And Abiogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Viscosity of Gases References
VISCOSITY OF GASES Marcia L. Huber and Allan H. Harvey The following table gives the viscosity of some common gases generally less than 2% . Uncertainties for the viscosities of gases in as a function of temperature . Unless otherwise noted, the viscosity this table are generally less than 3%; uncertainty information on values refer to a pressure of 100 kPa (1 bar) . The notation P = 0 specific fluids can be found in the references . Viscosity is given in indicates that the low-pressure limiting value is given . The dif- units of μPa s; note that 1 μPa s = 10–5 poise . Substances are listed ference between the viscosity at 100 kPa and the limiting value is in the modified Hill order (see Introduction) . Viscosity in μPa s 100 K 200 K 300 K 400 K 500 K 600 K Ref. Air 7 .1 13 .3 18 .5 23 .1 27 .1 30 .8 1 Ar Argon (P = 0) 8 .1 15 .9 22 .7 28 .6 33 .9 38 .8 2, 3*, 4* BF3 Boron trifluoride 12 .3 17 .1 21 .7 26 .1 30 .2 5 ClH Hydrogen chloride 14 .6 19 .7 24 .3 5 F6S Sulfur hexafluoride (P = 0) 15 .3 19 .7 23 .8 27 .6 6 H2 Normal hydrogen (P = 0) 4 .1 6 .8 8 .9 10 .9 12 .8 14 .5 3*, 7 D2 Deuterium (P = 0) 5 .9 9 .6 12 .6 15 .4 17 .9 20 .3 8 H2O Water (P = 0) 9 .8 13 .4 17 .3 21 .4 9 D2O Deuterium oxide (P = 0) 10 .2 13 .7 17 .8 22 .0 10 H2S Hydrogen sulfide 12 .5 16 .9 21 .2 25 .4 11 H3N Ammonia 10 .2 14 .0 17 .9 21 .7 12 He Helium (P = 0) 9 .6 15 .1 19 .9 24 .3 28 .3 32 .2 13 Kr Krypton (P = 0) 17 .4 25 .5 32 .9 39 .6 45 .8 14 NO Nitric oxide 13 .8 19 .2 23 .8 28 .0 31 .9 5 N2 Nitrogen 7 .0 12 .9 17 .9 22 .2 26 .1 29 .6 1, 15* N2O Nitrous -
Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Ions
J. Phys. Chem. A 2000, 104, 3655-3669 3655 Infrared Spectroscopy of Matrix-Isolated Polycyclic Aromatic Hydrocarbon Ions. 5. PAHs Incorporating a Cyclopentadienyl Ring† D. M. Hudgins,* C. W. Bauschlicher, Jr., and L. J. Allamandola NASA Ames Research Center, MS 245-6, Moffett Field, California 94035 J. C. Fetzer CheVron Research Company, Richmond, California 94802 ReceiVed: NoVember 5, 1999; In Final Form: February 9, 2000 The matrix-isolation technique has been employed to measure the mid-infrared spectra of the ions of several polycyclic aromatic hydrocarbons whose structures incorporate a cyclopentadienyl ring. These include the cations of fluoranthene (C16H10), benzo[a]fluoranthene, benzo[b]fluoranthene, benzo[j]fluoranthene, and benzo- [k]fluoranthene (all C20H12 isomers), as well as the anions of benzo[a]fluoranthene and benzo[j]fluoranthene. With the exception of fluoranthene, which presented significant theoretical difficulties, the experimental data are compared to theoretically calculated values obtained using density functional theory (DFT) at the B3LYP/ 4-31G level. In general, there is good overall agreement between the two data sets, with the positional agreement between the experimentally measured and theoretically predicted bands somewhat better than that associated with their intensities. The results are also consistent with previous experimental studies of polycyclic aromatic hydrocarbon ions. Specifically, in both the cationic and anionic species the strongest ion bands typically cluster in the 1450 to 1300 cm-1 range, reflecting an order-of-magnitude enhancement in the CC stretching and CH in-plane bending modes between 1600 and 1100 cm-1 in these species. The aromatic CH out-of- plane bending modes, on the other hand, are usually modestly suppressed (e 2x - 5x) in the cations relative to those of the neutral species, with the nonadjacent CH modes most strongly affected. -
Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture
Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture Stephen Lucas 05/11/10 Measurement of Cp/Cv for Argon, Nitrogen, Carbon Dioxide and an Argon + Nitrogen Mixture Stephen Lucas With laboratory partner: Christopher Richards University College London 5th November 2010 Abstract: The ratio of specific heats, γ, at constant pressure, Cp and constant volume, Cv, have been determined by measuring the oscillation frequency when a ball bearing undergoes simple harmonic motion due to the gravitational and pressure forces acting upon it. The γ value is an important gas property as it relates the microscopic properties of the molecules on a macroscopic scale. In this experiment values of γ were determined for input gases: CO2, Ar, N2, and an Ar + N2 mixture in the ratio 0.51:0.49. These were found to be: 1.1652 ± 0.0003, 1.4353 ± 0.0003, 1.2377 ± 0.0001and 1.3587 ± 0.0002 respectively. The small uncertainties in γ suggest a precise procedure while the discrepancy between experimental and accepted values indicates inaccuracy. Systematic errors are suggested; however it was noted that an average discrepancy of 0.18 between accepted and experimental values occurred. If this difference is accounted for, it can be seen that we measure lower vibrational contributions to γ at room temperature than those predicted by the equipartition principle. It can be therefore deduced that the classical idea of all modes contributing to γ is incorrect and there is actually a „freezing out‟ of vibrational modes at lower temperatures. I. Introduction II. Method The primary objective of this experiment was to determine the ratio of specific heats, γ, for gaseous Ar, N2, CO2 and an Ar + N2 mixture. -
Fine-Tuning, Complexity, and Life in the Multiverse*
Fine-Tuning, Complexity, and Life in the Multiverse* Mario Livio Dept. of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA E-mail: [email protected] and Martin J. Rees Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK E-mail: [email protected] Abstract The physical processes that determine the properties of our everyday world, and of the wider cosmos, are determined by some key numbers: the ‘constants’ of micro-physics and the parameters that describe the expanding universe in which we have emerged. We identify various steps in the emergence of stars, planets and life that are dependent on these fundamental numbers, and explore how these steps might have been changed — or completely prevented — if the numbers were different. We then outline some cosmological models where physical reality is vastly more extensive than the ‘universe’ that astronomers observe (perhaps even involving many ‘big bangs’) — which could perhaps encompass domains governed by different physics. Although the concept of a multiverse is still speculative, we argue that attempts to determine whether it exists constitute a genuinely scientific endeavor. If we indeed inhabit a multiverse, then we may have to accept that there can be no explanation other than anthropic reasoning for some features our world. _______________________ *Chapter for the book Consolidation of Fine Tuning 1 Introduction At their fundamental level, phenomena in our universe can be described by certain laws—the so-called “laws of nature” — and by the values of some three dozen parameters (e.g., [1]). Those parameters specify such physical quantities as the coupling constants of the weak and strong interactions in the Standard Model of particle physics, and the dark energy density, the baryon mass per photon, and the spatial curvature in cosmology. -
Liquid Argon
Safetygram 8 Liquid argon Liquid argon is tasteless, colorless, odorless, noncorrosive, nonflammable, and extremely cold. Belonging to the family of rare gases, argon is the most plentiful, making up approximately 1% of the earth’s atmosphere. It is monatomic and extremely inert, forming no known chemical compounds. Since argon is inert, special materials of construction are not required. However, materials of construction must be selected to withstand the low temperature of liquid argon. Vessels and piping should be designed to American Society of Mechanical Engineers (ASME) specifications or the Department of Transportation (DOT) codes for the pressures and temperatures involved. Although used more commonly in the gaseous state, argon is commonly stored and transported as a liquid, affording a more cost-effective way of providing product supply. Liquid argon is a cryogenic liquid. Cryogenic liquids are liquefied gases that have a normal boiling point below –130°F (–90°C). Liquid argon has a boiling point of –303°F (–186°C). The temperature difference between the product and the surrounding environment, even in winter, is substantial. Keeping this surrounding heat from the product requires special equipment to store and handle cryogenic liquids. A typical system consists of the following components: a cryogenic storage tank, one or more vaporizers, a pressure control system, and all of the piping required for fill, vaporization. The cryogenic tank is constructed, in principle, like a vacuum bottle. It is designed to keep heat away from the liquid that is contained in the inner vessel. Vaporizers convert the liquid argon to its gaseous state. A pressure control manifold controls the pressure at which the gas is fed to the process. -
Absorption and Laser Induced Fluorescence Spectroscopy Of
Astronomy in Focus, Volume 1, Focus Meeting 12, E17 XXIXth IAU General Assembly, August 2015 c International Astronomical Union 2017 Piero Benvenuti, ed. doi:10.1017/S1743921317005075 Absorption and Laser Induced Fluorescence Spectroscopy of Neutral Polycyclic Aromatic Hydrocarbons in Argon matrices Salma Bejaoui 1,2, Farid Salama 1 and Ella Sciamma-O’Brien 1,3 1 NASA Ames Research Center, Mail Stop 245-6, Moffett Field, California 94035-1000 2 NPP, Oak Ridge Associated Universities 3 BAER Institute, Petaluma, CA email: [email protected] Keywords. PAH, fluorescence, UV-VIS, ERE, comet. Polycyclic aromatic hydrocarbons (PAHs) are considered as plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments, as well as for broad emission band features seen in cometary spectra. We report the absorption spectra of phenanthrene, anthracene, fluoranthene, pentacene, pyrene, chrysene and triphenylene isolated at 10 K in solid argon matrices together with laser induced fluores- cence (LIF) spectra at 355 nm of matrix-isolated anthracene and fluoranthene. LIF spectra are compared with the UV/blue fluorescence spectra of the Red Rectangle Nebula (RR). The LIF spectra measured in solid Ar matrices have been shifted to the predicted position of the PAH band emission in the gas phase for comparison with the astronomical observations (Fig. 1). These preliminary results indicate that small neutral PAHs can well account for the blue fluorescence observed in the RR as it has been previously proposed (Vijh, et al. (2004)). LIF spectra of anthracene measured in Ar matrices are also compared to the emission spectra of 1P/Halley’s inner coma(Fig. -
The Arrow of Time Volume 7 Paul Davies Summer 2014 Beyond Center for Fundamental Concepts in Science, Arizona State University, Journal Homepage P.O
The arrow of time Volume 7 Paul Davies Summer 2014 Beyond Center for Fundamental Concepts in Science, Arizona State University, journal homepage P.O. Box 871504, Tempe, AZ 852871504, USA. www.euresisjournal.org [email protected] Abstract The arrow of time is often conflated with the popular but hopelessly muddled concept of the “flow” or \passage" of time. I argue that the latter is at best an illusion with its roots in neuroscience, at worst a meaningless concept. However, what is beyond dispute is that physical states of the universe evolve in time with an objective and readily-observable directionality. The ultimate origin of this asymmetry in time, which is most famously captured by the second law of thermodynamics and the irreversible rise of entropy, rests with cosmology and the state of the universe at its origin. I trace the various physical processes that contribute to the growth of entropy, and conclude that gravitation holds the key to providing a comprehensive explanation of the elusive arrow. 1. Time's arrow versus the flow of time The subject of time's arrow is bedeviled by ambiguous or poor terminology and the con- flation of concepts. Therefore I shall begin my essay by carefully defining terms. First an uncontentious statement: the states of the physical universe are observed to be distributed asymmetrically with respect to the time dimension (see, for example, Refs. [1, 2, 3, 4]). A simple example is provided by an earthquake: the ground shakes and buildings fall down. We would not expect to see the reverse sequence, in which shaking ground results in the assembly of a building from a heap of rubble. -
Evidence for God
Evidence for God (part 1 of 8): Fine Tuning of Physical Laws of Universe What is Fine Tuning? Over the past century, scientists have discovered that if certain properties of the universe were changed very slightly from what they are, we would not be here. They have to be within a very narrow range for our universe to make life possible and be habitable. The universe is fine-tuned for the existence of intelligent life with a complexity and delicacy that literally defy human comprehension. The sensitivity of the „habitability‟ of the universe to small changes is called „fine-tuning.‟ This was recognized about 60 years ago by Fred Hoyle who was not a religious person at the time he made the discovery. Scientists like Paul Davies, Martin Rees, Max Tegmark, Bernard Carr, Frank Tipler, John Barrow, and Stephen Hawking, to name a few, believe in fine-tuning. These are prominent names in cosmology as they are heard in the media whenever a news headline is made. Types of Fine-Tuning 1. Fine tuning of the laws of nature. 2. Fine-tuning of the constants of physics. 3. Fine tuning of the initial conditions of the universe. We will explore each category below: 1. Fine tuning of the laws of nature There are two ways to look at this aspect of fine-tuning: 1. Precisely the right laws are needed for highly complex life to exist. If one of these were missing, such life would not be possible. To say that the laws are fine-tuned means that the universe must have precisely the right set of laws in order for highly complex life to exist. -
Hydrogen, Nitrogen and Argon Chemistry
Hydrogen, Nitrogen and Argon Chemistry Author: Brittland K. DeKorver Institute for Chemical Education and Nanoscale Science and Engineering Center University of Wisconsin-Madison Purpose: To learn about 3 of the gases that are in Earth’s atmosphere. Learning Objectives: 1. Understand that the atmosphere is made up of many gases. 2. Learn about the differences in flammability of nitrogen and hydrogen. 3. Learn what is produced during electrolysis. Next Generation Science Standards (est. 2013): PS1.A: Structure and Properties of Matter PS1.B: Chemical Reactions PS3.D: Energy in Chemical Processes and Everyday Life (partial) ETS1.A: Defining Engineering Problems ETS1.B: Designing Solutions to Engineering Problems ETS1.C: Optimizing the Design Solution National Science Education Standards (valid 1996-2013): Physical Science Standards: Properties and changes of properties in matter Earth and Space Science Standards: Structure of the earth system Suggested Previous Activities: Oxygen Investigation and Carbon Dioxide Chemistry Grade Level: 2-8 Time: 1 hour Materials: Safety glasses Manganese dioxide Work gloves (for handling Tea-light candles steel wool) Matches Test tubes Spatulas Beakers Wooden splints 100mL graduated cylinders Waste bucket for burnt 15mL graduated cylinders materials 3% hydrogen peroxide Vinegar Baking soda Safety: 1. Students should wear safety glasses during all activities. 2. Students should not be allowed to use matches or candle. 3. Students should be cautioned to only mix the chemicals as directed. Introduction: Air refers to the mixture of gases that make up the Earth’s atmosphere. In this lesson, students will learn about hydrogen (present in very, very small amounts in our atmosphere), nitrogen (the most prevalent gas), and argon (third behind nitrogen and oxygen.) Procedures: 1. -
The Emergent, Self-Explaining Universe of Paul Davies – a Summary and Christian Response
S & CB (2012), 24, 33–53 0954–4194 PAUL HIMES The Emergent, Self-explaining Universe of Paul Davies – a Summary and christian Response Physicist Paul Davies has emerged as one of the most popular scientists of the twenty-first century, despite his critique of the scientific establishment and its perceived failure to account for the origins and rational nature of the universe. Davies argues that the scientific consensus on cosmology rests on faith, both in its failure to provide an ultimate explanation for the origin of the universe and in its blind acceptance of its rational laws. As an alternative, Davies postulates an ‘emergent’ universe which contains the cause of its own existence and which renders unnecessary any sort of a personal deity. Yet Davies’s alternative falls short of providing a satisfactory cosmic explanation. Davies himself cannot adequately account for the principle of backward causation which creates his universe, and thus his paradigm still relies on a transcendent principle that remains unexplained. Furthermore, Davies’s objections against a personal god can be answered on philosophical grounds. Thus Davies’s hypothesis does not provide a superior alternative to the Christian view of God. key words: Paul Davies, physics, universe, emergent, self-causation, quantum mechanics, cosmology, time, teleology, cosmological argument, fine-tuning introduction Douglas Adams’ classic Hitchhiker’s Guide to the Galaxy tells the story of an advanced civilisation that builds a magnificent supercomputer for the sole purpose of providing the ultimate answer to the meaning of ‘life, the universe, and everything’. After millions of years of calculation, the an- swer, much to the confusion and frustration of the advanced civilisation, turns out to be ‘42’.1 Physicist Paul C. -
Evidence for Design in Physics and Biology: from the Origin of the Universe to the Origin of Life
52 stephen c. meyer Pages 53–111 of Science and Evidence for Design in the Universe. The Proceedings of the Wethersfield Institute. Michael Behe, STEPHEN C. MEYER William A. Dembski, and Stephen C. Meyer (San Francisco: Ignatius Press, 2001. 2000 Homeland Foundation.) EVIDENCE FOR DESIGN IN PHYSICS AND BIOLOGY: FROM THE ORIGIN OF THE UNIVERSE TO THE ORIGIN OF LIFE 1. Introduction In the preceding essay, mathematician and probability theo- rist William Dembski notes that human beings often detect the prior activity of rational agents in the effects they leave behind.¹ Archaeologists assume, for example, that rational agents pro- duced the inscriptions on the Rosetta Stone; insurance fraud investigators detect certain ‘‘cheating patterns’’ that suggest intentional manipulation of circumstances rather than ‘‘natu- ral’’ disasters; and cryptographers distinguish between random signals and those that carry encoded messages. More importantly, Dembski’s work establishes the criteria by which we can recognize the effects of rational agents and distinguish them from the effects of natural causes. In brief, he shows that systems or sequences that are both ‘‘highly com- plex’’ (or very improbable) and ‘‘specified’’ are always produced by intelligent agents rather than by chance and/or physical- chemical laws. Complex sequences exhibit an irregular and improbable arrangement that defies expression by a simple formula or algorithm. A specification, on the other hand, is a match or correspondence between an event or object and an independently given pattern or set of functional requirements. As an illustration of the concepts of complexity and speci- fication, consider the following three sets of symbols: 53 54 stephen c. -
Edited by Steven J. Dick and Mark L. Lupisella
Edited by Steven J. Dick and Mark L. Lupisella NASA SP-2009-4802 Library of Congress Cataloging-in-Publication Data Cosmos and Culture : Cultural Evolution in a Cosmic Context / Steven J. Dick and Mark Lupisella, editors. p. cm. -- (NASA SP ; 4802) Includes bibliographical references and index. 1. Cosmology--History. 2. Astronomy--History. 3. Culture--Origin. 4. Social evolution. 5. Human evolution. I. Dick, Steven J. II. Lupisella, Mark. QB981.C8263 2009 523.109--dc22 2009004348 ISBN 978-0-16-083119-5 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 9 0 0 0 0 Fax: (202) 512-2104 Mail: Stop IDCC, Washington, DC 20402-0001 ISBN 978-0-16-083119-5 9 780160 831195 ISBN 978-0-16-083119-5 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800; DC area (202) 512-1800 9 0 0 0 0 Fax: (202) 512-2104 Mail: Stop IDCC, Washington, DC 20402-0001 ISBN 978-0-16-083119-5 9 780160 831195 Table of Contents Introduction – Steven J. Dick and Mark L. Lupisella v Part 1: The Cosmic Context Chapter 1 – Eric J. Chaisson Cosmic Evolution State of the Science 3 Chapter 2 – Steven J. Dick Cosmic Evolution History, Culture, and Human Destiny 25 Part 2: Cultural Evolution Chapter 3 – Kathryn Denning Social Evolution State of the Field 63 Chapter 4 – Daniel C. Dennett The Evolution of Culture 125 Chapter 5 – Howard Bloom The Big Burp and the Multiplanetary Mandate 145 Chapter 6 – John M.