione derivatives used as the afore Rs R 25 said starting reaction materials include 1-phenyl-2,4- (1H,3H)-quinazolinedione or 1-substituted phenyl-2,4- (1H,3H)-quinazolinedione, for example, (wherein R and/or R3 represent hydrogen atom, CFs, 1-(3'-triuuoromethylphenyl-2,4(1H,3H)-
    [Show full text]
  • The Formation of Butane in the Polymerization of Methyl Methacrylate with Butyllithium
    Polymer Journal, Vol. 12, No. 8, pp 535-537 (1980) SHORT COMMUNICATION The Formation of Butane in the Polymerization of Methyl Methacrylate with Butyllithium Koichi HATADA, Tatsuki KITAYAMA, and Heimei YUKI Department of Chemistry, Faculty of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560, Japan. (Received February 28, 1980) KEY WORDS Methyl Methacrylate I Perdeuterated Methyl Methacrylate I Anionic Polymerization I Butyllithium I Toluene I Tetrahydrofuran I Butane Formation I Mass Spectroscopy I Butene I It has been found that a small amount of butane merization reactions in toluene: (1) the poly­ is formed when the polymerization of methyl merization of MMA terminated by CH30D methacrylate is initiated with butyllithium and (MMA-CH30D system) and (2) that of MMA-d8 terminated with acetic acid. The origin of the butane terminated by CH3 0H (MMA-d8-CH3 0H system). was not clear, although the proton abstraction from The reactions were quenched at 10 min following the monomer is assumed. 1 the initiation. The spectra of butane (BuH) and In this work the polymerizations of undeuterated butane-d-1, CH3 CH2 CH2CH2 D, (BuD) are also (MMA) and perdeuterated (MMA-d8 ) methyl shown for comparison. The BuH and BuD were methacrylates were initiated with undeuterated obtained by the reaction of BuLi with CH30H and butyllithium (BuLi) and terminated by CH3 0D and CH30D, respectively. By inspecting these four CH3 0H, respectively. Deuterium distributions in spectra, it can be seen that the butane from the the butane formed were determined by combined MMA-CH3 0D system mainly consists of BuD and gas-liquid phase chromatography-mass spectrom­ the butane from the MMA-d8-CH30H system is etry.
    [Show full text]
  • Turbine Expanderexpander
    CryogenicsCryogenics –– whywhy?? MaciejMaciej ChorowskiChorowski WroclawWroclaw UniversityUniversity ofof TechnologyTechnology FacultyFaculty ofof MechanicalMechanical andand PowerPower EngineeringEngineering European Cryogenic Course Wroclaw 20 - 25 April, 2009 T, K 10 10 The word cryogenics was introduced by Core of the hottest stars 9 Kamerlingh Onnes and is formed from the 10 8 Greek: 10 Fusion reaction of hydrogen 7 10 Core of the Sun 6 – cold 10 5 10 – generated from TEMPERATUREVERY HIGH Plasma 4 10 Surface of the Sun 3 According to the convention adopted at the 10 Steam turbine Biological processes XIIII Congress of the International Institute of 2 10 High temperature superconductivity Boiling temperature of nitrogen Refrigeration, cryogenics treats concepts and Low temperature superconductivity 10 technologies connected to reaching and Boiling temperature of helium Superfluid helium 4 applying temperature below 120 K. 1 -1 In cryogenic temperatures: 10 -2 10 -3 - new physical phenomena are visible (liquefaction 10 Superfluid helium 3 -4 of gases, superfluidity, superconductivity); 10 -5 - all the reactions are slowed down; 10 The lowest measured temperature in the whole volume of a probe -6 - dis-order in the matter is vanishing, noises are 10 VERY LOW TEMPERATUREVERY LOW -7 avoided (cryo-electronics). 10 The lowest temperaure of copper nuclei -8 European Cryogenic Course 10 CERN Geneva 2010 -9 10 Bose-Einstein condensate HistoricalHistorical developmentdevelopment ofof cryogenicscryogenics andand relatedrelated technologiestechnologies
    [Show full text]