Louisiana State University LSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1999 Quaternary Benthic Foraminiferal Distribution in the Ross Sea, Antarctica, and Its Relationship to Oceanography. Pamela Jo Perry Louisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

Recommended Citation Perry, Pamela Jo, "Quaternary Benthic Foraminiferal Distribution in the Ross Sea, Antarctica, and Its Relationship to Oceanography." (1999). LSU Historical Dissertations and Theses. 7006. https://digitalcommons.lsu.edu/gradschool_disstheses/7006

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy subm itted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. QUATERNARY BENTHIC FORAMINJEERAL DISTRIBUTION IN THE ROSS SEA, ANTARCTICA, AND ITS RELATIONSHIP TO OCEANOGRAPHY

A Dissertation

Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy

in

The Department of Geology and Geophysics

by Pamela Jo Perry B.S., Florida State University, 1994 August, 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9945733

UMI Microform 9945733 Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI 300 North Zeeb Road Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Acknowledgments

I would like to express my deepest gratitude to my advisor, Dr. Barun Sen

Gupta for his guidance. I feel honored to have worked with a researcher of his caliber.

Few students are blessed with an advisor as distinguished or a mentor as supportive. I

also appreciate the help of my committee members, Dr. Laurie Anderson, Dr. Tony

Arnold, Dr. Greg Stone, and Dr. John Wrenn. Dr. Arnold of Florida State University

deserves special mention, both for his guidance during my undergraduate career and

the commitment he has shown by personally attending my General and Final Exams.

Dr. Harry Roberts and Dr. Gene Turner, former committee members, have continued

to provide support.

Dr. John Anderson (Rice University) offered me the invaluable opportunity of

shipboard research in Antarctica. I will always be grateful that I was provided with

that experience.

Xiaogong Xie showed unending patience while helping me with the SEM.

Many people have edited this document. They include Broxton Bird, Kim Giesting,

Ashley Lowe, Kevin McCracken, KT Moran, Kush Tandon, and Diane Winter.

Thanks also go out to my mother, Dr. Nancy Perry, who has offered moral

(and occasionally financial) support throughout my tenure as a graduate student. I

would also like to acknowledge my father, Dr. Tom Perry, as a source of inspiration.

This study was funded by grants from the Cushman Foundation and the

Geological Society of America. Additional support for radiocarbon dating was

provided by Dr. Anne Jennings and Dr. John Andrews at Colorado State University.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. While a graduate student, I was generously supported by a Board of Regents

Fellowship.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents

Acknowledgments ...... ii

List of Tables ...... v

List of Figures ...... vi

List of Plates ...... viii

Abstract...... x

Chapter 1 Introduction ...... 1

Chapter 2 Oceanographic Control on the Distribution of Benthic in the Ross Sea in the Quaternary ...... 20

Chapter 3 Taxonomy of Ross Sea Benthic Foraminifera ...... 83

Chapter 4 Relationship Between Benthic Foraminiferal Assemblages and Glacial Environments in the Ross Sea ...... 172

Chapter 5 Opaline Spherule Distribution and Formation in Antarctic Waters ...... 183

Chapter 6 Summary and Conclusions ...... 200

References ...... 205

Appendix Abundance Data of Benthic Foraminiferal Species in Ross Sea sediments ...... 216

Vita...... 357

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Tables

Table 1.1 Summary of previous foraminiferal studies in Antarctica ...... 18

Table 2.1 Latitude, longitude and water depth of samples used in this study...... 34

Table 2.2 Percentage of abundant species in Modem-calcareous fauna cores ...... 43

Table 2.3 Percentage of abundant species in carbonate-bank fauna cores ...... 55

Table 2.4 Benthic foraminiferal abundance data from NBP9902 coretops (number of specimens)...... 66

Table 2.5 Radiocarbon dates, provided by the University of Arizona ...... 68

Table 4.1 Abundance data of benthic foraminiferal species in environments recognized by Domack et al. (submitted B ) ...... 178

Table 4.2 Abundance data of benthic foraminiferal species in NBP9902 cores ...... 180

Table 5.1 Weight percents of oxides in two opaline spherules ...... 193

Table 5.2 Foraminifera and opaline spherules per gram sediment in carbonate facies ...... 195

Table 5.3 Foraminifera and opaline spherules per gram sediment in siliciclastic facies ...... 196

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Figures

Figure 1.1 Locations of previous studies ...... 2

Figure 2.1 Study area location ...... 22

Figure 2.2 a) Modem temperature profile across the eastern Ross Sea, with the position of the WMCO stippled, b) Modem temperature profile across the western Ross Sea, with the position of the WMCO stippled ...... 25

Figure 2.3 Summer and winter maximum, minimum, and mean sea ice extent ...... 26

Figure 2.4 Ross Sea sediment distribution map ...... 28

Figure 2.5 Distribution of the carbonate biofacies defined on skeletal composition ...... 31

Figure 2.6 Distribution of calcareous foraminiferal assemblages defined by Osterman and Kellogg (1979); the assemblages named in the key constitute greater than 75% of the benthic foraminiferal fauna ...... 33

Figure 2.7 Map of sample locations ...... 35

Figure 2.8 Distribution of faunas ...... 38

Figure 2.9 Cluster diagram for abundance data of benthic foraminifera from Ross Sea surface samples ...... 40

Figure 2.10 Percentages of abundant species in core DF62-6 ...... 47

Figure 2.11 Percentages of abundant species in core DF62-11 ...... 48

Figure 2.12 Percentages of abundant species in core E32-11 ...... 49

Figure 2.13 Percentages of abundant species in core E32-13 ...... 50

Figure 2.14 Percentages of abundant species in core E32-16 ...... 51

Figure 2.15 Percentages of abundant species in core GL76-1 ...... 52

Figure 2.16 Percentages of abundant species in core DF87-14 ...... 59

Figure 2.17 Percentages of abundant species in core E32-12 ...... 60

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.18 Percentages of abundant species in core E32-43 ...... 61

Figure 2.19 Percentages of abundant species in core E32-44 ...... 62

Figure 2.20 Percentages of abundant species in core E52-9 ...... 63

Figure 2.21 Surface samples on which biogenic-silica analysis was performed. Numbers are biogenic silica in weight percent ...... 70

Figure 2.22 Hypothesized Pleistocene temperature profile across the western Ross Sea, with the position of the CDW stippled ...... 75

Figure 4.1 Study area of Domack et al. (submitted B) ...... 173

Figure 4.2 Study area ...... 174

Figure 5.1 Sample locations ...... 186

Figure 5.2 Ross Sea sample locations ...... 187

Figure 5.3 Weddell Sea sample locations ...... 188

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. List of Plates Plate 3.1 119

Plate 3.2...... 121

Plate 3.3...... 123

Plate 3.4...... 125

Plate 3.5...... 127

Plate 3.6...... 129

Plate 3.7 ...... 131

Plate 3.8 ...... 133

Plate 3.9...... 135

Plate 3.10...... 137

Plate 3.11...... 139

Plate 3.12...... 141

Plate 3.13...... 143

Plate 3.14...... 145

Plate 3.15...... 147

Plate 3.16...... 149

Plate 3.17 ...... 151

Plate 3.18 ...... 153

Plate 3.19...... 155

Plate 3.20...... 157

Plate 3.21...... 159

Plate 3.22...... 161

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.23...... 163

Plate 5.1 SEM micrographs of three opaline spherules ...... 184

Plate 5.2 SEM micrographs of cross-sections of three opaline spherules...... 191

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Abstract

This study focuses on Quaternary benthic foraminiferal distribution in the Ross

Sea, and its relationship to oceanography and ice-shelf retreat. It is the first study of

benthic foraminiferal distribution that takes the retreat history of the Ross Ice Shelf

into account. This is also the first time foraminifera from a cold-water carbonate bank

have been described. There are three foraminiferal faunas in the Ross Sea:

Pleistocene carbonate-bank fauna, Modem-calcareous fauna, and Holocene

agglutinated fauna. Numerically significant species in the carbonate-bank and

Modem-calcareous faunas include Angulogerina earlandi, Cibicides lobatulus,

Discorbis vilardeboana, Ehrenbergina glabra, Epistominella exigua, and

Globocassidulina crassa. The carbonate-bank fauna has higher diversity and greater

numerical abundance than the Modem-calcareous fauna. The agglutinated fauna,

which is seen in Holocene sediments, contains Bathysiphon sp. A, Hormosinella

ovicula , Miliammina earlandi, Textularia wiesneri, and Trochammina

quadricamerata. The Modem-calcareous fauna is found where Warm Core Water

upwells into the photic zone, causing an increase in phytoplankton productivity. The

agglutinated fauna is found in water depths below the CCD and where Warm Core

Water does not upwell in the photic zone. The carbonate-bank fauna probably formed

during a period of increased upwelling in the northwestern Ross Sea.

The utility of benthic foraminifera as a tool for distinguishing glacial

environments is also tested. Ice-shelf proximal and distal environments could not be

distinguished by benthic foraminiferal assemblages, which contained the agglutinated

species Miliammina earlandi, reworked calcareous forms, and rare other agglutinated

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. specimens. In addition, some samples with an abundant agglutinated assemblage were

found in an open-water environment.

This research also included a brief study of the distribution and formation of

concentrically layered opaline spherules found in Antarctic sediments. These tiny

spherules are found in association with calcareous foraminifera in the Ross and

Weddell Seas and appear to form through precipitation as seasonal sea ice melts,

causing freshwater to mix with saltwater, thus decreasing silica solubility in surface

waters.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 1: Introduction

Introduction

There are three stages in the study of the fossil record of extant organisms.

First, basic taxonomy has to be resolved. Second an attempt is made to correlate the

present distribution of the organisms with environmental factors, to infer factors that

control biotic distributions. Third, this knowledge is used to interpret

paleoenvironments and solve geologic problems. The study of extant benthic

foraminifera in the Antarctic is just entering this third phase. The review in this

chapter is arranged in order of these three phases of study. First, early taxonomic

works are reviewed. Next, distributional studies from various parts of Antarctica and

surrounding regions are discussed. These studies are arranged by geographic region

(Figure 1.1). Finally, the aims of this study are introduced. Some literature outlined

below has been previously reviewed by Ishman (1991), mostly for nonspecialists.

The present review is of a more technical nature, and the focus is on calcareous

assemblages. Agglutinated forms are infrequent in the samples used in this study,

probably because of disaggregation since collection.

Early Studies

The work of Alcide d’Orbigny (1839a) is a fitting beginning to this review.

He examined specimens collected from Cape Horn and the Falkland Islands during

his voyage in “middle America” (d’Orbigny, 1839a). This work was taxonomic in

nature although species geographic occurrences were listed. About a century later,

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 1.1 Locations of previous studies. l)Tierradel Fuego: Herb (1971); 2) Falkland Islands: d’Orbigny (1839), Heron-Alien and Earland (1932), Herb (1971), Boltovskoy et al. (1980); 3) Drake Passage and South Georgia Island: Herb (1971); 4) South Shetland Islands: Faure-Fremiet (1914), Lena (1980) Ishman (1990); 5) Scotia and Weddell Seas: Pearcey (1914), Echols (1971), Anderson (1972, 1975a, 1975b), Mackensonand Douglas (1989); 6) Antarctic Peninsula and Marguerite Bay: Faure-Fremiet (1914), Lena (1980), Ishman (1990); 7) Bellingshausen Sea: Pflum (1966); 8) Amundsen Sea and Pine Island Bay: Kellogg and Kellogg (1987); 9) Ross Sea and McMurdo Sound: McKnight (1962), Pflum (1966), Kennett (1967, 1968), Fillon (1974), Truesdale and Kellogg (1979), Osterman and Kellogg (1979), Ward et al. (1987), Taviani et al. (1993); 10) Balleny Islands: McKnight (1962); 11) Adelie and George V Land: Milam and Anderson (1981); 12) Wilkes Land: McKnight (1962); 13) Queen Maud Land: McKnight (1962); 14) Lutzow Holm Bay: Uchio (1960); 15) South Orkney, Bruce, and the South Sandwich Islands: Echols (1971).

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Heron- Allen and Earland (1932) published a comprehensive taxonomic report on

Falkland Island foraminifera.

Benthic foraminifera from Antarctic waters have been studied for 120 years.

The first report was by Brady (1879), which was expanded in his excellent and

beautiful taxonomic report from the expedition of the H.M.S. Challenger 1873-1876

(Brady, 1884). Faure-Fremiet (1914) described the samples taken from the area of

the South Shetland Islands and Antarctic Peninsula by the Second French Antarctic

Expedition of 1908-1910. This too was mainly a taxonomic work. He did, however,

discuss the similarities between the South Shetland and Antarctic assemblages and

those found in the Arctic seas.

Pearcey (1914) described the fauna collected during the Scotia expedition to

the Weddell Sea. Unfortunately, he did not have enough material to allow

distributional studies; however, he did write a detailed taxonomic account. Warthin

(1934) reported on the foraminifera from one sample taken in the Bay of Whales in

the eastern Ross Sea. He remarked that the assemblage in that sample contained a far

greater percentage of agglutinated foraminifera than a sample taken from the western

Ross Sea during the British Antarctic (Terra Nova) expedition. Additional

taxonomic reports on foraminifera from the Antarctic include Chapman and Parr

(1937) and Cushman (1945).

Lutzow Holm Bay

Uchio (1960) studied eleven samples from Lutzow Holm Bay, which is south

of the Atlantic Ocean. He distinguished three assemblages, associated with different

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. water depths. The shallowest assemblage (350-850 m) is dominated by

Angulogerina angulosa, Ehrenbergina glabra, and Epistominella exigua

(Assemblage 1). He also described a Bulimina aculeata assemblage (850-2000m) in

whichEponides weddellensis is a significant component (Assemblage 2). In water >

2000 m, Epistominella exigua and Eponides weddellensis become dominant and are

associated with other characteristic species such asBulimina rostrata,

Haplophragmoides bradyi, Nonion sp. cf. colligera, and Pyrulina extensa

(Assemblage 3). Uchio suggested that the distribution of assemblages is due to

summer-water conditions, and linked Assemblage 1 to Antarctic Circumpolar Water

and Antarctic Surface Water, Assemblage 2 to the lower part of the Antarctic

Circumpolar Water, and Assemblage 3 to the Antarctic Bottom Water. However, he

suggested that the distribution of these assemblages may not be attributable to

present conditions, because of the presence of relict assemblages and the possibility

of sediment mixing by ice.

Scotia and Weddell Seas

Echols (1971) studied the distribution of foraminifera in the Scotia Sea and

northern Weddell Sea, and concluded that there were a number of discrete calcareous

and agglutinated faunas. The distribution of these faunas is controlled by the

position of the CCD. His agglutinated faunas were described from waters (deeper

than 2,200 m) much deeper than those of my study (~500 m), so only the four

calcareous faunas he described are discussed here. Two of these, the Upper Bathyal

Fauna and the Deep Fauna, were defined from the South Georgia Slope. The

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. dominant species in the Upper Bathyal Fauna (300-750 m) are Angulogerina

earlandi, Astrononion echolsi, Bulimina aculeata, Cassidulina parkerianus, and

Fursenkoinafusiformis. Eilohedra weddellensis, Gyroidina subplanulata, and

Nonionella iridea characterize the Deep Fauna (deeper than 1,500 m). From South

Orkney, Bruce, and the South Sandwich Islands, Echols (1971) defined two more

calcareous faunas, a Bathyal Fauna and a second Deep Fauna. The dominant species

in the Bathyal Fauna (370-1,600 m) are Eilohedra weddellensis, Epistominella

exigua, and Fursenkoina earlandi. Eponides tumidulus and Melonis cf. M. qffinis

comprise the Deep Fauna (deeper than 1,600 m).

Anderson (1975a, 1975b) described factors that affect the distribution of

benthic foraminifera in the Weddell Sea. Foremost among these is the depth of the

CCD. Anderson (1975a, 1975b) suggested that where the pack ice breaks up late in

the summer, there are high levels of C 02 from lack of uptake by photosynthesis, and

this causes the CCD to rise. In contrast, in areas where the pack ice breaks up early,

C02 levels are lowered and the CCD sinks. Agglutinated assemblages are found

where carbonate dissolution limits calcareous forms. Anderson (1975a) described

the distribution of six biofacies from the Weddell Sea. Three of these contain

calcareous species in significant numbers. Two of the calcareous assemblages are

defined from the eastern continental shelf. Angulogerina earlandi (reported as

Trifarina angulosa), Astrononion echolsi, Cassidulinoides crassa, Cibicides

refulgens, Ehrenbergina glabra, and Globocassidulina subglobosa (reported as

Cassidulina subglobosa ) are the most important species in both of these

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. assemblages. Faunal diversity and abundance distinguish them. The more diverse

assemblage, with greater faunal density, is found in association with the Fresh Shelf

Water, a water-mass that forms on the continental shelf. In the Ice Shelf Facies of

Anderson (1972), the same species are numerically significant, but the fauna appears

to be dominated by solution-resistant forms. Also, the overall abundance and

diversity of the Ice Shelf fauna are lower. The Deep Water Calcareous-Arenaceous

Assemblage is found in association with Antarctic Bottom Water formation. The

important species in this assemblage are Cribrostomoides subglobosus, Cyclammina

pusilla, Epistominella exigua , and Nuttallides umbonifera (Anderson, 1975a).

Mackensen and Douglas (1989) studied downcore distribution of benthic

foraminifera in three short cores from the Weddell Sea. They discovered that

Bulimina aculeata, a calcareous form, lives in carbonate corrosive waters in or on the

uppermost sediment. They also found three distinct steps of downcore distribution

change in agglutinated forms.

Drake Passage and Antarctic Peninsula

Herb (1971) discussed the distribution of Recent foraminifera from the Drake

Passage. He found that calcareous fauna generally dominate in shallower water, with

the percentage of agglutinated forms increasing with depth. He described three

faunas: from Tierra del Fuego (Cape Horn province), the Antarctic shelf (South

Falkland province), and the area of the Falkland Islands (Falkland subprovince).

Typical species of the Cape Horn province are Cibicides fletcheri, Discanomalina

vermiculata, Ehrenbergina pupa, Eponides isabelleanus, Heronallenia kempii,

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Mississippina concentrica, and Polystomellina patagonica. Cibicides

grosspunctatus, C. refulgens, Cribrostomoides jeffreysi, and Reophax pilulifer are

the dominant species in the South Shetland province. In the Falkland subprovince,

Elphidium crispum and Hoeglundina elegans are the most common species.

Boltovskoy et al. (1980) examined the foraminifera of the southwestern

Atlantic, and as part of that study, those of the Falkland Islands (Las Islas Malvinas)

and Cape Horn. They described a Malvin subprovince that is somewhat different

from that of Herb (1971). Its characteristic species are: Angulogerina angulosa

angulosa, Buccella peruviana forma campsi (large specimens), Buliminella

seminuda, Cassidulina crassa forma typica, Cassidulinoides parkerianus,

isabelleanus, Ehrenbergina pupa, Heronallenia kempii, Pullenia subcarinata, and

Uvigerina bifurcata. They also described the differences between assemblages from

the area of the Falkland Islands and the Cape Horn area, but suggested that they are

minor and do not justify the recognition of different subprovinces.

Lena (1980) also studied sediment samples taken from the northeastern coast

of the Antarctic Peninsula and the South Shetland Islands. She found that

agglutinated foraminifera are dominant in water depths greater than 20 m in her area

of study. This is not what has been described by other workers (i.e. Anderson, 1975;

Echols, 1971; Herb, 1971; Boltovskoy, 1980; this study), but this may be because

many of her samples were collected in restricted bays in which other workers have

described predominantly agglutinated assemblages.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Ishman (1990) studied the distribution of foraminifera from the South

Shetland Islands, Danco Coast on the northernmost Antarctic Peninsula, and

Marguerite Bay on the Pacific side of the Antarctic Peninsula. Each of these three

regions has a distinct foraminiferal assemblage. Faunal assemblages from the South

Shetland Islands and Danco Coast are predominantly calcareous. In Marguerite Bay,

the assemblage is predominantly agglutinated. He suggested that the CCD is not the

primary control of this distributional pattern because there is no well-defined

bathymetric break in the percentage of the total assemblage made up by calcareous

benthic species. He noted that the faunas from restricted bays are very similar to

each other and quite different from those found in more open marine water. He also

found that calcareous faunas are associated with sediments with a high organic

carbon content.

Adelie and George V

Milam and Anderson (1981) discussed the distribution of benthic

foraminifera off Adelie Coast and the George V Coast. They found seven

assemblages, of which two are predominantly calcareous and two are mixed

calcareous and agglutinated assemblages. These assemblages are the Shallow Shelf

Calcareous Assemblage, the Deep Shelf Calcareous Assemblage, the Transitional

Shelf Assemblage, and the Slope Assemblage. They concluded that the distribution

of calcareous and agglutinated assemblages is controlled by the depth of the CCD,

with all calcareous assemblages occurring in shallower water than the dominantly

agglutinated assemblages, except the slope assemblage, which contains both

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. calcareous and agglutinated forms. Another suggested control on the distribution of

agglutinated versus calcareous forms is sediment type. They found that most

samples containing dominantly agglutinated foraminifera were found in association

with organic-rich muds and oozes, while calcareous fauna were found in association

with sands.

The Shallow Shelf Assemblage is found in association with a shell hash in

anomalously warm, shallow (<200 m) water with strong to moderate current activity

(Milam and Anderson, 1981). The most important species in this assemblage are

Globocassidulina biora, G. crassa, G. crassa rossensis, G. subglobosa, and Rosalina

globularis, withAstrononion antarcticus, Cassidulinoides porrecta, Cibicides

refulgens, Ehrenbergina glabra, and Pullenia subcarinata as less significant

members. This assemblage is very similar to one found in the Weddell Sea. In both

places, this fauna is associated with Fresh Shelf Water (Milam and Anderson, 1981).

The Deep Shelf Calcareous Assemblage was found on banks, shoals, and the

shallow shelf break (Milam and Anderson, 1981). The numerically important

species in the Deep Shelf Calcareous Assemblage are Cibicides refulgens,

Ehrenbergina glabra, Globocassidulina spp., and Uvigerina bassensis. The Deep

Calcareous Assemblage, Shelf Arenaceous Assemblage, and Transitional Shelf

Assemblage are all found in association with Saline Shelf Water (Milam and

Anderson, 1981).

The Transitional Shelf Assemblage is made up of common shelfal

agglutinated species (species of the family Astrorhizidae and Miliammina earlandi)

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. and the more solution-resistant species from the Deep Shelf Calcareous Assemblage

(Globocassidulina spp. and Uvigerina bassensis). This assemblage is found in the

transition zone between the Deep Shelf Calcareous Assemblage and either the Shelf

Arenaceous Assemblage or the Slope Assemblage (Milam and Anderson, 1981).

The Slope Assemblage is dominated by Psammosphaerafusca. Other

numerically significant species in this assemblage include species of the family

Astrorhizidae, species of the subfamily Trochammininae, Cibicides refulgens,

Ehrenbergina glabra, Globocassidulina crassa, Haplophragmoides canariensis,

Reophax ovicula, and Uvigerina bassensis. The percentage of calcareous forms

decreases with increasing water depth (Milam and Anderson, 1981).

Amundsen Sea

Kellogg and Kellogg (1987) studied the distribution of benthic and planktonic

foraminifera, diatoms, and radiolarians from the Amundsen Sea. They found three

distinct biotic provinces. The outer shelf showed high abundances of both planktonic

and benthic foraminifera and low diatom abundances. A Pine Island Bay province is

characterized by very little biogenic sediment, probably because the Pine Island

Glacier retreated recently enough that there has been no opportunity for biogenic

sediment to accumulate. The eastern margin province shows abundant diatoms and

agglutinated foraminifera, but few calcareous foraminifera. All samples from which

the eastern margin province was defined were taken from depths greater than the

CCD depth in this region, and thus lack calcareous foraminifera.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Ross Sea

McKnight (1962) studied 28 cores from many parts of the Antarctic. Most of

his samples were from the Ross Sea, but some were from the Weddell Sea, off the

Balleny Islands, off Wilkes Land, off Queen Maud Land, and localities adjacent to

the Palmer Peninsula. He found that temperature, salinity, and mean grain size have

little effect on foraminiferal distributions. He suggested that defining foraminiferal

depth assemblages in Antarctic waters may be impractical due to the complexity of

water characteristics and bottom currents. Nevertheless, he described three

assemblages, which he tentatively associated with depth. These are: Assemblage I at

depths from 164 to 475 m ( Bolivina earlandi, Comuspira corticata, Heronallenia

wilsoni, Lenticulina antarctica, Lenticulina asterizans, Polymorphina sp. A,

Planispirinoides bucculentus, Pyrgo elongate, Pyrgoella sphaera, and Tubinella

funalis ), Assemblage II at depths greater than 384 m ( Adercotryma glomeratum,

Entosolenia sp. B, Textularia antarctica, and T. tenuissima ), and Assemblage III at

depths greater than 475 m ( Dentalina communis larva, Entosolenia nelsoni,

Patellinoides depressa, Reophax helenae, and Sigmomorphina subulata). However,

he suggested that the strength of bottom currents is the most important factor

controlling the distribution of calcareous and agglutinated faunas. He believed that

agglutinated forms were found in areas of high-energy bottom current; whereas

calcareous forms were found in areas of low-energy bottom current.

Pflum (1966) described the distribution of foraminifera in the Ross Sea,

Amundsen Sea, and Bellingshausen Sea. He accepted McKnight’s (1962) proposed

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. bottom current as a control on foraminiferal distribution. However, Pflum (1966) did

not discuss the distributions of calcareous and agglutinated biotas as two discrete

entities. Instead, he compared the distributions of species with water depth. He

found three depth assemblages: Shelf Assemblage I and n, and a Slope Assemblage.

Alveolophragmium wiesneri, Angulogerina angulosa, Ehrenbergina glabra,

Haplophragmoides canariensis, and Psammosiphonella discreta are indicative of

Shelf Assemblage I (210-515 m). Shelf Assemblage II is composed of Textularia

antarctica, T. tenuissima, Trochammina antarctica, T. grisea, and T. wiesneri.

Epistominella exigua, Eponides weddellensis, and E. tener comprise the Slope

Assemblage. Pflum (1966) described Epistominella exigua as indicative of a deep

(1,765-3,545 m) environment and suggested that Ehrenbergina glabra should be

found in significant numbers only in water depths of 210-515 m.

Kennett (1967, 1968) published two studies on Antarctic foraminifera. The

first (Kennett, 1967) was a small taxonomic work in which he described some new

species that were found in Ross Sea sediments. The second (Kennett, 1968) was an

ecologic and distributional study of Ross Sea foraminifera. He found two distinct

faunas, one calcareous and the other made up of agglutinated species. Some

agglutinated species, particularly are Bathysiphon sp. (with tests of aligned sponge

spicules) and Ammodiscus cf. anguillae, were common within the calcareous

assemblage. He did not list the common calcareous species from the calcareous

assemblage, but described an agglutinated assemblage in which the following species

were common: Adercotryma glome rata, Bathysiphon filiformis, Glomospira

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. charoides, Karreriella pusilla, Pelosina bicaudata, Reophax distans, R. spicidifer,

Rhabdammina sp. (coarse-grained test with sponge spicules), Rhizammina indivisa,

and Vemeuilina minuta. He also pointed out that where calcareous assemblages are

found, there are usually high foraminiferal counts, whereas samples with agglutinated

assemblages tend to have low foraminiferal counts. According to Kennett (1968),

the calcareous assemblage is only found in water shallower than 550 m and the

agglutinated assemblage only occurs in water deeper than 430 m. The results of my

study contradict that finding.

Fillon (1974) examined Late Cenozoic benthic foraminifera from the Ross

Sea and came to very different conclusions than other workers. Fillon (1974), using

paleomagnetics and radiolarian biostratigraphy, dated the sediments in which his

foraminifera were found. He found that sediments in the Ross Sea are of either

Gauss (> 2.4 m.y.) or Brunhes (< 0.7 m.y.) age, based on the fact that all of his

samples were normally polarized. His Gauss-age sediments contain only calcareous

foraminifera, probably because of the disaggregation of agglutinated forms. Fillon

(1974) described nine species that are usually found in Gauss-age sediments, but are

largely absent from Brunhes-age sediments. These are: Cassidulina neocarinata,

Cibicides corpulentus, Cyclogyra corticata, Globocassidulina biora, G. subglobosa,

G. tuberculata, Globocassidulina sp., Nonionella bradyi, and Triloculina tricarinata.

Brunhes-age sediments contain assemblages that are either predominantly calcareous

or agglutinated. Of the cores which Fillon examined, all but one of the Brunhes-age

cores, which contained a dominantly calcareous assemblage, were found in water

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. depths of less than 400 m. Therefore, Fillon (1974) explained the distribution of

Brunhes-age foraminifera as dependent on a very shallow (<400 m) CCD, with

calcareous foraminifera dominant in shallower water and agglutinated foraminifera

dominant in deeper water. Gauss-age calcareous foraminifera from below the CCD

depth were considered relict assemblages that had not had time to dissolve.

Truesdale and Kellogg (1979) studied diatom assemblages from 67 coretops

distributed throughout the Ross Sea, and resulting ages were very different from

those determined by Fillon (1974). Fifty-five of the samples studied by Truesdale

and Kellogg (1979) contained Holocene sediments. The other 8 samples, 3 from the

northern ends of troughs at the shelf break and 5 from within 10 km of the Ross Ice

Shelf, contain reworked faunas of many different ages, but include Brunhes age

biomarkers.

Osterman and Kellogg (1979) studied Recent benthic foraminifera in the Ross

Sea, and concluded that they were related to a different set of variables in each

region. They suggested that in the shallow eastern portion of the Ross Sea,

foraminifera are agglutinated because the CCD occurs at a shallow depth. On the

rest of the shelf, they regard water depth, the CCD, and other environmental

variables as the controls of foraminiferal distribution. Using 31 coretops, they

described 9 assemblages of which 5 are calcareous. These assemblages were named

after dominant species: Angulogerina earlandi (reported as Trifarina earlandi)

assemblage, Globocassidulina subglobosa assemblage, Nuttalides umbonifera

assemblage, Ehrenbergina glabra assemblage, and Cibicides lobatulus assemblage.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. With the exception of theNuttalides umbonifera assemblage, which is found in the

deep water of the abyssal plain north of the Ross Sea, all calcareous assemblages

were described from both the northwestern and southwestern Ross Sea. Osterman

and Kellogg (1979) suggested that the distribution of these calcareous faunas is

controlled by water depth, with the Globocassidulina subglobosa assemblage usually

occurring at greater depths than the Ehrenbergina glabra assemblage, and the

Angulogerina earlandi assemblage occurring at greater depths than the Cibicides

lobatulus assemblage. They also concluded that intense productivity caused by a

mixing of water masses allows formation of the calcareous slope assemblages.

Osterman and Kellogg (1979), however, used dates from Truesdale and Kellogg

(1979), and confined their samples to the Holocene. Subsequently, these sediments

have been more precisely dated (Taviani et al., 1993).

Ward et al. (1987) found three assemblages of benthic foraminifera in

McMurdo Sound of the Ross Sea. Two of these were agglutinated, a deep open

water (> 560 m) assemblage and a harbor assemblage. In shallow open water, they

found an assemblage dominated by calcareous forms. They also considered the

taphonomic factor in the McMurdo region and found that death assemblages are poor

representations of life assemblages in water between 420 m and 620 m (depth of the

CCD), where calcareous taxa are depleted in the death assemblages. Furthermore,

diversity of the agglutinated fauna is undepleted in death assemblage.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Taviani et al. (1993) examined samples from the carbonate bank in the

northwestern Ross Sea. They did not discuss the foraminiferal facies, but reported

that foraminifera were present with bryzoans, barnacles, and pelecypods.

Summary

On the Antarctic continental shelf, benthic foraminiferal faunas contain either

predominantly calcareous or agglutinated specimens; well-mixed faunas that contain

both types of tests are not reported from most of the shelf (Kennett, 1962; McKnight,

1962; Pflum, 1966; Echols, 1971; Fillon, 1974; Anderson, 1975a, 1975b; Osterman

and Kellogg, 1979; Milam and Anderson, 1981). In the majority of studies, the CCD

was considered the dividing line between these assemblages (Echols, 1971; Fillon,

1974; Anderson, 1975a, 1975b; Osterman and Kellogg, 1979; Milam and Anderson,

1981). Above the CCD, assemblages are calcareous, below the CCD agglutinated.

Kennett (1962) did not mention the CCD, but he did note that his assemblages

change from calcareous to agglutinated below 550 m, which is approximately the

depth of the CCD (Kennett, 1966). In three studies (McKnight, 1962; Pflum, 1966;

Ishman, 1990), the CCD was not considered the controlling factor for assemblages.

McKnight (1962) thought that the configuration of bottom currents in the Ross Sea

control the distribution of calcareous and agglutinated faunas, with agglutinated

forms occurring in areas of high-energy bottom currents. Pflum (1966) accepted

McKnight’s (1962) hypothesis. Perhaps a more compelling argument comes from

Ishman (1990), who found a gradational change from calcareous to agglutinated

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. faunas off the Antarctic Peninsula and South Shetland Islands, and, therefore,

concluded that the CCD does not control this change.

Water mass distribution and water depth are two inter-related factors, which

are considered in most studies to exert the other major control on foraminiferal

distribution (Uchio, 1960; McKnight, 1962; Pflum, 1966; Echols, 1971; Anderson,

1975; Milam and Anderson, 1981). Table 1.1 summarizes these depth associations.

Other factors which have been associated with foraminiferal distribution are amount

of sediment organic content (Ishman, 1990) and age of sediments (Fillon, 1974).

This Study

The present project attempts to determine controls on benthic foraminiferal

distribution in the Ross Sea, with particular attention given to the effect of the ice

sheet. This volume also addresses the usefulness of the benthic foraminiferal record

for mapping ice-shelf retreat in the Ross Sea. The formation of the opaline spherules

found in Antarctic sediments is also discussed. Each chapter is formatted as a self-

contained paper.

The previous results that have the most bearing on this study are those that

concern the CCD (Echols, 1971; Fillon, 1974; Anderson, 1975a, 1975b; Osterman

and Kellogg, 1979; Milam and Anderson, 1981) and phytoplankton productivity

(Osterman and Kellogg, 1979) as the major influences on benthic foraminiferal

distribution in the Ross Sea. The association between the depth of the CCD and the

distribution of an agglutinated fauna is confirmed. Osterman and Kellogg (1979)

originally suggested a relationship between phytoplankton productivity and benthic

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. colligera cf. sp.

lenuissima

affins sp.cf. Pyrulina extensa, rostrata Bulimina extensa, Pyrulina Bulimina aculeata, weddellensis Eponides aculeata, Bulimina Angulogerina earlandi, Epistominella exigua, Ehrenbergina glabra Ehrenbergina exigua, AngulogerinaEpistominella earlandi, Nonion bradyi, exigua, Haplophragmoides Epistominella Eponides weddellensis, Planispirinoides bucculentus, Pyrgo elongata, Pyrgoella sphaera, Tubinella funalis Tubinella sphaera, Pyrgoella elongata, Pyrgo bucculentus, Planispirinoides Cibcides refulgens, Astrononion antarcticus Astrononion refulgens, Cibcides Eilohedra weddellensis, Epistominella exigua, Fursenkoina earlandi Fursenkoina exigua, Epistominella weddellensis, Eilohedra Melonis Eponides tumidulus, subcarinata porrecta, Pullenia glabra, Cassidulinoides spp., Ehrenbergina globularis, Rosalina Globocassidulina Angulogerina earlandi, Astrononion echolsi, Bulimina aculeata, Cassidulina perkerianus, Fursenkoina fusiformis Fursenkoina perkerianus, Cassidulina aculeata, Bulimina Astrononion echolsi, Angulogerinaearlandi, iridea Nonionella subplanulata, Gyroidina Eilohedra weddellensis, echolsi Astononion earlandi, Angulogerina glabra, Ehrenbergina refulgens, Cibicides crassa, Cassidulinoides subglobosa, Cassidulina subglobosus pusilla, Cribrostomoides exigua, Cyclammina Epistominella umbonifera, Nuttalides L A sp. antarctica, Polymorphina Lentiulina Bolivinawilsoni, earlandi, aslerizans, Comuspira Heronallenia corticata, Globocassidulina spp., Uvigerina bassensis, Ehrenbergina glabra, refulgens glabra, Cibicides Ehrenbergina bassensis, spp., Uvigerina Globocassidulina T. antarctica, Textularia sp. B, Adercotrymaglomeralum, Entosolenia helenae, Reophaxsubulata depressa, andSigmomorphina Patellinoides nelsoni, Entosolenia larva, Dentalinacommunis discreta Psammosiphonella canariensis, Haplophragmoides glabra, Ehrenbergina angulosa, Angulogerina Alveolophragmiumwiesneri, wiesneri T. anisea, grisea, T. antarctica, Trochammina lenuissima, antarctica, T. Textularia E. tener Eponides weddellensis, exigua, Epistominella 164-475 164-475 Slope Slope Pflum (1966) Ross Sea (1966) Pflum 210-515 >515 >384 >384 >475 McKnight (1962) Ross Sea (1962) Ross McKnight Echols (1971) S. Orkney, Bruce and S. and S. Sandwich Bruce S. Orkney, (1971) Echols 370-1600 coasts George andV (1981) Adelie and Anderson Milam 350-750 350-750 >1600 ACW ACW 850-2000 FSW Echois(1971) S. GeorgiaSlope Echois(1971) >1500 (1975) Anderson Sea Weddell FSW ABW SSW SSW Table 1.1 Table 1.1 Summary ofprevious foraminiferal studies Antarctica. in Bay Holm (1960) Lutzow Uchio ACW ASW & 350-850 ABW 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. foraminiferal distribution; however, they did not take past positions of the ice shelf

into account. The relationship between phytoplankton productivity and benthic

foraminiferal distribution is retested in the light of current understanding of ice shelf

position and sediment age.

In Chapter Two, the effects of oceanography, paleoceanography, and the

position of the ice shelf on benthic-foraminiferal distribution in the Ross Sea are

explored. Chapter Two also discusses the foraminiferal fauna from the carbonate

bank in the Ross Sea. While cold-water carbonate banks have been studied in detail

(Nelson, 1988), the foraminiferal fauna from a carbonate bank has not been

examined in detail. Chapter Three covers the taxonomy of Ross Sea benthic

foraminifera.

In Chapter Four, this study seeks to determine if there is an ice retreat

signature in downcore benthic-foraminiferal distributions. In the Pleistocene, the

Ross Ice Shelf extended to the edge of the Ross Sea continental shelf. Since that

time, the ice shelf has retreated from approximately 750,000 km2 of the shelf.

Despite such an extensive retreat, the Ross Ice Shelf is the largest existing ice shelf

on Earth.

Chapter Five is a brief discussion of the significance and formation of opaline

spherules found in Ross Sea sediment cores.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 2: Oceanographic Control on the Distribution of Benthic Foraminifera in the Ross Sea in the Quaternary

Introduction

This part of the study focuses on the distribution of benthic foraminifera in

the Ross Sea. An attempt is made to determine if calcareous foraminiferal

assemblages can be used to trace ice sheet movement. Also, other possible controls

on the distribution of benthic foraminiferal assemblages are explored. A large

Pleistocene carbonate bank exists on the continental shelf in the northwestern Ross

Sea. This bank formed when the Ross Ice Sheet was grounded at the edge of the

continental shelf (Taviani et al., 1993). It contains abundant calcareous foraminifera.

There is also a modem sparse calcareous foraminiferal assemblage in the central and

southwestern Ross Sea. An agglutinated fauna is found in the eastern Ross Sea and

in basins of the western Ross Sea. There has never been an attempt to investigate the

relationship between the position of the ice sheet and the existence of the carbonate

bank. Also, there has never been an adequate explanation for the distribution of the

calcareous and agglutinated foraminiferal faunas found elsewhere in the Ross Sea.

This paper attempts to fill that void.

This paper also provides the first description of benthic foraminiferal

distribution within a cold-water carbonate bank. Non-tropical carbonates have been

researched in the past (Nelson, 1988; Collins, 1988; Gostin et al, 1988; Wilson,

1988; Scoffin, 1988; Scoffin and Bowes, 1988; Brookfield, 1988; Draper, 1988; Rao,

1988; Kamp et al, 1988; Nelson et al, 1988; Young, 1988; and Simone and

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Carannante, 1988). However, to date no study has concentrated on cold-water

carbonate foraminiferal assemblages.

Background

Geologic Setting

The Ross Sea is the northern part of the Ross Embayment (Figure 2.1). The

southern part is covered by the Ross Ice Shelf, one of three major Antarctic ice

shelves (Cooper et al., 1990). This ice shelf reached the edge of the continental shelf

of the Ross Sea in the late Pleistocene and has since receded to its present position

(Anderson et al., 1993). A large Pleistocene carbonate bank is located on the

continental shelf in the northwestern Ross Sea (Taviani et al., 1993) and a Holocene

carbonate deposit occurs near the present day Ross Ice Shelf (Osterman and Kellogg,

1979).

Domack (1982), Domack et al. (1988), and Anderson (1993) have suggested

an association between ice shelves and Antarctic marine-carbonate formation. The

northern margin of the ice shelf may be the site of carbonate formation because

planktonic phytoplankton bloom in summer meltwater off the ice shelf edge, creating

a zone of enhanced productivity (El Sayed et al., 1983). Past research suggests that a

predominantly calcareous modem foraminiferal assemblage exists at the edge of the

Ross Ice Sheet (Osterman and Kellogg, 1979). The Pleistocene carbonate-bank

macrofauna in the northwestern Ross Sea have been dated at 22,730 to 35,750 BP

(Taviani et al., 1993), when the ice shelf was grounded slightly south of the

carbonate-bank position (Taviani et al., 1993).

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.1 Study area location.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The position of the ice shelf, however, is not sufficient to explain the

distribution of benthic foraminifera in the Ross Sea. In the western Ross Sea,

calcareous foraminifera are found near the edge of the ice shelf, but are also found in

the central Ross Sea in similar abundance. Calcareous foraminifera are not found in

the eastern Ross Sea, off the edge of the ice shelf or elsewhere. Instead agglutinated

foraminifera are found in these areas. Therefore, the ice shelf alone is not the major

control on modem calcareous foraminiferal distribution.

Ice Sheet

The Antarctic ice sheet is divided into two parts: the West Antarctic Ice Sheet

(WAIS) and the East Antarctic Ice Sheet (EAIS). The EAIS is land-based while the

WAIS is grounded below sea level (Mercer, 1978). Both ice sheets supply ice to the

Ross Ice Shelf, with the WAIS being the most significant ice source (Anderson et al.,

1984).

The Ross Ice Shelf is the largest modem ice shelf, currently covering an area

of 550,000 km 2 (Anderson et al., 1984). Ice extended to the margin of the Ross Sea

continental shelf during the last glacial maximum (Kellogg and Truesdale, 1979;

Kellogg et al., 1979; Anderson, 1984). Between that time and the present, the ice

shelf retreated and grounded on shallow banks on the inner shelf (Anderson, 1993).

Subsequently, the Ross Ice Shelf separated from these shallow banks when sea level

began to rise and the ice shelf retreated to its present position (Anderson, 1993). The

carbonate banks formed during an earlier ice-shelf advance that extended farther

north in the Ross Sea. This event occurred before 20,000 yr. BP (Licht et al., 1996).

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Oceanography

There are three important water masses on the Ross Sea continental shelf.

Two of these form on the continental shelf: High-Salinity Shelf Water (HSSW) and

Low-Salinity Shelf Water (LSSW) (Anderson, 1984). The other water mass that is

significant in the Ross Sea is Circumpolar Deep Water (CDW) (Anderson, 1984).

The nutrient-rich CDW encroaches on the Ross Sea continental shelf as Warm Core

Water (WMCO) which is significantly warmer (potential temperature -0.84° C) than

the waters which form on the shelf (from -1.59° C to -1.91° C potential temperatures)

(Jacobs et al., 1985). In the northwestern Ross Sea, the lighter WMCO floats on the

denser, colder HSSW (Figure 2.2). The WMCO layer continues south to the edge of

the ice shelf in the western Ross Sea. As it moves southward, it rises from a water

depth of 250 m and moves into the photic zone (150 m and above) where it sustains a

phytoplankton community when sea-ice conditions permit. Another tongue of

WMCO also enters the eastern Ross Sea, but it enters the photic zone only in a very

narrow region (Anderson, 1984).

The depth of the CCD in the Ross Sea varies between 400 m and 700 m

(Kennett, 1966). It is affected by fluctuations in the amount of sea ice. Anderson

(1975a, 1975b) suggests that where pack ice breaks up late in the summer, high

levels of CO 2, caused by reduced photosynthesis, occur. Increased CO 2

concentration causes the CCD to rise. In areas where pack ice breaks up early

(Figure 2.3), CO 2 levels are lowered and the CCD is found at greater depths.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 76°I 77s I 78° I I 79°S LATITUDE Lssw ' ROSS I ICE -Q5= SHELF 0.0 +0.S- HSSW ■1.85- 500 WDW i-x tu +L0 100 Q KM <0.111 1000

7 6°S LATITUDE

WDW *5 5 'oo / s '

HSSW

Figure 2.2 A) Modem temperature profile across the eastern Ross Sea, with the position of the WMCO stippled, b) Modem temperature profile across the western Ross Sea, with the position of the WMCO stippled. WMCO = Warm Core Water, LSSW = Low Salinity Shelf Water, HSSW = High Salinity Shelf Water, (from Anderson et al., 1984)

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Maximum, Mean and Minimum Ice Limits

February 15 1973-1982' \____

August 15 1973-1982

Lind M ean m m Ice lim it Minimum Maximum Ice Limit Ice Limit I O pen W ater

Figure 2.3 Summer and winter maximum, minimum, and mean sea ice extent. (From Department of the Navy, 1985)

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Sedimentology

The oceanography of the Ross Sea influences the distribution of surface

sediments. Coarse-grained sediments occur in two places on the Ross Sea shelf: near

the shelf break and on the crests of shallow banks (<400 m) (Figure 2.4).

Apparently, this distribution mirrors the CDW boundary current on the continental

shelf (Anderson, 1993). Currents in areas bathed by CDW are generally strong

enough to move fine sediment 10% of the time. There has been some winnowing

and redistribution of the carbonate-bank sediments. Ice-rafted sand and gravel,

calcareous bioclastic material, and well-sorted fine and very fine sands comprise

these sediments. Bioclastic material makes up of these sediments and increases from

< 5% to 90% from east to west (Anderson, 1993).

Everywhere else in the Ross Sea, sediment consists of terrigenous silt and

very fine sand, diatom frustules, sponge spicules, and less than ten percent ice-rafted

debris. Currents in the inner Ross Sea shelf are usually not strong enough to suspend

very fine sand (Anderson, 1993). In the western Ross Sea, the sediments are

siliceous muds and oozes deposited since the last retreat of the ice sheet (Truesdale

and Kellogg, 1979) in waters probably deep enough to preclude iceberg effect

(Anderson, in press). They are frequently laminated and do not appear reworked.

The same is tme of thinner siliceous sediments in the eastern Ross Sea.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dCGM * SiM 100 SiM SiM >0 SiM, S .•S' (From Anderson etal.,(From 1984). ice-rafted debris; dCGM is diatomaceous compound glacial-marine sediment; sediment; glacial-marine isdiatomaceouscZ clayeyis dCGM compound ice-rafteddebris; silt. Residualglacial-marine sediment (RGM) is predominantly ice-rafted sand and gravel; gravel; SiM siliceousis and ice-raftedsand sediment (RGM)SiO is mud; siliceous is predominantly ooze. Stipplingindicates gravelly currents. Bathymetry sand. isand sand, inbottom muddy sand, meters. issubject to stronger The stippled area Figure 2.4Figure map. sediment Ross Sea glacial-marinesedimentsiltdistribution (CGM) is withterrigenous Compound minor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Cold-water carbonates

The majority of carbonate banks are found in tropical regions. However,

cold-water carbonates are more prevalent among modem carbonates than might be

expected. Only within the last 30 years have cold-water carbonate banks, such as the

bank found in the Ross Sea, Antarctica, been recognized and studied. The

information in this paragraph is from an excellent review paper by Nelson (1988).

The most significant differences between cold-water carbonates and warm-water

carbonates are in grain size, major skeletal components, and carbonate mineralogy.

In warm water, both skeletal and non-skeletal components compose the sediments; in

cold water, skeletal components alone comprise the bank. Cold-water carbonates are

mainly composed of sand and gravel-sized fragments with rare muds derived from

skeletal abrasion, bioerosion, and maceration, whereas warm-water carbonates are

composed of sand, gravel, and mud. Warm-water muds are generally created by

inorganic precipitation, which does not happen in cold water, and disaggregation of

shells. Different organisms dominate cold-water and warm-water carbonates. Major

components of cold-water carbonates that are not as common in warm-water

carbonates include coccolithophorids, bryzoans, bivalve mollusks, barnacles,

echinoderms, serpulid worms, and brachiopods. Both types of carbonates, however,

include calcareous red algae and benthic foraminifera as major contributors.

Conspicuously missing from cold-water carbonates are hermatypic corals and

calcareous green algae, both of which are common components of warm-water

carbonates. Other important characteristics of cold-water carbonates are ice-rafted

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. debris and heavy oxygen-isotope compositions of calcareous shells (Taviani et al.

1993).

Taviani et al. (1993) studied the carbonate bank in the northwestern Ross Sea.

They defined four carbonate facies in the bank area on the basis of skeletal

composition (Figure 2.5). These are a bamacle/foraminifer facies (I), a muddy

bryzoan facies (II), a bryzoan/bamacle/pelecypod/ foraminifer facies (HI), and a

planktonic foraminifer facies (IV). The samples in this study include examples of

each of these facies.

Earlier studies

A detailed discussion of previous benthic foraminiferal studies is given in

chapter one. The major findings of those studies that have a bearing on the present

work are summarized below.

Anderson (1975a) suggested that the most important control on foraminiferal

distribution in the Weddell Sea was depth of the CCD. He described two shelfal

calcareous assemblages in which Angulogerina angulosa, Astrononion echolsi,

Cassidulinoides crassa, Cibicides refulgens, Ehrenbergina glabra, and

Globocassidulina subglobosa were the most abundant species. Faunal diversity and

density distinguish these assemblages. The more diverse assemblage (with the

greater faunal density) is associated with the Fresh Shelf Water. In the other facies,

referred to as the Ice Shelf Facies (Anderson, 1972), the overall abundance and

diversity of the fauna are lower.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 170°E 180°

North’ Victoria Land.^

.Coalman ijaland

X

Figure 2.5 Distribution of the carbonate biofacies defined on skeletal composition. (I) bamacle/foraminifer facies; (II) muddy bryzoan facies; (III) bryzoan/bamacle/pelecypod/foraminifer facies; (IV) planktonic foraminifer facies. Boxes and circles represent sample locations. (From Taviani et al., 1993)

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Osterman and Kellogg (1979) described nine foraminiferal assemblages, five

of which were calcareous, from the Ross Sea (Figure 2.6). They suggested that in the

shallow eastern portion of the Ross Sea, foraminifera are agglutinated because the

CCD occurs at a shallow depth. On the rest of the shelf, they regarded water depth,

CCD, and other ecological variables such as food supply and oceanographic

conditions as the controls on foraminiferal distribution. They concluded that intense

productivity caused by a mixing of water masses allows formation of the calcareous

slope assemblages. However, most of the northwestern carbonate bank material,

which Osterman and Kellogg (1979) believed was Holocene, formed during the

Pleistocene and has been dated between 22,730 B.P. and 35,750 B.P. (Taviani et al.,

1993), when the ice shelf was grounded near the shelf edge. Since that time,

carbonate production has slowed. Therefore, although water-mass mixing may be an

appropriate explanation for the distribution in that area, it probably occurred under a

different oceanographic regime than the modem one Osterman and Kellogg (1979)

described.

Materials and Methods

Samples of benthic foraminifera from the Ross Sea used in this study range

from 172 m to 1867 m of water depth, with most samples collected between 400 m

and 700 m of water (Table 2.1, Figure 2.7). This study includes 264 samples from 35

cores. Most of these samples were collected on Deep Freeze cruises 62 and 87,

Eltanin cruises 27,32,52, and 59, Glacier cruise 76, and N. B. Palmer cruise 9901,

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. E 180 W

iS S ig l Angulogerina earlandi Globocassidulina

Ciblcldas lobatulus

VICTORIA LAND

Ross I. w ! L 1 nnin

E180 W 160° 160°

Figure 2.6 Distribution of calcareous foraminiferal assemblages defined by Osterman and Kellogg (1979); the assemblages named in the key constitute greater than 75% of the benthic foraminiferal fauna. Dots are sample locations. (After Osterman and Kellogg, 1979)

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 2.1 Latitude, longitude and water depth of samples used in this study.

Core number Latitude Longitude Water Depth DF62-6 -77.350 173.817 DF62-11 -75.667 176.400 DF87-5 -72.407 171.553 172 DF87-8 -73.007 178.172 421 DF87-9PC -73.140 177.113 548 DF87-12PC -73.205 179.645 585 DF87-13PC -73.195 179.822 548 DF87-14 -72.973 179.893 658 DF87-15PC -72.647 -179.248 705 DF87-18PC -73.007 178.913 820 DF87-21 -72.543 174.880 411 E27-5 -71.507 171.250 351 E27-8 -74.625 170.480 285 E32-11 -75.033 -176.298 1509 E32-12 -75.000 176.890 347 E32-13 -74.955 172.157 538 E32-16 -75.973 178.137 508 E32-32 -76.967 -171.117 430 E32-37 -77.652 -162.833 205 E32-43 -72.453 176.983 1867 E32-44 -71.385 171.593 521 E52-7 -73.247 177.122 475 E52-9 -72.447 173.872 479 GL76-1 -77.445 174.795 695 GL76-3 -78.200 -174.183 558 GL76-5 -78.033 -179.245 677 GL76-15 -77.245 176.267 494 IWSOE68 68-16 -74.85 -39.083 384 IWSOE70 2-19-1 -74.350 -38.250 489 NBP9501-30 -76.058 164.585 752 NBP9501-31 -75.7 165.417 879 NBP9501-37 -74.498 167.743 924 NBP9501-39 -74.473 173.512 557 NBP9902-11 -76.311 -169.659 578 NBP9902-12 -76.312 -169.668 583

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.7 Map of sample locations. 1) E32-44,2) DF87-5, 3) E52-9, 4) DF87-21, 5) E32-43, 6) E52-7,7) DF87-8 and DF87-9, 8 ) DF87-18, 9) DF87-15, 10) DF87-12, DF87-13, and E32-16, ll)NBP9501-37 12) E27-8, 13)NBP9501-39, 14)E32-13, 15) E32-12, 16)E32-11, 17) DF62-11, 18) DF87-14, 19) NBP9501-31,20) NBP9501-30, 21) NBP9901-11 and NBP9901-12, 22) DF62-6, 23) GL76-1, 24) GL76-15, 25) GL76-5, 26) GL76-3.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. and were obtained from the Antarctic Research Facility at Florida State University.

The remainder were collected by the author on shipboard during N. B. Palmer cruise

9902 (sample numbers with NBP9902 prefix) in February and March, 1999. Both

coretops and downcore samples were used in this study. Holocene and Pleistocene

downcore samples were included because there were few coretop samples available

for study due to previous sampling of cores.

Samples were washed over a 63 pm sieve. Those with low foraminiferal

density and high quartz content were density separated by centrifuging for 6 minutes

at 1400 rpm in a 2.5g/cc sodium polytungstate and water solution. Float and sink

were both rinsed with water and saved. Floats from samples that were density

separated and the washed material from other samples were split with a microsplitter

into subsamples (each containing approximately 300 specimens) and picked. Entire

samples (usually -10 g in weight) were picked if they did not contain 300 specimens.

NBP9902 samples were processed somewhat differently, because cores were

processed immediately after collection. The two coretops were allowed to sit

overnight in a Rose Bengal solution in ethanol in order to stain residual protoplasm

in specimens that probably were living when collected. They were washed over a 63

pm sieve, split, and picked. NBP9902 KC11 10-12 cm and KC12 10-12 cm were

soaked overnight in a Calgon and water solution, washed over a 63 pm sieve, and

picked.

Biogenic silica content was determined at Louisiana State University by a

method modified from that of DeMaster (1981). Subsamples of 20-30 mg of dry

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sediment were digested in 40mL of a 1.0% Na 2CC>3 solution at 85°C in 125 mL

polyethylene bottles. One mL aliquots were removed at 2, 3, 4, and 5 hour intervals.

These aliquots were analyzed for dissolved silica concentration on a Technicon

Autoanalyzer II by the heteropoly blue method (DeMaster, 1981). Biogenic silica

concentrations were determined by a least-squares regression of extracted silica

versus time, in order to correct for mineral dissolution. The extrapolated intercept at

time zero was taken as the biogenic silica concentration of the sample.

Accelerator Mass Spectrometry (AMS) radiocarbon dates were determined at

the University of Arizona.

The Ward’s Hierarchical Clustering Method was used to analyze surface

sample benthic foraminiferal data because it reduces the differences caused by

differing sample sizes. Proportional abundance data of benthic foraminiferal were

analyzed.

Results

Previous studies from the Ross Sea (McKnight, 1962; Pflum, 1966; Kennett,

1968; Fillon, 1974; Osterman and Kellogg, 1979; Ward et al., 1987) defined distinct

agglutinated and calcareous assemblages in the Ross Sea. Further, calcareous

foraminifera are known from two distinct sedimentary facies, the Pleistocene

carbonate bank in the northwestern Ross Sea, and the Recent diatomaceous mud in

the central Ross Sea. In this study, the distributions of the agglutinated and

calcareous foraminiferal assemblages were determined and the calcareous

foraminiferal faunas from both sedimentary facies were delimited (Figure 2.8). The

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.8 Distribution of faunas. Samples which contain the carbonate-bank fauna are shown as squares. Samples which contain the Modem-calcareous fauna are shown as circles. Samples which contain the agglutinated fauna are shown as diamonds. Barren samples are shown as triangles.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Modem-calcareous fauna is found near the western edge of the ice shelf and in the

central Ross Sea. The carbonate-bank fauna formed abundantly during the

Pleistocene (Taviani et al., 1993) in the northwestern Ross Sea and is less profuse

today. The carbonate-bank foraminifera are usually found with other organisms

(such as bryzoans, barnacles, and bivalves), although sometimes it is found only in

association with planktonic foraminifera. An agglutinated fauna is found in the

eastern Ross Sea, and in samples from the JOIDES basin in the northwestern Ross

Sea and the Drygalski Basin in the western Ross Sea. The three benthic

foraminiferal faunas are discussed in greater detail in subsequent sections. Barren

coretops were found near Cape Adare, in the central Ross Sea, and off the eastern

edge of the ice shelf. Systematic and alphabetical lists of all foraminiferal species

identified in this study are given in Chapter Three.

Surface Distribution

Faunal data from available coretops were analyzed with a Ward’s

Hierarchical Cluster Analysis (Figure 2.9). This cluster analysis confirmed the a-

priori designation of foraminiferal faunas. Two coretops, NBP9902 KC11 and KC12

from the eastern Ross Sea (basal cluster) contained the agglutinated fauna. The

Modem calcareous fauna clustered together as a subset of the calcareous fauna in

general. The species found in the Modem calcareous fauna are a subset of the

species found in the carbonate bank fauna; however, this is the effect of a larger

population size on diversity. The carbonate bank contains a more diverse and

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DF62-6 DF62-11 E27-8 E32-11 E32-37 GL76-1 DF87-12 DF87-18 E27-5 E32-12 DF87-8 E32-7 DF87-21 DF87-14 DF87-15 DF87-9 E32-43 DF87-13 E52-9 NBP9902 KC-11 NBP9902 KC-12

Figure 2.9 Cluster diagram for abundance data of benthic foraminifera from Ross Sea surface samples. Cluster 1: Modem-calcareous fauna; Cluster 2: carbonate-bank fauna; Cluster 3: agglutinated fauna.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. abundant foraminiferal assemblage than the Recent sediments (see below). Six

coretops from the western ice-shelf edge and the western central Ross Sea contained

the Modem-calcareous fauna (DF62-6, DF62-11, E27-8, E32-11, E32-37, and GL76-

1). In the northwestern Ross Sea, the carbonate bank fauna was represented in

thirteen coretops (DF87-8, DF87-9, DF87-12, DF87-13, DF87-14, DF87-15, DF87-

18, DF87-21, E27-5, E32-7, E32-12, E52-9, and E32-43). E32-12 clustered with the

carbonate-bank fauna and was dated at 35,900 B.P. +-740 years, placing it in the age

range of the carbonate bank (22,730 to 35,750 B.P., Taviani et al., 1993). This

sample came from a shallow bank in the central Ross Sea, which was an intermediate

grounding point for the ice shelf (Anderson, 1993). It is probably reworked material

that was transported by the ice shelf during its retreat.

Barren coretops from the central Ross Sea are not reflective of downcore

material. In these cores, a sparse foraminiferal assemblage is found just beneath the

top of the core. The foraminiferal counts in these cores are low (average faunal

density is 7.5 tests per gram of sediment), and the barren coretops may represent

random variation or fluctuations in the CCD. The entire core from the eastern edge

of the Ross Ice Shelf was barren. The following discussion of faunas is based on

both surface and downcore distributions.

Modem calcareous fauna

Cores DF62-6, DF62-11, E27-8, E32-11, E32-13, E32-16, E32-37, and

GL76-1 contain the Modem calcareous fauna samples from this study. This fauna is

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. found in the southwestern Ross Sea. The abundant species in both the Modem

calcareous fauna and the Pleistocene carbonate banks are Angulogerina earlandi,

Cibicides lobatulus, Discorbis vilardeboana, Ehrenbergina glabra, Epistominella

exigua, and Globocassidulina crassa (Table 2.2, Figures 2.10-2.15). The two faunas

are distingiushed by faunal diversity and density. In each Ross Sea core, the average

combined contribution of these species to a sample ranges between 66 and 100% of

the total fauna. Calcareous foraminifera make up a significantly smaller proportion

of the sediment in the central and southwestern Ross Sea than they do in the

carbonate bank samples, where the calcium-carbonate content may reach as high as

80% of the total sediment (Taviani et al., 1993). In the southwestern and central

Ross Sea, where the Modem calcareous fauna is found, the average foraminiferal

density is 7.57 tests per gram of sediment, with an average density ranging from 0.14

to 31.37. In the carbonate bank fauna, the average is far greater (~3,000 foraminifera

per gram sediment). The diversity in the Modem calcareous fauna is also lower than

that of the carbonate bank fauna. In the Modem calcareous fauna, the Shannon-

Wiener index [H(S) = -£( pOln(pi), where S is number of species and p* is proportion

of species.] ranges from an average per core of 0.14 to 0.80, with the overall average

being 0.56. S, in the Modem calcareous fauna, averages 8 species per sample. This

fauna is similar in composition and density to the Ice Shelf Facies that Anderson

(1972) found in the Weddell Sea.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 2.2 Percentage of abundant species in Modem-calcareous fauna cores.

§ a Co S5 M 5 5 s* oa O 360 •5 •3 C/5£> 6 o 3 .5 a § W) c3 -S5 -4—iC3 M .C .K a ^253 **«• O > o *4-4 Q60 s? § a c o -SS 1

DF62-11 0-2 cm 6 50.0 0.0 16.7 33.3 0 100.0 20-22 cm 21 23.8 0.0 0.0 4.8 5 33.3 40-42 cm 5 20.0 20.0 0.0 40.0 0 80.0 60-64 cm 27 44.4 7.4 0.0 3.7 0 55.6 80-82 cm 15 26.7 0.0 0.0 6.7 7 40.0 102-104 cm 11 63.6 0.0 0.0 18.2 0 81.8 120-122 cm 8 75.0 0.0 0.0 12.5 0 87.5 148-150 cm 18 50.0 0.0 0.0 0.0 0 50.0 160-162 cm 19 52.6 5.3 0.0 0.0 11 68.4 180-182 cm 27 37.0 3.7 0.0 3.7 11 55.6 200-204 cm 20 40.0 0.0 0.0 10.0 10 60.0 220-222 cm 8 25.0 0.0 0.0 12.5 25 62.5

E27-8 0-2 cm 6 50.0 16.7 16.7 16.7 0 100.0 20-22 cm 22 72.7 0.0 0.0 4.5 0 77.3 30-32 cm 266 43.2 7.5 0.0 2.6 11 64.3 (Table 2.2 cont’d.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. I iB s**<3 ^5 a 2 5 *5 SC ~ c s 22 -§ GS <8 C Go a § •8 c4 Q -o<3 s? , G S o J§ 1 • *■«* a) 1—1 -2 » « 0 K00 E a § Q Q IS 73 < 4 -1 « 4 - l ( 4 - ( 4 -1 4— o o o s o» o o o H # s ts U E32-11 0-10 cm 1 0.0 0.0 100.0 0.0 0 100.0 42-44 cm 32 40.6 6.3 0.0 3.1 3 53.1 60-62 cm 22 36.4 4.5 0.0 13.6 18 72.7 78-80 cm 17 35.3 11.8 0.0 5.9 0 52.9 101-104 cm 12 0.0 16.7 0.0 0.0 0 16.7 120-122 cm 12 25.0 0.0 8.3 25.0 0 58.3 140-142 cm 19 36.8 10.5 5.3 15.8 0 68.4 163-165 cm 11 54.5 0.0 9.1 18.2 0 81.8 180-182 cm 20 40.0 10.0 5.0 5.0 5 65.0 200-202 cm 20 35.0 0.0 5.0 15.0 5 60.0 220-222 cm 7 42.9 0.0 0.0 14.3 14 71.4 240-242 cm 13 30.8 0.0 7.7 23.1 8 69.2 260-262 cm 2 50.0 0.0 0.0 0.0 0 50.0

E32-13 42-44 cm 32 31.3 9.4 0.0 12.5 13 65.6 65-67 cm 36 37.5 12.5 0.0 5.0 3 57.5 84-86 cm 70 44.3 1.4 2.9 8.6 7 64.3 98-100 cm 13 61.5 15.4 0.0 7.7 8 92.3 120-122 cm 46 39.1 0.0 0.0 4.3 22 65.2 140-142 cm 20 70.0 0.0 0.0 10.0 5 85.0 160-162 cm 34 58.8 5.9 0.0 11.8 0 76.5 182-184 cm 28 30.0 6.7 0.0 13.3 13 63.3 202-204 cm 29 43.3 10.0 0.0 6.7 10 70.0 (Table 2.2 cont’d.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a I •>2 N sc cs O2 2 -c •5 Q -S •5 (So aa 8 ■8 03bO Ctt •cs a •4—> Urn .SC .sc G * -2 C 2 u 60 2 s Q 3 13 <4—• <4-1 « 4 -l (4-< 4—» "S o O o o s o o H # # V E32-16 18-20 cm 2 0.0 0.0 0.0 0.0 0 0.0 60-62 cm 13 71.4 0.0 0.0 7.1 0 78.6 80-82 cm 10 81.8 0.0 0.0 9.1 0 90.9 98-100 cm 5 14.3 0.0 0.0 0.0 0 14.3 120-122 cm 10 60.0 0.0 0.0 20.0 0 80.0 140-142 cm 13 46.2 7.7 0.0 0.0 0 53.8 160-162 cm 14 28.6 0.0 0.0 7.1 0 35.7 180-182 cm 11 27.3 18.2 9.1 0.0 9 63.6 198-200 cm 11 36.4 0.0 0.0 0.0 0 36.4 220-222 cm 12 41.7 16.7 0.0 25.0 0 83.3 240-242 cm 5 40.0 20.0 0.0 0.0 0 60.0 260-262 cm 11 36.4 9.1 0.0 18.2 9 72.7 280-282 cm 19 31.6 10.5 5.3 10.5 26 84.2 340-342 cm 19 42.1 5.3 0.0 0.0 16 63.2 360-362 cm 28 48.3 3.4 0.0 6.9 10 69.0 380-382 cm 7 28.6 0.0 0.0 0.0 0 28.6

E32-37 0.0 20-22 cm 8 0.0 0.0 0.0 87.5 0 87.5 242-244 cm 1 0.0 0.0 0.0 0.0 0 0.0 258-260 cm 2 50.0 0.0 0.0 0.0 50 100.0 (Table 2.2 cont’d.)

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 53 to ^53 e 2 e 53 2 Ol <3 -C i X -S3 53 ■S C /3 . a 60 5 53 O 53 ■i cd 53 53 8P " a C -S3 • .« C u % c r— n 'S £ ? u . 8 -S3 03 *■«-s’ «» ”2 &. s s a 53 03 r \ *•4 5J T 3 •-■a 50 0} S’ C a § 0 Q Q Q o <4-. l o w © o O E-* & # ss # U GL76-1 0-2 cm 31 32.3 12.9 22.6 19.4 0 87.1 20-22 cm 126 40.5 7.1 3.2 11.9 10 72.2 40-42 cm 119 38.7 5.0 0.8 12.6 7 63.9 60-62 cm 157 43.3 5.1 0.0 8.9 3 60.5 80-82 cm 89 44.9 5.6 0.0 13.5 9 73.0 100-102 cm 147 45.6 4.8 0.0 8.8 5 64.6 120-122 cm 168 39.6 4.1 1.2 4.7 13 62.7 140-142 cm 147 35.4 6.8 0.7 13.6 9 65.3 160-162 cm 54 42.6 11.1 0.0 7.4 4 64.8 180-182 cm 67 31.3 11.9 0.0 17.9 7 68.7 200-202 cm 112 47.3 4.5 0.0 10.7 5 67.9 240-242 cm 49 44.9 6.1 0.0 6.1 0 57.1 260-262 cm 44 47.7 4.5 0.0 27.3 2 81.8 298-300 cm 5 20.0 20.0 0.0 40.0 0 80.0 320-322 cm 59 35.6 10.2 0.0 10.2 7 62.7 340-342 cm 52 32.7 9.6 0.0 21.2 2 65.4 360-362 cm 34 41.2 5.9 0.0 29.4 3 79.4 380-382 cm 31 45.2 12.9 0.0 19.4 6 83.9 400-402 cm 74 28.4 12.2 0.0 20.3 1 62.2 420-422 cm 24 33.3 8.3 0.0 20.8 0 62.5 440-442 cm 51 43.1 7.8 0.0 17.6 4 72.5 460-462 cm 39 23.1 10.3 0.0 38.5 0 71.8 480-482 cm 30 23.3 10.0 0.0 33.3 0 66.7 500-502 cm 40 17.5 12.5 0.0 37.5 0 67.5

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.10 Percentages of abundant species in core DF62-6. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

A1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DF62-11.TXT GC EG CL AE DV EE 10 20 30 40 50 60 70 10 20 10 10 20 30 40 10 20 10 20 30

>

Figure 2.11 Percentages of abundant species in core DF62-11. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.12 Percentages of abundant species in core E32-11. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.13 Percentages of abundant species in core E32-13. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. E32-16.TXT GC EG a AE DV EE 10 20 30 40 50 60 70 80 10 20 10 20 10 20 10 20 30

Figure 2.14 Percentages of abundant species in core E32-16. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DY is Discorbis vilardeboana. EE is Epistominella exigua.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.15 Percentages of abundant species in core GL76-1. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Angulogerina earlandi ranges to as high as 40% of Modem calcareous

fauna assemblages (that contain more than 10 total specimens), but generally remains

below 15%.

Cibicides lobatulus makes up less than 10% of the assemblage in most

samples from the Modem-calcareous fauna. In some cores it does not appear at all,

and its highest concentration is 23% (if one sample which contained only one

foraminifer is excluded). Cibicides lobatulus is an epifaunal, attached form, which

prefers high-current environments. The current activity in the inner shelf is not high

enough that a high concentration of Cibicides lobatulus is expected.

Discorbis vilardeboana varies between 0% and 50% in the Modem

calcareous fauna. Usually, it makes up less than 20% of the total fauna. Like

Cibicides lobatulus, Discorbis vilardeboana is an attached form, found in areas with

high current activity.

Ehrenbergina glabra varies between 0% and 20% of the Modem calcareous

fauna.

Epistominella exigua is found in relatively low levels in the Modem

calcareous fauna. It rarely exceeds 15% and is commonly found in concentrations of

less than 10%.

Globocassidulina crassa is the most numerous species in the Modem

calcareous fauna. It frequently comprises over 60% of the assemblage in Modem

calcareous fauna samples and exceeds 80% in some samples.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Carbonate Bank Fauna

A different benthic foraminiferal fauna is found on the bank tops of the

northwestern Ross Sea, which is positioned at approximately 73° South latitude.

The most abundant contributors to this assemblage are the same as those to the

western assemblage: Angulogerina earlandi , Cibicides lobatulus, Discorbis

vilardeboana, Ehrenbergina glabra, Epistominella exigua, and Globocassidulina

crassa (Table 2.3, Figures 2.16-2.20). The main difference between the carbonate-

bank and Modem-calcareous faunas lies in the diversity of the foraminiferal

assemblage. The Shannon-Wiener Diversity Index ranges from 0.70 to 1.03 on

average for cores from the carbonate bank fauna. The overall average for the

carbonate-bank samples is 0.87. Although this is lower than is usually found in

warm water environments, it is much higher than the diversity found in the Modem-

calcareous fauna (average of .56). S, the number of species in a sample also is higher

on average in the carbonate-bank fauna (18) than in the Modem-calcareous fauna ( 8 ).

Another striking difference between the carbonate-bank fauna and the Modem-

calcareous fauna is the concentration of foraminifera in the sediments. The average

number of foraminifera per gram of sediment in the carbonate bank fauna is 3000,

with the average per core value ranging from 1053 to 7258 tests per gram sediment.

Cores DF87-8, E32-7, DF87-9, E52-9, E32-43, and DF87-21 contain carbonate bank

foraminifera in association with diverse macrofauna. In cores DF87-12, DF87-13,

DF87-14, DF87-15, DF87-18, E27-5, E32-12, and E32-44, benthic and planktonic

foraminifera are the only significant calcareous components.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 2.3 Percentage of abundant species in carbonate-bank fauna cores.

I ^5is *

E32-12 0-2 cm 313 66.6 0.6 5.4 9.6 0 82.2 40-42 cm 205 65.9 1.5 2.0 10.2 2 81.5 60-62 cm 164 63.6 2.4 2.4 10.9 4 83.0 80-82 cm 29 62.1 0.0 0.0 3.4 0 65.5 (Table 2.3 cont’d.)

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3 I M. 2 8 St 3 -Cl ■s CO .StSS •*-* CD * —* too a 8 ■2 cs -3a a ,3 SP .St s * * 4 U- * Bw* -S >■ a S3 to s ‘5 s? ao 8 -Cl £•»»«* ■g CL. 3 i .8 I Oo | -2 C * *»«* c ;a § c Q S 13 M m Mom Mom Mom O s o o O E- # # tj E32-43 0-2 cm 291 3.4 9.9 2.4 20.2 13 48.6 20-22 cm 334 24.9 6.3 0.0 12.0 12 55.1 41-43 cm 345 26.1 5.8 6.1 13.9 12 63.8 100-102 cm 429 24.3 0.9 0.7 1.6 17 44.1 120-122 cm 254 17.6 12.5 8.6 37.1 2 77.7 140-142 cm 318 19.5 41.2 13.2 9.1 5 87.7 160-162 cm 347 6.8 2.3 0.0 0.0 17 26.2 180-182 cm 294 1.7 0.7 0.3 0.0 7 9.2 200-202 cm 241 11.2 16.9 1.2 12.0 10 50.8 240-242 cm 12 0.0 25.0 16.7 25.0 0 66.7 260-262 cm 349 23.2 31.8 5.4 21.8 2 84.2 280-282 cm 141 19.1 36.2 8.5 25.5 0 89.4 300-302 cm 55 27.3 7.3 0.0 23.6 4 61.8 (Table 2.3 cont’d.)

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. <3 I >5 S 2 O« -caM *•*»«* ■§ c/5 •5 do 3 8 CD Q ■8 a* Q -ca • w OSU-> .55 .s: c • *»* £ to ‘S 50 0a) 8 -O CU •••• I 5 <3 »»* s 1 | • do *>0 s ,*0 c «8 c Q 3 "53 < 4 -1 1 < 4 -^ £ 4-»o o o o o o o H ss # U E32-44 145-147 cm 327 11.0 0.6 0.9 0.9 25 38.8 165-167 cm 302 10.8 0.0 1.0 3.0 26 40.3 185-187 cm 333 4.8 0.3 1.8 0.9 36 43.7 225-227 cm 317 5.0 0.0 0.0 1.3 30 36.3 245-247 cm 339 3.2 0.9 0.6 1.8 25 31.6 265-267 cm 289 7.9 1.4 2.1 9.6 31 51.5 305-307 cm 328 2.7 0.3 1.5 0.0 31 35.4 325-327 cm 294 3.0 2.4 2.0 1.0 26 34.0 345-347 cm 311 2.5 3.5 4.8 0.0 28 39.0 365-367 cm 327 6.4 7.3 2.4 3.1 41 60.6 385-387 cm 296 6.7 4.7 5.4 1.7 36 54.9 405-407 cm 426 9.6 4.6 1.1 0.5 28 44.3 425-427 cm 372 1.6 5.4 2.7 0.5 31 41.4 445-447 cm 317 1.3 1.6 0.9 0.3 29 33.3 465-467 cm 327 0.6 8.9 2.4 0.0 35 46.5 485-487 cm 310 2.6 1.9 2.2 0.6 26 32.9 505-507 cm 601 3.8 3.9 2.6 0.7 31 42.0 525-527 cm 293 6.3 3.6 2.6 0.3 49 61.4 565-567 cm 316 1.6 0.9 4.4 0.3 30 37.0 (Table 2.3 cont’d.)

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1 — « 2 S « |

s I |IS 1 Q I*>5 « ^3 60 *> 5 bO b u,« 73 .s .5 a c> .§ .s § s* -a c & S3 £? * 6 .£ § •| S ^ ^ ^ ^ « I | I S 1 8 $ o >i ^ -s c5 -a g « ^ (*J o ^ q •§ "cS” ‘t; o o ‘t; o o ‘‘-1 o c c; H ^ ^ ^ ^ U E52-9 0-1 cm 276 16.4 8.9 1.0 5.1 6 37.7 14-17 cm 349 10.9 20.3 6.9 8.3 19 64.9 46-48 cm 189 22.8 16.4 2.1 4.8 17 63.0 66-68 cm 404 11.9 28.1 12.3 9.9 8 70.1 86-88 cm 294 14.6 25.8 11.9 7.8 12 71.9 250-252 cm 224 8.5 31.7 5.8 12.1 12 70.1 290-292 cm 302 10.6 33.3 5.6 11.2 13 73.9 330-332 cm 412 9.0 21.6 4.9 6.1 17 59.0 370-372 cm 371 21.8 34.2 5.4 17.5 4 83.3 410-412 cm 262 25.2 31.3 14.5 11.1 6 88.2 450-452 cm 225 12.9 34.2 4.9 8.4 6 66.7 470-472 cm 302 12.6 26.2 8.3 12.9 14 73.5 489-490 cm 321 20.6 29.0 5.9 15.6 5 76.3

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DF87-14.TXT GC EG a AE DV EE 10 20 10 20 30 10 20 30 10 20 30

Figure 2.16 Percentages of abundant species in core DF87-14. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. E32-12.TXT GC EGCL AE DV EE 10 20 30 40 50 60 10 10

Figure 2.17 Percentages of abundant species in core E32-12. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.18 Percentages of abundant species in core E32-43. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. E32-44.TXT GC EG CL AE DV EE 10 10 20 30 40 10 20 30 40

Figure 2.19 Percentages of abundant species in core E32-44. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. E52-9.TXT GC EG a AE DV EE 10 20 10 20 30 10 10 10 10 20

Figure 2.20 Percentages of abundant species in core E52-9. Species percentage in assemblage is on X-axis. Depth in core (cm) is on Y-axis. GC is Globocassidulina crassa. EG is Ehrenbergina glabra. CL is Cibicides lobatulus. AE is Angulogerina earlandi. DV is Discorbis vilardeboana. EE is Epistominella exigua.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Angulogerina earlandi comprises a similar percentage of the fauna (< 15%)

in the Carbonate Bank and Modem calcareous faunas.

Cibicides lobatulus comprises less than 10% of carbonate bank assemblages.

Its greatest peak in concentration is below 20%. This is similar to the levels found in

the Modem calcareous fauna. A higher concentration of Cibicides lobatulus on the

outer banks than on the inner shelf was expected, since the outer banks show higher

current activity and C. lobatulus is an attached form.

Discorbis vilardeboana is found at about the same levels in the carbonate-

bank fauna as in the Modem-calcareous fauna, less than 20% in most samples. A

notable exception to this is core E32-44.

Ehrenbergina glabra varies between 1% and 41% of the carbonate bank

fauna. In most cores, it is found in either low or high abundance and remains fairly

constant throughout the core. However, E32-44 shows a high abundance of

Ehrenbergina glabra in the bottom of the core and a very low abundance at the top.

This change may have been associated with an environmental change, although the

environmental preferences of Ehrenbergina glabra are unknown.

Epistominella exigua is an important contributor to the carbonate bank fauna.

It frequently comprises 30% to 40% of the assemblage, with peaks as high as 79%.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Globocassidulina crassa does not comprise as great a percentage of the

carbonate bank fauna as it does in the Modem calcareous fauna. It frequently makes

up 25% of the carbonate bank fauna, but also is found at levels as low as 1%.

Agglutinated Fauna

The agglutinated fauna in the Ross Sea takes two forms. Three coretop

samples showed an abundant agglutinated assemblage, while three others showed a

very sparse assemblage with fewer than ten specimens per ten gram sample. The

abundant assemblage was found in two cores from the eastern Ross Sea and one from

the JOEDES Basin, which is in the northwestern Ross Sea. The sparse assemblage

was found in coretops from the Drygalski Basin in the western Ross Sea and in all

downcore samples from all cores that contained either agglutinated assemblage.

Miliammina earlandi comprises the majority of specimens in the sparse assemblage,

with rare calcareous and other agglutinated forms. In the richer assemblages,

Bathysiphon sp. A, Hormosinella ovicula, Miliammina earlandi, Textularia

wiesneri, and Trochammina quadricamerata were the most numerous forms (Table

2.4). Ten centimeters downcore from the samples with such assemblages, the

assemblage is the same as the sparse assemblage found in the other cores. Therefore,

the sparse assemblage is probably the representation of a once-rich assemblage after

taphonomic loss. The two coretops from the eastern Ross Sea that contain the

abundant agglutinated assemblage were stained with Rose Bengal. In NBP9902-11,

26 of 230 total specimens were stained and in NBP9902-12, 7 of 355 specimens were

stained (Table 2.4). Hormosinella ovicula and Trochammina quadricamerata make

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 2.4 Benthic foraminiferal abundance data from NBP9902 coretops (number of specimens).

NBP9902-11NBP9902-11NBP9902-12 NBP9902-12 Rose Bengal Rose Bengal stained total stained total Adercotyrma glomerata 0 4 1 28 Angulogerina earlandi 4 6 0 0 Astrononion sp. A 4 4 0 0 Bathysiphon sp. A 3 33 0 18 Eggerella bradyi 0 1 0 4 Globocassidulina crassa 0 2 0 0 Hormosinella ovicula 4 23 0 15 Miliammina earlandi 1 34 0 24 Reophax mortenseni 0 2 1 6 Textularia wiesneri 1 17 1 40 Textularia sp. A 0 5 0 4 Textularia sp. B 0 1 0 0 Trochammina ochracea 0 2 0 46 Trochammina quadricamerata 7 79 2 109 Trochammina tasmanica 1 8 2 45 Usbekistania charoides 0 0 0 5 Uvigerina asperula 1 1 0 0 Veleroninoides wiesneri 0 7 0 10 Vemeuilina minuta 0 1 0 1

26 230 7 355

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. up the majority of stained specimens in NBP9902-11. However, in NBP9902-11, 8

of the 26 stained specimens were calcareous forms. Most calcareous tests in

NBP9902-11 showed signs of dissolution, even those which were stained with Rose

Bengal. NBP9902-12 contained no calcareous forms. Trochammina quadricamerata

and Trochammina tasmanica comprised most of the stained specimens in NBP9902-

12.

Radiocarbon Dates

Six samples were dated using AMS radiocarbon dating for this study (Table

2.5). All of them were from samples that contained the carbonate bank fauna

because those were the only samples with enough calcareous material for dating.

The dates that were within measurement limits ranged from 25,050 B.P. ± 240 to

40,500 B.P. ± 1500. These dates are uncorrected. Two dates, both from core E32-

44, were outside the maximum range of the dating method. In all samples except

one, the dated material was multiple tests of the planktonic foraminifer

Neogloboquadrina pachyderma. In the E32-12 sample, mixed benthic foraminiferal

species were dated because there was not enough single-species material. The

reservoir effect in Antarctic waters is very large (Domack et al., submitted A). They

found that radiocarbon ages (adjusted for 813C) on foraminifera are older than those

(also adjusted for 5 13C) taken on acid insoluble organic matter (Domack et al.,

submitted A). Thus, absolute dates given by radiocarbon dating from Antarctic

waters are difficult to calibrate with calendar years. However, they are probably

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 2.5 Radiocarbon dates, provided by the University of Arizona.

Core Sample AMS date E32-12 0-2cm 35,900+-740 DF87-14 140-142cm 40,500 ± 1500 E32-43 100-102cm 25,050 ± 240 E32-43 140-142cm 35.970+-790 E32-44 325-327cm 41,200 E32-44 445-447cm 40,600

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. useful when considered in relation to other dates from the same area and on similar

material.

Biogenic Silica Data

Surface samples used in this study were analyzed for biogenic silica content

so that overall foraminiferal counts and the relative abundances of species can be

judged against a measurement of primary productivity (Figure 2.21). A correlation

between benthic foraminiferal density (and presence of opportunistic species) and

biogenic silica was expected because biogenic silica is considered a proxy for

primary productivity (Herguera, 1992). Analysis of biogenic silica data revealed two.

groups of samples: a modem group and a Pleistocene group. Modem-calcareous

samples show a range of biogenic silica from 3.7 to 8.5 weight percent, with an

average of 5.0. Pleistocene samples range from 0.63 to 4.9 weight percent, with an

average of 1.5. No samples from the eastern Ross Sea or the basins were analyzed

for biogenic silica.

Discussion

Two factors are usually invoked to explain the distribution of benthic

foraminifera in the deep-sea: water-mass position and productivity. The relative

importance of these factors is under debate. Streeter (1973) and Schnitker (1974)

were the first to suggest an association between bottom water masses and deep-water

benthic foraminiferal distribution in the North Atlantic. Since then, the influence of

water masses on foraminiferal distribution has been identified from most of the

world’s ocean basins (see Schnitker, 1980; Schnitker 1994). One foraminiferal

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 2.21 Surface samples on which biogenic-silica analysis was performed. Numbers are biogenic silica in weight percent.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. species that is commonly identified as associated with water masses is Epistominella

exigua, which is abundant in Ross Sea samples. Epistominella exigua has been

found in association with North Atlantic Deep Water and Arctic Bottom Water

(Streeter, 1973; Schnitker, 1974; Weston and Murray, 1984), Pacific Bottom Water

(Burke, 1981), and Indian Bottom Water (Corliss, 1979). However, High Salinity

Shelf Water (HSSW) is the water mass that bathes the bottom of the entire Ross Sea

(Anderson, 1984), so differing water conditions at the sediment/water interface are

not an appropriate explanation for foraminiferal distribution in the Ross Sea.

Therefore, surface productivity and water-mass relationships within the photic zone

may better explain Ross Sea benthic foraminiferal distribution.

Two factors make the Ross Sea shelf special in respect to productivity and the

utilization of organic material by benthic organisms: its depth and the seasonality of

productivity. It is more appropriate to compare the Ross Sea continental shelf to the

deep sea rather than to ordinary continental-shelf environments when considering the

effect of surface productivity on benthic organisms in the Ross Sea because the Ross

Sea continental shelf is a very deep shelf, with an average depth of around 500 m,

whereas the majority of the world’s continental shelves fall mostly within the photic

zone (200 m). Of even greater importance in the Antarctic is the seasonality of

productivity. From winter to late spring, much of the Antarctic surface water is

covered by a layer of sea ice thick enough to restrict phytoplankton growth (Burckle

and Cirilli, 1987).

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Benthic foraminiferal productivity is related to the amount of available food,

which in the deep sea takes the form of organic-carbon flux from surface waters

(Gooday, 1996), and this flux is related to the amount of surface productivity

(Lampitt and Antia, 1997). In places like the Ross Sea, where surface productivity is

seasonal, there is a pulse of phytodetritus to the seafloor following a phytoplankton

bloom. These pulses have been observed by Lampitt (1985) in the northeast Atlantic

from 2000 m and 4000 m of water depth, Hecker (1990) on the northeastern Atlantic

slope at depths between 450 m and 2400 m, and by Smith et al. (1996) from the

central equatorial Pacific at abyssal depths.

In the present study, benthic-foraminiferal assemblages from sediments that

are interpreted as forming off the edge of the receding Ross Ice shelf were examined

for evidence of this ice-shelf edge bloom. As seasonal ice thins through melting,

light reaches the nutrient-rich Antarctic waters and stimulates phytoplankton growth.

The receding ice edge is a particularly productive area. Smith and Nelson (1985)

observed a phytoplankton bloom in waters where melting ice had reduced salinity.

This bloom extended as far as 250 km from the ice edge (Smith and Nelson, 1985).

A phytoplankton bloom has also been observed at the edge of the Ross Ice Shelf (El-

Sayed et al., 1983). The chlorophyll-a concentration was two- to four-fold less 200

km from the ice shelf edge than it was at the barrier itself.

It is inadvisable to draw simple relationships between sediment organic

carbon content and foraminiferal distributions because the link between benthic

foraminifera and organic-carbon flux is complicated. There are three types of

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. organic carbon: labile, resistant, and refractory (Middleburg et al., 1993). Labile

material is used up quickly; resistant material is used more slowly; and refractory

material is biologically inert (Loubere and Fariduddin, in press). Refractory material,

which is the least useful to organisms, tends to be preserved in sediment (Loubere

and Fariduddin, in press).

Despite problems relating benthic foraminiferal distribution to productivity,

benthic foraminifera have been shown to respond to seasonal input of phytodetritus

(Gooday, 1988, 1993, 1996). Assemblage diversity is lower in association with

phytodetritus than under normal conditions (Gooday, 1988). Gooday (1993)

identified benthic foraminiferal species that are associated with phytodetritus in the

deep-sea. These species are Alabaminella weddellensis, Epistominella exigua, E.

pusilla, and Tinogullmia riemanni. He also suggested that the distribution and

abundance of Epistominella exigua is controlled by phytodetrital input (Gooday,

1993). Of the species Gooday identified as phytodetrital indicators, Epistominella

exigua is the only one which is a common species in the Antarctic.

Calcareous Benthic Foraminiferal Distribution

The distribution of benthic foraminiferal faunas in the Ross Sea is controlled,

to a great extent, by the interactions of two factors: incursion of Circumpolar Deep

Water (CDW) onto the shelf and depth of the CCD. CDW mixes with shelf waters

and forms Warm Core Water (WMCO). The distribution of modem calcareous

foraminifera in the Ross Sea is limited to the area where the nutrient-rich WMCO

extends into the photic zone and where the CCD does not inhibit production. In

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. years when sea ice breaks up in the central Ross Sea, phytoplankton bloom in the

nutrient-rich WMCO (Anderson, 1993). These blooms sustain the benthic

foraminiferal community. When the sea ice breaks up late, or not at all, the

phytoplankton are not present to sustain benthic foraminifera and foraminiferal

production drops. Also, the phytoplankton do not take up CO 2, causing a shallowing

of the CCD, which obscures any calcareous foraminiferal activity that may occur

during those years.

In the Pleistocene, when the northwestern carbonate banks were forming, the

ice sheet was grounded just south of the carbonate banks. It probably terminated in

an ice cliff at this time, rather than in the ice shelf seen today (Anderson, in press).

CDW floows into the Ross Sea on top of dense HSSW today. The formation of sea

ice near the continental shelf break would have allowed formation of HSSW nearer

to the source of CDW (Figure 2.22). This would have allowed less mixing between

HSSW and other water, leaving a very dense HSSW on which the CDW could

upwell onto the shelf. Today, melting lowers the density of shelf waters, allowing

them to more easily mix with WMCO (Anderson et al., 1984). Sea-ice melting

would also have decreased the density of surface waters in the Pleistocene, allowing

mixing of surface water and CDW. Planktonic foraminifera are abundant in the

carbonate bank sediments, suggesting seasonally open-water conditions. These two

factors, elevated formation of HSSW and mixing of surface waters and CDW, would

have allowed more WMCO to intrude onto the shelf than does today, or may have

allowed a similar flux of WMCO, but into a greatly reduced area.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 75° 76° S Latitude

W'iSf ROSS ICE SHEET m i ; o £ 5 00 -

l: 0.5 100 km 1000

Figure 2.22 Hypothesized Pleistocene temperature profile across the western Ross Sea, with position of the CDW stippled.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Uncorrected radiocarbon dates of northwestern carbonate bank material range

from 22,730 (Taviani et al., 1993) to 40,500 B.P. ± 1500 (this study). The dated

sediments were taken from between 5 and 13 cm in most cores, with a second,

deeper interval dated for a few cores. Domack et al. (submitted A) dated surface

sediments in same area and found uncorrected dates ranging from 1,085 to 20,895

B.P., with many of the sediments being just a few thousand years old. Uncertainty

inherent in radiocarbon dating in the Antarctic (Omoto, 1983; Domack, submitted A)

could mean some of these sediments may actually be modem. Therefore, formation

of carbonate may have continued into the present in the northwestern Ross Sea, in

part due to continued water-mass mixing and incursion of the CDW onto the shelf.

However, the accumulation of carbonate has slowed from the time of maximum ice,

for which Taviani et al. (1993) calculate accumulation rates of up to 15 cm/1000 yr.

The rapid accumulation in the past was probably due to the greater input of nutrients

by enhanced water-mass mixing between CDW and shelf waters.

The tongue of CDW that intrudes onto the shelf today is thicker on the

western side of the Ross Sea. If this also was true in the Pleistocene, then on the

western side of the carbonate bank, flux of nutrient-rich waters may have been much

greater than today. A greater nutrient input would support the growth of healthy

planktonic, microbenthic, and macrobenthic communities. On the eastern bank, the

CDW flux would have been less, supporting the planktonic and benthic foraminiferal

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. communities, but not sustaining the other benthic organisms found on the western

bank.

Agglutinated Faunal Distribution

The agglutinated fauna is found in the eastern Ross Sea and deep basins.

Samples from Drygalski Basin are from very deep water (>750 m) and contain the

sparse-agglutinated assemblage. The eastern Ross Sea and JOIDES Basin samples

are from between 550 and 585 m of water depth and contain the abundant-

agglutinated assemblage. The CCD is around 600 m in the Ross Sea, but fluctuates

dramatically (Kennett, 1966). The possibility that agglutinated foraminifera

distributions were controlled by the CCD was tested in the present study. However,

the common foraminifera in the abundant agglutinated assemblage did not have

calcareous cement, so are not affected by carbonate dissolution beneath the CCD.

Also, calcareous foraminifera found in the coretop of NBP9902-11 show signs of

dissolution, suggesting that it is found within the lysocline. The coretop NBP9501-

39 contains only one calcareous specimen and the coretop of NBP9902-12 is barren

of foraminifera. Therefore, all agglutinated assemblages were probably sampled

from beneath the lysocline or CCD.

Ten centimeters below rich assemblages, the same type of sparse assemblage

found in the other cores occurs, and. probably the represents the rich assemblage

after taphonomic loss. The two cores from the eastern Ross Sea were sampled on

shipboard, making them the freshest samples examined during this study. They

underwent the least transport before processing, had the least amount of time to be

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. affected by chemical changes, and had the least opportunity for the delicate

agglutinated specimens to disaggregate. This may be why the agglutinated

specimens in their surface samples were still intact.

Barren Areas

The region of the modem Ross Sea barren of calcareous benthic foraminifera

fluctuates, but corresponds with three overlapping zones. The first is a zone where

the water depth is great enough to be always beneath the CCD. The second zone is

covered with sea-ice throughout most years, and also has a shallow CCD (Anderson,

1972). The third is the zone where the WMCO does not reach, into the photic zone

and does not, therefore, support a phytoplankton community.

It is important to understand that although a sample contains no calcareous

foraminifera, foraminifera may still live in the area. Probably, there are no

agglutinated foraminifera in the majority of the samples used in this study because of

post-sampling taphonomy. Chemical changes within the core, inevitable due to

warming during shipping, and movement of the core during shipping and sampling

contribute to the disaggregation of agglutinated specimens.

Historical Record

Unfortunately, it is not possible to construct an historical record using the

downcore shifts in foraminiferal assemblages in the cores used in this study. In

agglutinated fauna samples, downcore changes in assemblage are probably related to

taphonomy, and in Modem-calcareous fauna samples, no significant downcore shifts

are observed. In the carbonate-bank fauna, shifts are observed, but the situation is

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. more complicated. Previous studies (Anderson et al., 1984; Taviani et al., 1993;

Anderson, in press; Domack et al., submitted A) have noted that material from the

carbonate bank in the northwestern Ross Sea appears to have been transported and

sorted. Faunal shifts observed in the cores are most likely artifacts.

Biogenic Silica

Biogenic silica data do not relate to foraminiferal concentration. Samples

analyzed for biogenic silica content were collected within an area from which Burkle

et al. (1987) report high diatom productivity. According to Burkle and Cirilli (1987),

today these samples lie with a zone of good diatom preservation. The biogenic silica

content in modem surface sediments is higher than that of Pleistocene surface

sediments probably because the Pleistocene surface sediments have been exposed for

a greater period of time, allowing winnowing, biological activity, and chemical

dissolution to strip the biogenic silica from those sediments. Therefore, difference in

biogenic silica content is not indicative of the original amount of biogenic silica

deposited with those sediments, but only of what is left.

Comparison of Arctic and Antarctic Faunas

A comparison of Arctic and Antarctic foraminifera is useful because it allows

us to see which elements of the Antarctic fauna are due to low water temperature and

which are due to the productivity regime. In this context, the most useful recent

papers about Arctic foraminifera are Jennings and Helgadottir (1994) and

Wollenburg and Mackensen (1998). Both of these papers focused on offshore

eastern Greenland.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Offshore eastern Greenland and Ross Sea environments have two major

similarities. The Arctic and Antarctic seas both have seasonally ice-free areas with

high primary production, as well as permanently ice-covered, oligotrophic areas

(Wollenburg and Mackensen, 1998; Osterman and Kellogg, 1979).

Eastern Greenland and the Ross Sea also differ substantially. Shelfal water

depths in these two regions are very different. The water depth of the shelf off

eastern Greenland is 200-300 m, except in the vicinity of fjords (Jennings and

Helgadottir, 1994). The average water depth of the Ross Sea shelf is 500 m

(Anderson et al., 1984).

Antarctic and Arctic benthic foraminiferal faunas are dissimilar, despite the

fact that cold-water offshore species are widely distributed, so bipolar species

distributions would not be unusual. The most conspicuous difference between the

Arctic and Antarctic benthic foraminiferal faunas lies in their broad characters. The

Arctic shelfal fauna is a mixed calcareous and agglutinated assemblage (Jennings and

Helgadottir, 1994). In the Antarctic, calcareous and agglutinated species are not

usually found together (Osterman and Kellogg, 1979; this study).

The most common calcareous species on the seasonally-ice free east

Greenland shelf are Cassidulina reniforme, C. teretis, Elphidium excavatum, and

Cibicides lobatulus (reported as Lobatula lobatula ) (Jennings and Helgadottir, 1994).

Found in association with the species listed above are the agglutinated species

Textularia earlandi, Spiroplectammina biformis, Trochammina nana, and

Saccammina difflugiformis (Jennings and Helgadottir, 1994). In the Ross Sea, the

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. most abundant species are Angulogerina earlandi, Cibicides lobatulus, Discorbis

vilardeboana, Ehrenbergina glabra, Epistominella exigua, and Globocassidulina

crassa (this study). Nonetheless, Cibicides lobatulus is common in both regions and

both Cassidulina teretis and Elphidium excavatum (found commonly in Arctic

sediments) are found as accessory species in the Antarctic.

The occurrence of one other species in both Arctic and Antarctic waters bears

mentioning. Adercotryma glomerata, an agglutinated foraminifer, is the dominant

species at the Morris Yesup Rise in the permanently ice-covered region off

Greenland (Wollenburg and Mackensen, 1998). This species also makes up a

significant proportion of the assemblage in the usually ice-covered eastern Ross Sea

(this study).

Arctic and Antarctic benthic foraminiferal faunas share some species.

However, the differences between these two faunas are more striking than the

similarities. This suggests that temperature and productivity regime are not the only

factors that control their distribution. Local biogeographic history and dispersal

barriers have played a most significant role.

Conclusions

Earlier works (Domack, 1982; Domack et al., 1988; Anderson, 1993) have

suggested an association between ice-shelf position and Antarctic marine carbonate

formation. This study suggests there is another link between the two, at least in the

Ross Sea. The amount of CDW that reaches onto the continental shelf is influenced

by ice sheet position. Since the location of the CDW is a controlling factor in the

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. distribution of calcareous foraminifera in the Ross Sea, it is probable that ice sheet

position has a direct effect of benthic foraminiferal distribution. The reason benthic

foraminifera are not useful for tracing the ice sheet is probably the lack of

preservation in the cores rather than the nature of the original biota.

There are two calcareous foraminiferal faunas in the Ross Sea. In both of

these faunas, the numerically important contributors are Angulogerina earlandi,

Cibicides lobatulus, Discorbis vilardeboana, Ehrenbergina glabra, Epistominella

exigua, and Globocassidulina crassa. Foraminiferal abundance and diversity

distinguish the faunas. In the Modem-calcareous fauna, both of these measures are

much lower than in the carbonate-bank fauna.

The Modem-calcareous fauna is found in areas where the CDW upwells into

the photic zone allowing phytoplankton production, unless the sediment surface falls

beneath the CCD. The carbonate bank fauna formed during the Pleistocene at a time

when the upwelling of the CDW was most likely greater than today. A detailed

history of the bank can not be deciphered because of sediment mixing.

The agglutinated fauna is found beneath the CCD and where the CDW does

not upwell into the photic zone. This fauna takes two forms. The abundant-

agglutinated fauna contains a numerically rich and somewhat diverse assemblage.

The sparse-agglutinated fauna contains only resistant forms of the abundant

assemblage, with Miliammina earlandi as the dominant form, and thus probably

represents the abundant assemblage after taphonomic loss.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 3: Taxonomy of Ross Sea Benthic Foraminifera

Introduction

This chapter deals with the taxonomy of the 128 species identified in this

study. Included are a section on taxonomic placement of species with generic and

suprageneric placements according to Loeblich and Tappan (1987), and a literature

reference list for all species utilized in this study that have been previously identified.

Comments are made for species that comprise >2% of any sample with >100

foraminiferal specimens. Brief descriptions are provided for new species, although

they are not formally established in this work. Antarctic bathyal foraminifera are

very diverse, and many species, especially the extremely rare ones, have not been

described. Illustrations of most identified taxa are given in plates (3.1-3.23), grouped

together after the taxonomic section for ease of use. Eleven rare species could not be

pictured because the specimens were severely damaged.

Order Foraminiferida

Suborder Textulariina

Superfamily Astrorhizacea

Family Bathysiphonidae

Bathysiphon sp. A

(Plate 3.1, Figure 1)

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Description:

This is a coarsely agglutinated, tubular form. This species is unidentifiable

on the basis of specimens examined.

Superfamily Ammodiscacea

Family Ammodiscidae

Subfamily Usbekistaniinae

Usbekistania charoides (Jones and Parker)

[= Trochammina squamata var. charoides Jones and Parker 1860]

(Plate 3.1, Figure 2)

Superfamily Rzehakinacea

Family Rzehakinidae

Miliammina earlandi Loeblich and Tappan 1955

(Plate 3.1, Figure 3)

Superfamily Hormosinacea

Family Hormosinidae

Subfamily Reophacinae

Hormosinella ovicula (Brady)

[=Reophax ovicula Brady 1879]

(Plate 3.1, Figure 4)

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Remarks:

There is doubt about the attribution of this species. The specimens found in

my study have a coarse, irregular texture, like that pictured by Echols (1971). In the

original figures, however, Brady illustrates a specimen with a much finer texture.

See Jones (1994) for an explanation of the generic change from Reophax.

Reophax mortenseni Hofker 1972

(Plate 3.2, Figure 1)

Superfamily Lituolacea

Family Haplophragmoididae

Haplophragmoides canariensis (d’Orbigny)

[=Nonionina canariensis d’Orbigny 1839a]

(Plate 3.2, Figure 2)

Veleroninoides wiesneri (Parr)

[=Labrospira wiesneri Parr 1950]

(Plate 3.2, Figure 3)

Remarks:

The generic name of this species has been changed to Veleroninoides. See

Jones (1994), p. 45, for explanation.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Superfamily Haplophragmiacea

Family Ammosphaeroidinidae

Subfamily Ammosphaeroidininae

Adercotryma glomerata (Brady)

[=Lituola glomerata Brady 1878]

(Plate 3.2, Figure 4)

Cystammina pauciloculina (Brady)

[=Trochammina pauciloculina Brady 1879]

(Plate 3.2, Figure 5)

Superfamily Trochamminacea

Family Trochamminidae

Subfamily Trochammininae

Trochammina glabra Heron-Alien and Earland 1932

(Plate 3.2, Figure 6)

Trochammina ochracea (Williamson)

[=Rotalina ochracea Williamson 1858]

(Plate 3.3, Figure 1)

Trochammina quadricamerata Echols 1971

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (Plate 3.3, Figure 2)

Trochammina tasmanica Parr 1950

(Plate 3.3, Figure 3)

Trochammina sp. A

(Plate 3.3, Figure 4)

Description:

Large agglutinated test, composed of sand grains with calcareous cement,

plano-convex, trochospiral. Chambers inflated, margin lobate, umbilicus filled.

Sutures depressed. Aperture interiomarginal.

Superfamily Conotrochamminidae

Family Vemeuilinidae

Subfamily Vemeuilininae

Vemeuilina minuta Wiesner 1931

(Plate 3.3, Figure 5)

Superfamily Textulariacea

Family Eggerellidae

Subfamily Eggerellinae

Eggerella bradyi (Cushman)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. \_-Vemeuilina bradyi Cushman 1911]

(Not pictured)

Eggerella sp. A

(Plate 3.4, Figure 1)

Description:

Finely agglutinated, trochospiral to triserial, size increasing greatly in width

with each whorl. Cross-section of test triangular. Aperture low interiomarginal slit.

Eggerella sp. B

(Not pictured)

Description:

Finely agglutinated, becoming triserial in maturity.

Remarks:

This species differs from Eggerella sp. A in that its test does not flare, but

remains roughly the same width after the early growth stage.

Family Textulariidae

Subfamily Textulariinae

[=Textularia wiesneri Earland 1933]

(Plate 3.4, Figure 2)

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Textularia sp. A

(Plate 3.4, Figure 3)

Description:

Small, finely agglutinated, biserial species. Sutures somewhat depressed.

Chambers indented at periphery.

Textularia sp. B

(Plate 3.4, Figure 4)

Description:

Extremely small, biserial species. Sutures indistinct. Terminal aperture loop­

shaped.

Remarks:

This species is less finely agglutinated than Textularia sp. A.

Suborder Spirillinina

Family Spirillinidae

Spirillina limbata Brady 1879

(Plate 3.5, Figure 1)

Spirillina tuberculata Brady 1879

(Plate 3.5, Figure 2)

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ft

Family Patellinidae

Subfamily Hergottellinae

Patellina corrugata Williamson 1858

(Plate 3.5, Figure 3)

Description:

High conical species with large number of ridges on superior side indicating

presence of vertical septa.

Suborder Miliolna

Superfamily Comusripacea

Family Comuspiridae

Subfamily Comuspirinae

Comuspira involvens (Reuss)

[=Operculina involvens Reuss 1850]

(Plate 3.5, Figure 4)

Comuspira sp. A

(Plate 3.5, Figure 5)

Description:

Slightly convex on one side, very concave on other. Proloculus encircled by

single wound chamber. Distinguished from Comuspira involvens because the

second chamber of C. sp. A does not increase in width as it coils.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Superfamily Miliolacea

Family Hauerinidae

Subfamily Hauerininae

Quiqueloculina sp. cf. Q. patagonica d’Orbigny 1839a

(Plate 3.6, Figure 1)

Quinqueloculina sp. A

(Plate 3.6, Figure 2)

Remarks:

This species is distinguished from Quiqueloculina sp. cf. Q. patagonica

because its width to length ratio is greater.

Subfamily Miliolinellinae

Biloculinella irregularis (d’Orbigny)

[=Biloculina irregularis d ’Orbigny 1839a]

(Plate 3.6, Figure 3)

Biloculinella sp. A

(Plate 3.6, Figure 4)

Remarks:

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Biloculine in maturity. Aperture covered with broad flap. Distinguished

from B. irregularis because it is less globular and its chambers are more distinct.

Cruciloculina triangularis d’Orbigny 1839

(Plate 3.6, Figure 5)

Miliolinella circularis (Bomemann)

[=Triloculina circularis'Bomemann 1855]

(Plate 3.6, Figure 6)

Miliolinella sp. A

(Plate 3.7, Figure 1)

Description:

Smaller and less globular than M. circularis. Sutures flush with test surface

and very difficult to discern.

Miliolinella sp. B

(Plate 3.7, Figure 2)

Description:

Very small, translucent specimens, may be juveniles of a known species.

Sutures, opaque, flush with test.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Pyrgo subglobulus Parr 1950

(Plate 3.7, Figure 3)

Pyrgoella globiformis (Karrer)

[=Biloculina globiformis Karrer 1867]

(Plate 3.7, Figure 4)

Triloculina trigonula (Lamarck)

[:=Miliolites trigonula Lamarck 1804]

(Plate 3.7, Figure 5)

Triloculina sp. A

(Plate 3.7, Figure 6)

Description:

Longer and narrower than Triloculina trigonula. Sutures flush with test

surface and more opaque than rest of test.

Subfamily Sigmoilinitinae

Sigmoilina umbonata Heron-Alien and Earland 1922

(Plate 3.8, Figure 1)

Remarks:

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. When Heron-Alien and Earland (1922) defined this species, they were

concerned that it might be a juvenile form of another miliolid. However, they did not

find any transitional forms between Sigmoilina umbonata and any other miliolids

found at the same station. In this study, this species was found consistently

throughout the Ross Sea and there was no evidence that it may be a juvenile of

another form; therefore, it is considered to be a valid species.

Suborder Lagenina

Superfamily Nodosariacea

Family Nodosariidae

Subfamily Nodosariinae

Dentalina inomata d’Orbigny var. bradyensis (Dervieux)

[=Nodosaria inomata (d’Orbigny) var. bradyensis Dervieux 1894]

(Not pictured)

Pseudonodosaria bradii (Silvestri)

[=Lingulonodosaria bradii Silvestri 1903]

(Plate 3.8, Figure 2)

Subfamily Lingulininae

Lingulina vitrea Heron-Allen and Earland 1932

(Not pictured)

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Family Vaginulinidae

Subfamily Lenticulininae

Lenticulina convergens (Bomemann)

[-Cristellaria convergens Bomemann 1855]

(Not pictured)

Marginulinopsis sp. A

(Plate 3.8, Figure 3)

Description:

Initially planispiral, uncoiling to become uniserial and rectilinear, with

angular periphery. Aperture terminal and radiate. Sutures flush with test and

opaque.

Family Lagenidae

Lagena acuticostci Reuss 1862

(Plate 3.9, Figure 1)

Lagena apiculata (Reuss)

[=Oolina apiculata Reuss 1851]

(Plate 3.9, Figure 2)

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Lagena hispidula Cushman 1913

(Plate 3.9, Figure 3)

Lagena striata (Montague) var. interrupta Williamson 1848

(Plate 3.9, Figure 4)

Remarks:

Has short neck. Test covered with longitudinal costae that sometimes

bifurcate.

Lagena sp. A

(Plate 3.9, Figure 5)

Description:

Triangular in cross-section, has three peripheral keels running lengthwise.

Test covered with small, subparallel, irregular costae that bifurcate and do not always

run length of test. Has short neck.

Family Ellipsolagenidae

Subfamily Oolininae

Oolina apiculata Reuss 1851

(Plate 3.9, Figure 6)

Oolina exsculpta (Brady)

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. [=Lagena exsculpta Brady 1881]

(Plate 3.10, Figure 1)

Oolina sp cf. O. globosa (Montagu)

[=Vermiculum globosum Montagu 1803]

(Plate 3.10, Figure 2)

Description:

Globular form. Aperture simple, small, circular opening. Very short spine at

aboral end.

Oolina hexagona (Williamson)

[=Entosolenia squamosa (Montagu) var. hexagona Williamson 1848]

(Plate 3.10, Figure 3)

Oolina inomata d’Orbigny, 1839a

(Plate 3.10, Figure 4)

Oolina laevigata (Reuss)

[=Fissurina laevigata Reuss 1850]

(Plate 3.10, Figure 5)

Oolina squamosa-sulcata (Heron-Allen and Earland)

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. [=Lagena squamosa-sulcata Heron-Alien and Earland 1922]

(Plate 3.10, Figure 6)

Remarks:

Brady (1884) called this species a form of Oolina melo. However, O. melo is

covered with geometric forms over the entire test. Oolina squamosa-sulcata is only

covered with geometric forms on its oral half. On the basal half, O. squamosa-

sulcata is striated. Brady (1884) figures a specimen that looks like O. squamosa-

sulcata. They described it as an intermediate form of O. melo; however, Heron-

Alien and Earland (1922) found it consistently enough in the Antarctic that they

decided it should be declared a species in its own right.

Oolina vilardeboana d’Orbigny 1839a

(Plate 3.11, Figure 1)

Oolina sp. A

(Not pictured)

Description:

Single-chambered, globular, and unomamented. Neck conical, with simple

circular aperture at end.

Oolina sp. B

(Plate 3.11, Figure 2)

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Description:

Unomamented form with thick rim around small, circular aperture.

Subfamily Ellipsolageninae

Fissurina alveolata (Brady)

[=Lagena alveolata Brady 1884]

(Plate 3.11, Figure 3)

Fissurina earlandi Parr 1950

(Not pictured)

Fissurina laevigata Reuss 1850

(Not pictured)

Fissurina sp. cf. F. radiata Seguenza 1862

(Plate 3.11, Figure 4)

Fissurina sp.cf. F. trigono-marginata (Parker and Jones)

Lagena sulcata Walker and Jacob var. trigono-marginata Parker and Jones 1865]

(Plate 3.11, Figure 5)

Fissurina sp. A

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (Plate 3.11, Figure 6)

Description:

Compressed form with no ornamentation. Covered with small pores.

Subfamily Parafissurininae

Parafissurina clavigera (Buchner)

[-Lagena clavigera Buchner 1940]

(Plate 3.12, Figure 1)

Parafissurina pseudomarginata (Buchner)

[=Lagena pseudomarginata Buchner 1940]

(Plate 3.12, Figure 2)

Family Glandulinidae

Subfamily Glandulininae

Laryngosigma antarctica Crespin 1960

(Not pictured)

Suborder Robertinina

Superfamily Robertinacea

Family Robertinidae

Subfamily Alliatininae

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Cerobertina bartrumi Finlay 1939

(Plate 3.12, Figure 3)

Suborder Rotaliina

Superfamily Bolivinacea

Family Bolivinidae

Bolivina sp. cf. B. spathulata (Williamson)

\-Textularia variablis Williamson var. spathulata Williamson 1858]

(Plate 3.12, Figure 4)

Bolivina sp. cf. textilaroides Reuss 1863

(Plate 3.12, Figure 5)

Superfamily Cassidulinacea

Family Cassidulinidae

Subfamily Cassidulininae

Cassidulina teretis Tappan 1951

(Plate 3.13, Figure 1)

Cassidulinoides parkeriana (Brady)

[=Cassidulina parkeriana Brady, 1881]

(Plate 3.13, Figure 2)

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Remarks:

This is a highly variable species. Some specimens uncoil more slowly than

others so only the last few chambers are uncoiled; while in other specimens,

uncoiling begins early and only a small portion of the test is coiled. Most specimens

are much longer than wide, so it can be difficult to recognize the rare wide specimen

as the same species. Coiled specimens closely resemble Globocassidulina crassa. It

is possible to tell the difference because the C. parkeriana aperture is a slit on top of

the specimen, while the aperture ofG. crassa is a loop on the side of the specimen.

Cassidulinoides sp. A

(Plate 3.13, Figure 3)

Description:

Uniserial, initially coiled. Prominent looped aperture in final chamber.

Unomamented. Sutures slightly depressed.

Globocassidulina crassa (d’Orbigny)

[=Cassidulina crassa d’Orbigny, 1839a]

(Plate 3.13, Figure 4)

Remarks:

G. crassa closely resembles G. biora. The difference the is plate in aperture

of G. biora that divides the aperture in two. G. subglobosa has also been described

from the Ross Sea by Fillon (1974), Anderson (1975a, 1975b), Osterman and

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Kellogg (1979), and Milam and Anderson (1981). The specimens found in this study

appear to be G. crassa instead of G. subglobosa because they are more compressed

than G. subglobosa. The apertures of G. crassa specimens variable. Some are slit­

like, others are loop-shaped.

Globocassidulina biora (Crespin)

[=Cassidulina biora Crespin 1960]

(Plate 3.13, Figure 5)

Remarks:

See comment for G. crassa.

Subfamily Ehrenbergininae

Ehrenbergina glabra Heron-Alien and Earland

[=Ehrenbergina hystrix Brady var. glabra Heron-Allen and Earland 1922]

(Plate 3.13, Figure 6)

Remarks:

This species differs from E. hystrix in that the spines on E. glabra are found

only on the margin of the test, while the spines of E. hystrix cover its test.

Superfamily Turrilinacea

Family Stainforthiidae

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Hopkinsina pacifica Cushman 1933

(Plate 3.14, Figure 1)

Superfamily Buliminacea

Family Buliminidae

Bulimina aculeata d’Orbginy 1826

(Not pictured)

Bulimina sp. A

(Plate 3.14, Figure 2)

Description:

Finely perforate triserial form. Sutures slightly depressed. Aperture has rim

and plate.

Family Buliminellidae

Buliminella basicostata Parr

(Plate 3.14, Figure 3)

Buliminella sp. A

(Plate 3.14, Figure 4)

Descriptions:

Very high trochospiral form. Elongate test. Aperture loop-shaped.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Remarks:

This species differs from Buliminella basicostata in that the early portion is

not as rounded as that of B. basicostata.

Subfamily Uvigerininae

Uvigerina canariensis d ’Orbigny 1839b

(Not pictured)

Uvigerina asperula Czjzek 1848

(Plate 3.15, Figure 1)

Uvigerina sp. A

(Plate 3.15, Figure 2)

Description:

Triserial, rounded form. Long and narrow with no ornamentation. Neck

slightly flared and crimped. Test comes to a point at other end. Sutures depressed,

chambers inflated.

Subfamily Angulogerininae

Angulogerina earlandi Parr 1950

(Plate 3.15, Figure 3)

Remarks:

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. This species has been identified under several different names in the

Antarctic. Uchio (1960), Pflum (1966), and Herb (1971) identified it as

Angulogerina angulosa; Anderson (1975a, 1975b) as Trifarina angulosa; and

Osterman and Kellogg (1979) as Trifarina earlandi. The costae in Ross Sea

Angulogerina earlandi are not as well-defined as those in true Angulogerina

angulosa. They are quite variable in size, so it is possible to mistake juvenile forms

for another species.

Superfamily Fursenkoinacea

Family Fursenkoinidae

Fursenkoina sp. cf. F. davisi (Chapman and Parr)

[=Virginulina davisi Chapman and Parr 1937]

(Plate 3.15, Figure 4)

Fursenkoina sp. A

(Plate 3.16, Figure 1)

Description:

Very small, translucent, delicate form. Biserial and ovate in section.

Aperture loop-shaped.

Suggrunda robusta (Brady)

[=Bulimina robusta Brady 1884]

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (Plate 3.16, Figure 2)

Superfamily Annulopatellinacea

Family Eponididae

Subfamily Eponidinae

Eponides tumidulus (Brady)

[=Truncatulina tumidula Brady 1884J

(Plate 3.16, Figure 3)

Eponides(l) sp. A

(Plate 3.16, Figure 4)

Description:

Small biconvex, trochospiral form with carinate periphery. Test has sugary

texture on umbilical side. On spiral side, first chamber circular and larger than later

chambers that surround it. All specimens broken. Aperture possibly interiomarginal.

Eponidesip .) sp. B

(Plate 3.16, Figure 5)

Description:

Species convex and trochospiral. Has carinate margin and umbilicus.

Sutures flush with test, opaque, wide, limbate, and strongly curved. Aperture

possibly interiomarginal.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Eponides(7) sp. C

(Plate 3.16, Figure 6)

Description:

Small form with very depressed sutures and inflated chambers. All

specimens fragmented.

Superfamily

Family Discorbidae

Discorbis tricamerata Heron-Allen and Earland 1932

(Plate 3.17, Figure 1)

Discorbis vilardeboana (d’Orbigny)

[=Rosalina vilardeboana d'Orbigny 1839a]

(Plate 3.17, Figure 2)

Discorbis sp. A

(Plate 3.17, Figure 3)

Description:

Convex trochospiral form. Large proloculus surrounded by chambers that

increase in size. Chambers very distinct because sutures quite depressed.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Family Rosalinidae

Neoconorbina terquemi (Rzehak)

[—Discorbina terquemi Rzehak 1888]

(Plate 3.17, Figure 4)

Family Sphaeroidinidae

Sphaeroidina bulloides d’Orbigny 1826

(Plate 3.17, Figure 5)

Superfamily Glabratellacea

Family Heronalleniidae

Heronallenia wilsoni (Heron-Allen and Earland)

[^Discorbina wilsoni Heron-Allen and Earland 1922]

(Not pictured)

Superfamily Discorbinellacea

Family Parrelloididae

Cibicidoides sp. A

(Plate 3.18, Figure 1)

Description:

Biconvex form. Spiral side slightly convex. Sutures depressed. Chambers

increase in size within whorl. On spiral side, later chambers appear V-shaped.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Cibicidoides sp. B

(Plate 3.18, Figure 2)

Description:

Trochospiral, biconvex, with spiral side slightly convex. Sutures straight and

somewhat depressed.

Family Pseudoparrellidae

Subfamily Pseudoparrellinae

Epistominella exigua (Brady)

[=Pulvinulina exigua Brady 1884]

(Plate 3.18, Figure 3, 4)

Remarks:

The distinguishing characteristic of Epistominella exigua is the thickened

sutures on the dorsal side. The specimens of E. exigua from the Ross Sea are

consistently small and vitreous, with a more rounded periphery when compared with

those from the original description (Brady, 1884).

Superfamily Planorbulinacea

Family Cibicididae

Subfamily Cibicidinae

Cibicides lobatulus (Walker and Jacob)

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. [=Nautlilus lobatulus Walker and Jacob 1798]

(Plate 3.18, Figure 5)

Remarks:

Specimens of Cibicides lobatulus from the Ross Sea are generally less

flattened and more consistent in shape than the forms found elsewhere.

Cibicides subhaidingerii Parr 1950

- (Plate 3.18, Figure 6)

Cibicides variabilis (d’Orbigny)

[=Truncatulina variablis d’Orbigny 1826]

(Plate 3.19, Figure 1)

Cibicides sp. A

(Plate 3.19, Figure 2)

Description:

Small, trochospiral, low conical form. Sutures flush with test.

Cibicides sp. B

(Plate 3.19, Figure 3)

Description:

Small form. Spiral side slightly concave.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Cibicides sp. C

(Plate 3.19, Figure 4)

Description:

Spiral side flat. Umbilical side low conical.

Superfamily Nonionacea

Family Nonionidae

Subfamily Nonioninae

Haynesina sp. A

(Plate 3.19, Figure 5)

Description:

Small planispiral form, covered with small pores. Sutures slightly depressed.

Nonionella bradyi (Chapman)

[=Nonionina scapha (Fichtel and Moll) var. bradii Chapman 1917]

(Plate 3.20, Figure 1)

Remarks:

The difference between Nonionella bradyi and N. scapha is thatN. bradyi is

wholly evolute.

Nonion sp. cf. N. incrassatum Montfort 1808

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. (Plate 3.20, Figure 2)

Nonion sp. A

(Plate 3.20, Figure 3)

Description:

Small form. Sutures flush with test. Test covered with pores.

Nonion sp. B

(not pictured)

Nonion sp. C

(Plate 3.20, Figure 4)

Description:

Chambers increase within whorl. Final chambers appear to be slightly

unrolled. Depressed sutures.

Nonion sp. D

(Plate 3.20, Figure 5)

Description:

Oval-shaped and bi-convex. Sutures slightly depressed.

Subfamily Astrononioninae

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Astrononion antarticus Parr 1950

(Plate 3.21, Figure 1)

Astrononion sp. A

(Plate 3.21, Figure 2)

Description:

Somewhat depressed sutures. Test covered with small pores.

Astrononion sp. B

(Plate 3.21, Figure 3)

Description:

Test covered with small pores. Small loop-shaped cavity under umbilical flap

on every chamber.

Astrononion sp. C

(Plate 3.21, Figure 4)

Description:

Inflated chambers and depressed sutures. Umbilicus not well-developed.

Astrononion sp. D

(Plate 3.21, Figure 5)

Description:

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Sutures indistinct. Umbilicus filled.

Subfamily Pulleniinae

Melonis affins (Reuss)

[=Nonionina affins Reuss 1851]

(Plate 3.22, Figure 1)

Melonis barleeanum (Williamson)

\=Nonionina barleeana Williamson 1858]

(Plate 3.22, Figure 2).

Melonis sp. A

(Plate 3.22, Figure 3)

Description:

Involute planispiral form with opaque sutures flush with test surface. Has

umbilicus and well-rounded periphery. Aperture narrow interiomarginal loop.

Pullenia subcarinata (d’Orbigny)

[=Nonionina subcarinata d ’Orbigny 1839a]

(Plate 3.22, Figure 4)

Pullenia bulloides (d’Orbigny)

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. [=Nonionella bulloides d’Orbigny 1826]

(Plate 3.22, Figure 5)

Superfamily Chilostomellacea

Family Gavelinellidae

Subfamily Gavelinellinae

Gyroidina neosoldanii Brotzen 1936

(Plate 3.22, Figure 6)

Gyroidina sp. A

(Plate 3.23, Figure 1)

Description:

Plano-convex, trochospiral, umbilicate form. Test appears coarse-textured.

Sutures radial and flush with test surface. Visible aperture low interiomarginal slit.

Superfamily Rotaliacea

Family Rotaliidae

Subfamily Ammoniinae

Ammonia sp. A

(Plate 3.23, Figure 2)

Description:

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Low trochospiral form. Umbilicus plugged with granules. Aperture

interiomarginal. Sutures slightly depressed.

Family Elphidiidae

Subfamily Elphidiinae

Cribrononion sp. A

(Not pictured)

Description:

Planispiral form with rounded periphery. Sutures slightly depressed and have

openings into intraseptal canal, but not retral processes. Aperture is single row of

pores at base of apertural face.

Elphidiella sp. A

(Plate 3.23, Figure 3)

Description:

Involute planispiral form. Inflated chambers. Sutures straight, with rows of

pores. Test appears coarse-textured. Aperture interiomarginal slit

Elphidium sp. A

(Plate 3.23, Figure 4)

Description:

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Planispiral form with inflated chambers. Pores on sutures. Sutures

depressed.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.1

Figure 1 Bathysiphon sp. A

Figure 2 Usbekistania charoides

Figure 3 Miliammina earlandi

Figure 4 Hormosinella ovicula

Scale bar = 50jam

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.2

Figure 1 Reophax mortenseni

Figure 2 Haplophragmoides canariensis

Figure 3 Veleroninoides wiesneri

Figure 4 Adercotryma glomerata

Figure 5 Cystammina pauciloculina

Figure 6 Trochammina glabra

Scale bar = 50|im

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.3

Figure 1 Trochammina ochracea

Figure 2 Trochammina quadricamerata

Figure 3 Trochammina tasmanica

Figure 4 Trochammina sp. A

Figure 5 Vemeuilina minuta

Scale bar = 50pm

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.4

Figure 1 Eggerella sp. A

Figure 2 Textularia wiesneri

Figure 3 Textularia sp. A

Figure 4 Textularia sp. B

Scale bar = 50pm

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.5

Figure 1 Spirillina limbata

Figure 2 Spirillina tuberculata

Figure 3 Patellina corrugata

Figure 4 Comuspira involvens

Figure 5 Comuspira sp. A

Scale bar = 50pm

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.6

Figure 1 Quiqueloculina sp. cf. patagonica

Figure 2 Quinqueloculina sp. A

Figure 3 Biloculinella irregularis

Figure 4 Biloculinella sp. A

Figure 5 Cruciloculina triangularis

Figure 6 Miliolinella circularis

Scale bar = 50pm

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.7

Figure 1 Miliolinella sp. A (Scale bar = 50 pm)

Figure 2 Miliolinella sp. B (Scale bar = 50 pm)

Figure 3 Pyrgo subglobulus (Scale bar = 200 pm)

Figure 4 Pyrgoella globiformis (Scale bar = 50 pm)

Figure 5 Triloculina trigonula (Scale bar = 50 pm)

Figure 6 Triloculina sp. A (Scale bar = 50 pm)

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.8

Figure 1 Sigmoilina umbonata

Figure 2 Pseudonodosaria bradii

Figure 3 Marginulinopsis sp. A

Scale bar = 50pm

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.9

Figure 1 Lagena acuticosta

Figure 2 Lagena apiculata

Figure 3 Lagena hispidula

Figure 4 Lagena striata

Figure 5 Lagena sp. A

Figure 6 Oolina apiculata

Scale bar = 50pm

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.10

Figure 1 Oolina exsculpta

Figure 2 Oolina sp cf. globosa

Figure 3 Oolina hexagona

Figure 4 Oolina inomata

Figure 5 Oolina laevigata

Figure 6 Oolina squamosa-sulcata

Scale bar = 50pm

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.11

Figure 1 Oolina vilardeboana

Figure 2 Oolina sp. B

Figure 3 Fissurina alveolata

Figure 4 Fissurina sp. cf. radiata

Figure 5 Fissurina sp.cf. trigono-marginata

Figure 6 Fissurina sp. A

Scale bar = 50pm

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.12

Figure 1 Parafissurina clavigera

Figure 2 Parafissurina pseudomarginata

Figure 3 Cerobertina bartrumi

Figure 4 Bolivina sp. cf. spathulata

Figure 5 Bolivina sp. cf. textilaroides

Scale bar = 50pm

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.13

Figure 1 Cassidulina teretis

Figure 2 Cassidulinoides parkeriana

Figure 3 Cassidulinoides sp. A

Figure 4 Globocassidulina crassa

Figure 5 Globocassidulina biora

Figure 6 Ehrenbergina glabra

Scale bar = 50pm

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 6 .

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.14

Figure 1 Hopkinsina pacifica

Figure 2 Bulimina sp. A

Figure 3 Buliminella basicostata

Figure 4 Buliminella sp. A

Scale bar = 50pm

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.15

Figure 1 Uvigerina asperula

Figure 2 Uvigerina sp. A

Figure 3 Angulogerina earlandi

Figure 4 Fursenkoina sp. cf. davisi

Scale bar - 50pm

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.16

Figure 1 Fursenkoina sp. A

Figure 2 Suggrunda robusta

Figure 3 Eponides tumidulus

Figure 4 Eponides {?) sp. A

Figure 5 Eponides(?) sp. B

Figure 6 Eponidesil) sp. C

Scale bar = 50pm

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.17

Figure 1 Discorbis tricamerata

Figure 2 Discorbis vilardeboana

Figure 3 Discorbis sp. A

Figure 4 terquemi

Figure 5 Sphaeroidina bulloides

Scale bar = 50|xm

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 5.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission Plate 3.18

Figure 1 Cibicidoides sp. A

Figure 2 Cibicidoides sp. B

Figure 3 Epistominella exigua

Figure 4 Epistominella exigua

Figure 5 Cibicides lobatulus

Figure 6 Cibicides subhaidingerii

Scale bar = 50pm

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 1. 2.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.19

Figure 1 Cibicides variabilis

Figure 2 Cibicides sp. A

Figure 3 Cibicides sp. B

Figure 4 Cibicides sp. C

Figure 5 Haynesina sp. A

Scale bar = 50pm

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.20

Figure 1 Nonionella bradyi

Figure 2 Nonion sp. cf. incrassatum

Figure 3 Nonion sp. A

Figure 4 Nonion sp. D

Figure 5 Nonion sp. E

Scale bar = 50pm

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.21

Figure 1 Astrononion antarticus

Figure 2 Astrononion sp. A

Figure 3 Astrononion sp. B

Figure 4 Astrononion sp. C

Figure 5 Astrononion sp. D

Scale bar = 50pm

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.22

Figure 1 Melonis affins

Figure 2 Melonis barleeanum

Figure 3 Melonis sp. A

Figure 4 Pullenia subcarinata (d’Orbigny)

Figure 5 Pullenia bulloides (d’Orbigny)

Figure 6 Gyroidina neosoldanii Brotzen 1936

Scale bar = 50|a.m

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 3.23

Figure 1 Gyroidina sp. A

Figure 2 Ammonia sp. A

Figure 3 Elphidiella sp. A

Figure 4 Elphidium sp. A

Scale bar = 50pm

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Taxonomic Reference List

Adercotryma glomerata (Brady) = Lituola glomerata Brady 1878, Ann. Mag. Nat. Hist., ser. 5, 1:433.

Angulogerina earlandi Parr, 1950, B.A.N.Z. Antarctic Research Exped. 1929-1931, Repts., Adelaide, ser. B, vol. 5, pt. 6, p. 341.

Astrononion antarticus Parr, 1950, B.A.N.Z. Antarctic Research Exped. 1929-1931, Repts., Adelaide, ser. B, vol. 5, pt. 6, p. 371, pi. 15, figs. 13, 14.

Biloculinella irregularis (d’Orbigny) = Biloculina irregularis d’Orbigny, 1839, Voyage dans l'Amerique Meridionale; Foraminiferes. Strausbourg, France, Levrault, tome 5, pt. 5, p. 67.

Bolivina spathulata (Williamson) = Textularia variablis Williamson var. spathulata Williamson, 1858, On the Recent foraminifera of Great Britain. Ray. Society, London, England, p. 76 pi. 6, figs. 164-165.

Bolivina textilaroides Reuss, 1863, K. Alcad. Wiss. Wien. Math.-Naturw. Cl., Sitzber, Wien. Osterreich, Bd. 46, Abth. 1 (1862), p. 81, pi. 10, fig. 1.

Bulimina aculeata d’Orbginy, 1826, Ann. Sci. Nat., ser. 1, tome 7, p. 269.

Buliminella seminuda (Terquim) = Bulimina seminuda Terquim, 1882, Soc. Geol. France, Mem., Paris, France, ser. 3, tome 2, no. 3, p. 117, pi. 12, fig. 21.

Cassidulina teretis Tappan, 1951, Cushman Found. Foram. Res., Contrib., vol. 2, pt. 1, P- 7.

Cassidulinoides parkeriana (Brady) = Cassidulina parkeriana Brady, 1881, Quart. Jour. Micr. Sci., n. s., vol. 21, p. 59.

Cerobertina bartrumi Finlay, 1939, Roy. Soc. New Zealand, Trans. Proc., vol. 69, pt. 1, p. 118, pi. 11, figs. 2-3. .

Cibicides subhaidingerii Parr, 1950, B.A.N.Z. Antarctic Research Exped. 1929- 1931, Repts., Adelaide, ser. B, vol. 5, pt. 6, p. 364.

Cibicides variabilis (d’Orbigny) = Truncatulina variablis d'Orbigny, 1826, Ann. Sci. Nat., Paris, France, ser. 1, tome. 7, p. 279.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Cibicides lobatulus (Walker and Jacob) = Nautilus lobatulus Walker and Jacob 1798, In: Kanmacher, F., Adams’ Essays on the microscope. Ed. 2, London, England, Dillon and Keating, p. 642.

Comuspira involvens (Reuss) = Operculina involvens Reuss, 1850, K. Akad. Wiss. Wien., Math.-Nat. Cl., Denkschr., Wien Osterreich, Bd. 1, p. 370.

Cruciloculina triangularis d'Orbigny, 1839, Voyage dans l'Amerique Meridionale; Foraminiferes. Strausbourg, France, Levrault, tome 5, pt. 5, p. 72.

Cystammina pauciloculina (Brady) = Trochammina pauciloculina Brady, 1879, Quart. Jour. Micr. Sci.., n. s., vol. 19, p. 58.

Dentalina inomata d'Orbigny var. bradyensis (Dervieux) = Nodosaria inomata (d'Orbigny) var. bradyensis Dervieux, 1894, Soc. Geol. Ital., Bull., vol. 12 (1893), fasc. 4, p. 610, pi. 5, figs. 30-31.

Discorbis tricamerata Heron-Allen and Earland 1932, In: "Discovery" Repts., issued by the "Discovery" Committee, Colonial Office, London. Cambridge, England, University Press, vcl. 4, p. 413.

Discorbis vilardeboana d’Orbigny 1839, Voyage dans l'Amerique Meridionale; Foraminiferes. Strausbourg, France, Levrault, tome 5, pt. 5, p. 44.

Eggerella bradyi (Cushman) = Verneuilina bradyi Cushman 1911, A monograph of the foraminifera of the North Pacific Ocean, U.S. Nat. Mus. Bull. no. 71 p. 54.

Ehrenbergina glabra Heron-Alien and Earland = Ehrenbergina hystrix Brady var. glabra Heron-Allen and Earland, 1922, Protozoa; Part II - Foraminifera. Brit. Antarctic ("Terra Nova") Exped., 1910, Nat. Hist. Rept., London, England, Brit. Mus. (Nat. Hist.), Zool., vol. 6, no. 2, p. 140.

Epistominella exigua (Brady) = Pulvinulina exigua Brady 1884, Rept. Challenger Expedition, London, England, Zool., pt. 22, vol. 9, p. 696.

Eponides tumidulus (Brady) = Truncatulina tumidula Brady, 1884, Rept. Challenger Expedition, Zool., pt. 22, vol. 9, p. 666, pi. 95, fig. 8.

Fissurina alveolata (Brady) = Lagena alveolata Brady, 1884, Rept. Challenger Expedition, Zool., pt. 22, vol. 9, p. 487.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Fissurina earlandi Parr, 1950, B.A.N.Z. Antarctic Research Exped. 1929-1931, Repts., Adelaide, ser. B, vol. 5, pt. 6, p. 309, pi. VIH, fig. 11.

Fissurina laevigata Reuss 1850, K. Akad. Wiss. Wien. Math.-Naturw. Cl., Bd. 1, p. 366.

Fissurina sp. cf. radiata Seguenza 1862, Dei terreni Terziarii del distretto di Messina; Parte II — Descrizione dei foraminiferi monotalamici delle mame mioceniche del distretto di Messina. Messina, Italia, T. Capra, p. 70.

Fissurina c.f. trigono-marginata (Parker and Jones) = Lagena sulcata Walker and Jacob var. trigono-marginata Parker and Jones 1865, Roy. Soc. London, Philos. Trans., vol. 155, p. 348, 352, 419.

Fursenkoina sp. cf. davisi (Chapman and Parr) = Virginulina davisi Chapman and Parr, 1937, Australasian Antarctic Exped. 1911-1914, Sci. Repts., Ser. C (Zool., Botany), vol. 1, pt. 2, p. 88, pi. 8, fig. 15.

Globocassidulina biora (Crespin) = Cassidulina biora Crespin 1960, Tohoku Univ., Sci. Repts., Sendai, Japan, ser. 2 (Geol.), spec, vol., no. 4, pp. 28-29.

Globocassidulina crassa (d’Orbigny) = Cassidulina crassa d’Orbigny, 1839, Voyage dans l'Amerique Meridionale; Foraminiferes. Strausbourg, France, Levrault, tome 5, pt. 5, p. 56.

Gyroidina neosoldanii Brotzen, 1936, Sweden, Sver. Geol. Unders. Avh., Ser. C, no. 36 (Arsb. 30, no. 3), p. 158.

Haplophragmoides canariensis (d ’Orbigny) = Nonionina canariensis d'Orbigny, 1839, In: Hist. Nat. des lies Canaries par MM. P. Barker-Webb et Sabin Berthelot. Bethune, Paris, France, tome 2, pt. 2, Zool., p. 128, pi. 2, figs. 33- 34.

Heronallenia wilsoni (Heron-Alien and Earland) = Discorbina wilsoni Heron-Allen and Earland, 1922, Protozoa; Part II - Foraminifera. Brit. Antarctic ("Terra Nova") Exped., 1910, Nat. Hist. Rept., London, England, Brit. Mus. (Nat. Hist.), Zool., vol. 6, no. 2, p. 206.

Hopkinsina pacifica Cushman, 1933, Contr. Cushman Lab. Foram. Res., vol. 9, pt. 4, no. 137, p. 86.

Hormosinella ovicula (Brady) = Reophax ovicula Brady 1879, Quart. Rep. of Micro. Sci.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Lagena acuticosta Reuss, 1862, K. Akad. Wiss. Wien. Math.-Naturw. Cl., Bd. 44 (Jahrg. 1861), Abth. 1, p. 305, pi. 1, fig.4.

Lagena apiculata (Reuss) = Oolina apiculata 1851, Die foraminiferen und Entomostraceen des Areidemergels von Lemberg. Naturw. Abh., Wein, Osterreich, Bd. 4, Abth. 1, p. 22..

Lagena hispidula Cushman 1913, U. S. Nat. Mus., Bull. no. 71. pt. 3, p. 14.

Lagena striata Williamson = Lagena striata Montagu var. interrupta Williamson, 1848, Ann. Mag. Nat. Hist., ser. 2, vol. 1, p. 14, pi. 1, fig. 7.

Laryngosigma antarctica Crespin, 1960, Tohoku Univ., Sci. Repts., Sendai, Japan, ser. 2 (Geol.), spec, vol.., no. 4, pp. 24, 25.

Lenticulina convergens (Bomemann) = Cristellaria convergens Bomemann, 1855, Deutsche Geol. Ges., Zeitschr., Bd. 7, Heft 2, p. 327, pi. 13, figs. 16-17.

Lingulina vitrea Heron-Alien and Earland, 1932, In: "Discovery" Repts., issued by the "Discovery" Committee, Colonial Office, London. Cambridge, England, University Press, vcl. 4, p. 387.

Melonis affins (Reuss) = Nonionina affins Reuss, 1851, Deutsche Geol. Ges., Zeitschr., Bd. 3, p. 72, pi. 5, fig. 32.

Melonis barleeanum (Williamson) = Nonionina barleeana Williamson 1858, On the Recent foraminifera o f Great Britain. Ray Soc., London, England, p. 32..

Miliammina earlandi Loeblich and Tappan, 1955, Smithsonian Inst., Misc. Coll., vol. 128, no. 5 (publ.4214), p.12.

Miliolinella circularis (Bomemann) = Triloculina circularis Bomemann, 1855, Deutsch. Geol. Ges., Zeitschr., Berlin, Deutschland, bd. 7, heft 2, p. 349, pi. 19, fig. 4 a,b,c.

Miliolinella oblonga (Montagu) = Vermiculum oblongum Montagu, 1803, Test. Brit., p. 522, pi. 14, fig. 9.

Neoconorbina terquemi (Rzehak) =Discorbina terquemi Rzehak, 1888, Geol. Reichsanst., Verh., Wien., p. 228.

Nonion sp. cf. incrassatum Montfort 1808, Conch, system, vol. 1, p. 211.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Nonionella bradyi (Chapman) = Nonionina scapha var. bradii Chapman, 1917, Brit. Antarctic Exped. 1907-1909, Sci. Invest. Repts., Geol., Vol. 2, Pt. 3, p. 71.

Oolina apiculata Reuss 1851, Naturw. Abh., Wein, Osterreich, Bd. 4, Abth. 1, p. 22.

Oolina exsculpta (Brady) = Lagena exsculpta Brady, 1881, Quart. Jour. Micr. Sci., n. s., vol. 21, p. 61.

Oolina sp. cf. globosa (Montagu) = Vermiculum globosum Montagu 1803, Testacea Britannica or natural history of British shells, marine, land and fresh-water, including the most minute. Romsey, England. J. S. Hollis, p. 523.

Oolina hexagona (Williamson) = Entosolenia squamosa (Montagu) var. hexagona Williamson

Oolina inomata d'Orbigny, 1839, Voyage dans l'Amerique Meridionale; Foraminiferes. Strausbourg, France, Levrault, tome 5, pt. 5, p. 21.

Oolina laevigata (Reuss) = Fissurina laevigata Reuss 1850, K. Akad. Wiss. Wien. Math.-Naturw. Cl., Bd. 1, p. 366.

Oolina squamosa-sulcata (Heron-Allen and Earland) = Lagena squamosa-sulcata Heron-Alien and Earland, 1922, Brit. Antarctic ("Terra Nova") Exped., 1910, Nat. Hist. Rept., London, England, Brit. Mus. (Nat. Hist.), Zool., vol. 6, no. 2, p. 151, pi. 5, figs. 15, 19.

Oolina vilardeboana d'Orbigny, 1839, Voyage dans l'Amerique Meridionale; Foraminiferes. tome 5, pt. 5, p. 19, pl.5, figs. 4, 5.

Parafissurina clavigera (Buchner) = Lagena clavigera Buchner, 1940, N. Acta Leopold., n. F., v. 9, 62, p. 529, pi. 26, figs. 544, 545.

Parafissurina pseudomarginata (Buchner) = Lagena pseudomarginata Buchner, 1940, K. Leop.-Carol. Deutsch. Akad. Naturf., Abh. (Nova Acta), n.s., vol. 9, no. 62, p. 534, pi. 27, figs. 566-575. [Boltovskoy and Watanabe]

Patellina corrugata Williamson, 1858, On the Recent foraminifera o f Great Britain. Ray Soc., London, England, p. 46.

Pseudonodosaria bradii (Silvestri) = Lingulonodosaria bradii Silvestri, 1903, Accad. Pont. Nuovi Lincei, Atti., Roma, Italia, tomo 56 (1902-1903), p. 48; type figure Brady, 1884, op. cit., pi. 65, fig. 16.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Pullenia bulloides (d’Orbigny) = Nonionella bulloides d’Orbigny, 1826, Ann. Nat. Sci. ser. 1, v. 7, p. 127 [293], no. 2. 1846. Foram. Foss. Bass. Tert. Vienne, p. 107, pi. 5, figs. 9, 10.

Pullenia subcarinata (d'Orbigny) = Nonionina subcarinata d'Orbigny, 1839, Levrault, tome 5, pt. 5, p.28.

Pyrgo subglobulus Parr, 1950, B.A.N.Z. Antarctic Research Exped. 1929-1931, Repts., Adelaide, ser. B, vol. 5, pt. 6, p. 298.

Pyrgoella globiformis (Karrer) = Biloculina globiformis Karrer, 1867, Zur Foraminiferenfauna in Osterreich. K. Akad. Wiss. Wien. Math.-Naturw. Cl., Sitzber, Wien. Osterreich, Bd. 55, Abth. 1, p. 357.

Quiqueloculina sp. cf. patagonica d'Orbigny, 1839, tome 5, pt. 5, p. 74.

Sigmoilina umbonata Heron-Alien and Earland, 1922, p. 71, pi. I, Fig. 7-8.

Reophax mortenseni Hofker 1972, Primitive Agglutinated foraminifera. E. J. Brill, Leiden.

Sphaeroidina bulloides d'Orbigny, 1826,, Ann. Sci. Nat., ser., tome 7, p. 267.

Spirillina limbata Brady, 1879, Quart. Jour. Micr. Sci., London, n. s., vol. 19, p. 278.

Spirillina tuberculata Brady, 1879, Quart. Jour. Micr. Sci., London, n. s., vol. 19, p. 279.

Suggrunda robusta (Brady) = Bolivina robusta Brady 1884, Rept. Challenger Expedition, London, England, Zool., pt. 22, vol. 9.

Textularia wiesneri Earland 1933, Discovery" Repts., vol. 7 p. 95.

Triloculina trigonula (Lamarck) = Miliolites trigonula Lamarck, 1804, Ann. Mus. Nat. Hist., vol. 5, p. 35; 1807,. vol. 9, pi. 17, fig. 4.

Trochammina glabra Heron-Alien and Earland, 1932, In: "Discovery" Repts., issued by the "Discovery" Committee, Colonial Office, London. Cambridge, England, University Press, vcl. 4, p. 344.

Trochammina ochracea (Williamson) = Rotalina ochracea Williamson 1858, On the Recent foraminifera of Great Britain. Ray Soc., London, England, p. 55.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Trochammina quadricamerata Echols 1971, Antarctic Oceanology I. Antarctic Res. Series, vol. p. 148.

Trochammina tasmanica Parr 1950, Foraminifera. B.A.N.Z. Antarctic Research Exped. 1929-1931, Repts., Adelaide, ser. B, vol. 5, pt. 6, p. 279.

Usbekistania charoides (Jones and Parker) = Trochammina squamata var. charoides Jones and Parker 1860, Geol. Soc. London., Quart. Jour., vol. 16, p. 304.

Uvigerina asperula Czjzek, 1848, Naturw. Abh., Wien, Osterrich, Bd. 2, Abth. 1, p. 146.

Uvigerina canariensis d’Orbigny, 1839, In: Hist. Nat. des lies Canaries par MM. P. Barker-Webb et Sabin Berthelot. Bethune, Paris, France, tome 2, pt. 2, Zool., p. 138, pi. 1, figs. 25-27.

Veleroninoides wiesneri (Parr) = Labrospira wiesneri Parr 1950, Foraminifera. B.A.N.Z. Antarctic Research Exped. 1929-1931, Repts., Adelaide, ser. B, vol. 5, pt. 6, p. 272.

Vemeuilina minuta Wiesner 1931, Deutsche Sudpolar-Expedition 1901-1903. Bd. 20 (Zool. Bd. 12), p. 99.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 4: Relationship Between Benthic Foraminiferal Assemblages and Glacial Environments in the Ross Sea

Introduction

In this chapter, I explore the possibility of using benthic foraminifera to

distinguish among paleoenvironments associated with the Ross Ice Shelf. Domack et

al. (submitted B) reconstructed paleoenvironmental change since the last advance of

the Ross Ice Shelf in glacially carved troughs in the western Ross Sea (Figure 4.1).

They described four sedimentary facies: diamicton facies; muddy, "pelletized" gravel

and sand facies; mud facies; and diatomaceous mud/ooze facies. They interpreted

each of these sedimentary facies in the context of paleoenvironments associated with

ice-shelf retreat. In the present study, benthic foraminiferal distributions in four of

the cores described by Domack et al. (submitted B) were examined in the context of

their sedimentary facies (Figure 4.2). Two other cores, not examined by Domack et

al. (submitted B), that contain glacial sediments were also studied. If foraminiferal

distribution could be related to environments associated with the ice shelf, this might

allow tracking of ice-shelf retreat, through radiocarbon dating of benthic

foraminiferal tests.

Ice Shelf

The Ross Ice Shelf is the largest modem ice shelf, currently covering an area

of 550,000 km2 (Anderson et al., 1984). During the Last Glacial Maximum, ice

extended to the margin of the Ross Sea continental shelf (Kellogg and Truesdale,

1979; Kellogg et al. 1979; Anderson, 1984). Between that time and the present, the

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 4.1 Study area of Domack et al. (submitted B).

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 4.2 Study area. Dots are sample locations.

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ice shelf retreated and grounded on shallow banks of the inner shelf (Anderson,

1993). When sea level began to rise, the Ross Ice Shelf separated from these shallow

banks and retreated to its present position (Anderson, 1993).

The Ross Ice Shelf grounding line, which delineates the boundary between

the ice sheet and ice shelf, passed over JOIDES Basin (Figure 4.1) sometime between

10 to 8 ka BP (Domack et al., submitted B). This migration took place in Drygalski

Trough (Figure 4.1) by 11 ka BP (Domack et al., submitted B). The calving front of

the Ross Ice Shelf retreated across Drygalski Trough at 74°S by 9.5 ka BP (Domack

et al., submitted B).

In this study, an attempt is made to resolve the record of the ice sheet’s retreat

using benthic foraminifera. Anderson (1975, Weddell Sea) and Milam and Anderson

(1981, off Adelie Coast and the George V Coast) have described a sub-ice-shelf

foraminiferal assemblage. Low diversity and the presence of robust, highly calcified

species characterize this assemblage, and the dominant species are Cibicides

refulgens, Ehrenbergina hystrix, Globocassidulina crassa, and G. subglobosa.

Interpretation of sedimentary facies by Domack et al. (submitted B)

Domack et al. (submitted B) studied nineteen cores from N.B. Palmer cruises

94 and 95 using sedimentologic, geotechnical, geochemical, and AMS radiocarbon

data. Twenty samples from four of these cores were used in this study. Domack et

al. (submitted B) identified sedimentary facies, which were found in the same

succession in each of the four cores. They interpreted these sedimentary facies as

representing distinct paleoenvironments.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. The basal sediment type in each of the four cores was a muddy diamicton,

which is interpreted as a till. This till is made up of remolded sediments originally

deposited in an open marine setting just before the Last Glacial Maximum (Domack

et al., submitted B). The diamicton unit is overlain by a unit composed of muddy

gravel and coarse sand which has been interpreted to represent an ice-shelf grounding

line proximal environment (Domack et al., submitted B). In this environment, basal

debris melts out of the ice and is deposited on the seafloor and currents that remove

fine sediment (Domack et al., submitted B).

The next unit in the succession is a silty clay (mud) facies that also is

considered to have formed underneath the ice shelf, but distal from the grounding

line. The sediment is brought into this environment by a lateral transport of fine

material from the grounding line proximal environment (Domack et al., submitted

B).

The overlying unit is a diatomaceous mud/ooze facies that forms today in an

open marine environment.

Methods and Materials

Thirty-nine samples from six kasten cores were examined for this study,

twenty of which (those from N.B. Palmer cruise 9501) were previously examined by

Domack et al. (submitted B). Cores were collected during N.B. Palmer cruises 9501

and 9902. Samples from the NBP9501 cruise were obtained from the Antarctic

Research Facility at Florida State University. Samples from the NBP9902 cruise

were collected on shipboard during February, 1999. Cores NBP9501-30, NBP9501-

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 31, NBP9501-37, and NBP9501-39 were taken from the Ross Sea at water depths of

752 m, 878 m, 924 m, and 557 m, respectively. NBP9501-39 was taken from

JOIDES Basin in the northwestern Ross Sea. The other three NBP9501 cores were

taken from Drygalski Trough. The NBP9902 cores were taken from the southeastern

Ross Sea in an area usually covered with sea ice year-round. NBP9902-11 is from a

water depth of 578 m and NBP9902-12 is from 583 m of water.

NBP9501 samples were washed over a 63-micron sieve. Samples were

density separated to concentrate foraminifera by centrifuging for 6 minutes at 1400

rpm in a 2.5g/cc sodium polytungstate and water solution. Float and sink were rinsed

with water and saved. Because no samples contained 300 specimens, the entire float

was picked.

The two NBP9902 coretops were allowed to sit overnight in a Rose Bengal

and water solution. They were washed over a 63 micron sieve and picked. The other

NBP9902 samples were soaked overnight in a Calgon and water solution, washed

over a 63 micron sieve, and picked.

Results

NBP9501 Samples

Nearly all of the twenty samples, which correspond with samples analyzed by

Domack et al. (submitted B), contain fewer than ten foraminifera (Table 4.1).

However, in three of the five samples which Domack et al. (submitted B) interpreted

to be reworked subglacial till, there are a large number of calcareous foraminifera —

over two hundred in each case. All three of those samples were from the NBP9501-

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 4.1 Abundance data of benthic foraminiferal species in environments recognized by Domack et al. (submitted B).

CL. *3 Vi e "OA "4 03 •§a p-( a to S •. »*«*r P 'b h S O bD s < § u **««■»•2 » JC

Environment § o o NBP9501-30 25-26 open marine 2 l 0 30-31 ice shelf proximal 3 l 1 44-45 till/subglacial 4 0 0

NBP9501-31 9-11 open marine 4 1 2 116-118 ice shelf distal 1 0 5

NBP9501-37 0-2 open marine 1 0 0 20-21 open marine 2 1 0 80-82 ice shelf distal 0 0 0 93-95 ice shelf proximal 0 0 0 125-127 till/subglacial 0 0 0 150-152 till/subglacial 0 0 0

NBP9501-39 0-1 open marine 28 1 >150 50-51 open marine 0 3 0 190-192 open marine 2 0 2 208-210 ice shelf 1 2 0 220-222 till/subglacial 2 >200 1 227-229 till/subglacial 2 >150 1 248-250 till/subglacial 0 >200 0

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 39 core, which is the only JOIDES basin core. JOIDES Basin is immediately south

of the Ross Sea carbonate banks.

Foraminiferal assemblages of the grounding-line proximal and grounding-line

distal units are indistinguishable. Both contain fewer than ten tests in each sample.

The majority of the species are agglutinated. Miliammina earlandi is overwhelmingly

dominant. The samples occasionally contain a few battered specimens of calcareous

foraminifera common elsewhere in the Ross Sea (e.g. Angulogerina earlandi,

Cibicides lobatulus).

All assemblages found within the diatomaceous mud unit are similar to those

found in the ice-shelf grounding line proximal and distal units, except one. This

sample, the coretop from NBP9501-39, showed abundant agglutinated foraminifera.

NBP9902 Samples

NBP9902 cores are from the eastern Ross Sea. These cores, sediments were

divided into two categories: glacial sediment and modem diatomaceous muds the

former with a higher sand content. Both NBP9902 coretops contain an abundant

agglutinated assemblage similar to that found in the NBP9501-39 coretop (Table

4.2). The assemblages in all downcore samples were similar to those found in all

downcore NBP9501 samples.

Discussion

Because diamicton is sediment that has been reworked by ice, foraminifera in

the diamicton may be assumed to be from an ice-shelf-related environment. Instead,

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 4.2 Abundance data of benthic foraminiferal species in NBP9902 cores.

00 1 -a -2 C / 5 u a a PL, s C/5 s 3 U 5 0

NBP9902-12 0-2 24 0 331 10-12 3 0 0 20-22 9 0 0 40-42 0 1 0 60-62 0 33 0 80-82 0 11 0 100-102 0 0 0 120-122 0 0 0

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. they are related to the conditions under which the sediments originally formed before

the Last Glacial Maximum (Domack et al., submitted B).

It is surprising that the ice-shelf distal and ice-shelf proximal environments

cannot be distinguished using benthic foraminifera. These environments are very

different from each other. The abundant, agglutinated, surface assemblage found in

this study differs from the sub -ice-shelf assemblage described by both Anderson

(1975) and Milam and Anderson (1981) in that it contains fewer calcareous

foraminifera. This is probably because the trough sediments are at great enough

depths to be below the CCD, which is at 500 m (Kennett, 1966).

It is significant that downcore samples from within the diatomaceous mud unit,

NBP9902-11 10-12 cm and NBP9902-12 10-12 cm, resembled those of glacial

sediments. Because these samples come from the same facies as the coretops and

contain only resistant species from coretop assemblages, it can be inferred that

downcore samples represent the much richer assemblage after taphonomic loss. The

rich assemblage is most likely common in the Ross Sea, but is not observed, because

agglutinated foraminifera easily disintegrate. Thus, it is only seen in fresh samples of

non-reworked material. The other coretop samples probably contain fewer

agglutinated foraminifera, because of disaggregation, either due to reworking or to

sampling and processing. Miliammina earlandi, the species found most abundantly

in these samples, is a hardy form that does not disaggregate as easily as the

foraminifera found in NBP9501-39 (0-1cm).

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Conclusions

Benthic foraminifera cannot be used to distinguish paleoenvironments

associated with ice-shelf retreat. This is not because ice-shelf location has no effect

on benthic foraminifera, but because reworking and taphonomic effects have erased

the signal. Although some glacial till contains an abundant benthic foraminiferal

assemblage, this sediment (and its foraminiferal assemblage) is reworked, therefore

the foraminiferal assemblage of the till is relict and not related to ice-shelf

environments. The ice-shelf proximal and ice-shelf distal environments were nearly

barren of foraminifera and could not be distinguished. In three coretops, samples

from an open-water environment were characterized by an abundant agglutinated

foraminiferal assemblage. The sparse foraminiferal assemblage found downcore in

the open-water sediments and in all sub-ice-shelf sediments represents a much richer

agglutinated assemblage after taphonomic loss.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 5: Opaline Spherule Distribution and Formation in Antarctic Waters

Introduction

Tiny opaline spherules (Plate 5.1) were observed in the washed (and floated)

sediment residue when scanned for foraminifera. These spherules have been found

in sediments representing various environments from both the Ross and Weddell

Seas (Figure 5.1-5.3). The only other paper in which opaline spherules have been

examined (Weiterman and Russell, 1986) was purely descriptive. In this study, a

possible explanation of opaline-spherule formation is offered. Opaline spherules

found in Ross and Weddell Sea sediments may be important paleoclimatic indicators.

The relative abundance of these spherules is indicative of seasonal sea-ice extent.

Geologic Setting

The Ross Sea extends more than 750,000 km2 between the Transantarctic

Mountains and Marie Byrd Land in the northern part of the Ross Embayment. The

southern part of the embayment is covered by the Ross Ice Shelf, one of the three

major Antarctic ice shelves (Cooper et al, 1990). This ice shelf reached the edge of

the continental shelf of the Ross Sea in the late Pleistocene and then receded to its

present position (Anderson et al., 1993). There is a large Pleistocene carbonate bank

in the northwestern Ross Sea (Taviani et al., 1993). In the central and southwestern

regions, the sediments contain carbonate material, but are predominantly siliceous in

nature.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 5.1 SEM micrographs of three opaline speherules.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 5.1 Sample locations. The two sampling areas are shown in greater detail in the following two figures.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 400*

Figure 5.2 Ross Sea sample locations. Dashed line is the estimated edge of the ice sheet grounding line at >20 ka according toLicht et al. (1996).

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Figure 5.3 Weddell Sea sample locations.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Oceanographic Setting

Two main types of water masses comprise the waters of the Ross Sea. These

are Low-Salinity Shelf Water (LSSW) and High-Salinity Shelf Water (HSSW)

(Anderson et al., 1984). Circumpolar Deep Water (CDW) encroaches upon the Ross

Sea, forming Warm Core Water (WMCO), which is the major source of nutrients in

the Ross Sea. In the northwestern bank area, the lighter WMCO floats on the denser,

colder HSSW (Figure 2.2). The WMCO layer continues south to the edge of the ice

shelf in the western Ross Sea. As it moves southward, it rises from around 250 m

into surface waters (<50 m) (Anderson, 1984). Another tongue of WMCO also

enters the eastern Ross Sea, but it rises to the surface only in a very narrow region

(Anderson, 1984). WMCO is warmer than LSSW and HSSW and contributes to the

melting of sea and glacial ice (Anderson et al., 1984). The melting of sea ice during

austral summer greatly reduces the salinity of surface waters.

Methods and Materials

This study includes 55 coretop and downcore samples from 9 cores. Seven of

these cores were taken from the Ross Sea and 2 from the Weddell Sea. These

samples were processed primarily for a foraminiferal study. Samples were washed

over a 63-micron sieve. Samples with low foraminiferal numbers (<10 tests per

gram sediment) and high quartz content were density separated, by centrifuging for 6

minutes at 1400 rpm in an aqueous solution of sodium polytungstate (2.5g/cc). Both

the float and sink were rinsed with water and saved. Opaline spherules remained in

the float. The entire float from samples with small amounts of carbonate material

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. was picked. One quarter of each of the samples with high carbonate content was

treated with 10% HC1, rinsed, and picked for opaline spherules.

Some spherules were mounted on glass slides and thin-sectioned. The

composition of these spherules was determined with an electron microprobe.

Opaline Spherule Description

Weiterman and Russell (1986) originally described opaline spherules in

sediments from cores taken along the western margin of the Ross Sea. They found

these spherules in four different sedimentary environments: calcareous turbidites,

fine sands, coarse ash, and diatomaceous muds (Weiterman and Russell, 1986).

Weiterman and Russell (1986) described the spherules as opaline ooids

because they are concentrically layered in cross-section (Plate 5.2). Weiterman and

Russell’s (1986) spherules range in diameter from 100 to 1,250 microns. The

spherules examined in this study are of comparable size. Weiterman and Russell

(1986) examined five spherules using an X-ray defraction analyzer and determined

that they were opaline silica. Of the five spehrules examined, three had silica-free

nuclei, and Weiterman and Russell (1986) suggested that the nucleus might have

been organic. There was no evidence of organic nuclei in the present study.

In this study, a microprobe compositional analysis of several points on the

cross-section of one sphemle showed between 85% and 100% opal (Table 5.1).

Variation in composition of the sphemle seemed to be random. Point checks on

three spherules showed them to be opaline. One sphemle was missing a nucleus, but

it appears to have been dislodged while the thin-section was being polished.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Plate 5.2 SEM micrographs of cross-sections of three opaline spherules.

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission Table 5.1 Weight percents of oxides in two opaline spherules.

Pt# Si02 A1203 FeO MgO CaO Na20 K20 X(mm) Y(mm) 1 97.5 0.0439 0 0.0327 0.7249 0.0103 0 23.419 12.951 2 99.98 0.0051 0 0 0 0.0226 0.6229 23.418 12.963 3 91.41 0 0 0 0.8099 0.0021 0 17.594 70.243 4 93.8 0.0274 0.0302 0.0016 0 0.0309 0.7203 17.662 70.242 5 99.39 0.0093 0 0.0021 0.751 0 0 20.466 71.911 1 84.97 0.9921 0.0819 0 0.1404 0.1359 0.867 17.686 70.068 2 92.2 0.0196 0.0829 0.0221 0.8799 0 0.0192 17.684 70.146 3 92.74 0.0187 0.001 0.0027 0 0 0.8257 17.681 70.158 4 89.86 0.0263 0 0 0.8323 0.0454 0.0196 17.679 70.169 5 90.26 0.0154 0.0052 0.0145 0 0.0185 0.7816 17.676 70.18 6 93.05 0 0 0.0215 0.8176 0.0041 0.0299 17.674 70.191 7 91.4 0.0188 0 0.0124 0 0.0597 0.7992 17.671 70.203 8 93.32 0.0461 0.0869 0 0.7904 0.0475 0.0569 17.669 70.214 9 91.79 3.33 0 0.0109 0 0.0123 0.7945 17.667 70.225 10 92.68 0.0445 0 0 0.7945 0.0083 0 17.664 70.236 11 92.77 0.016 0 0.002 0 0.0206 0.8138 17.662 70.248 12 94.74 0.0255 0.001 0.0236 0.8511 0.0227 0.0201 17.659 70.259 13 90.22 0 0 0.0012 0 0.0247 0.8004 17.657 70.27 14 87.1 0.0304 0.0693 0.0045 0.8886 0.0268 0 17.655 70.281 15 89.39 0.0127 0.0391 0 0 0.0082 0.8303 17.652 70.293 16 92.18 0.0295 0 0.0066 0.8464 0.0145 0.0302 17.65 70.304 17 92.68 0.0098 0.0765 0.0014 0 0.0083 0.7783 17.647 70.315 18 93.66 0 0 0.0226 0.8146 0.0062 0 17.645 70.326 19 93.13 0.912 0 0.0201 0.0568 0.1071 0.7932 17.642 70.338 20 69.73 10.53 0 0.0356 1.663 0.1949 0 17.64 70.349

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Opaline Spherule Distribution

Opaline spherules were found in two of the three sedimentary environments

examined from the Ross Sea and in the only environment examined from the

Weddell Sea [Ice Shelf Facies described by Anderson (1972)]. In the Ross Sea,

sedimentary environments were defined using benthic foraminifera (see Chapter 2)

and consist of a Modern-calcareous facies, a carbonate-bank facies, and an

agglutinated-facies. The carbonate bank can be further divided into a macrofaunal

facies and a facies in which macrofauna were not present. Spherules were found in

association with both of the calcareous foraminiferal facies, but were not found in

association with agglutinated foraminifera or in barren samples.

Preliminary examination of several cores was conducted. Ten cores were

chosen for thorough study. Two were from the modem Ross Sea facies. Two were

from the Pleistocene northwestern carbonate bank, one of which was collected from

the macrofaunal facies, and the other from the facies where only foraminifera were

found. Six cores of the trough sediments were also examined.

The concentration of opaline spherules in the Ross Sea is less than 1.0

spherules per gram of sediment in all of these facies, except the carbonate-bank

facies (Tables 5.2 and 5.3). In that facies, opaline-spherule concentrations reach as

high as 4.0 spherules per gram of sediment.

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 5.2 Foraminifera and opaline spherules per gram sediment in carbonate facies.

forams/g spherules/g DF87-14 0-2 7040.0 20-22 0.0 38-40 1955.8 0.4 60-62 8396.8 0.4 80-82 2730.7 100-102 681.9 0.0 120-122 0.3 140-142 2073.0 0.3 160-162 664.8 0.0 178-179 486.4

E32-43 0-2 29.1 20-22 30.6 41-43 34.5 4.0 60-62 0.0 0.0 80-82 0.0 100-102 10982.4 2.4 120-122 1300.5 1.6 140-142 3256.3 3.2 160-162 8883.2 0.0 180-182 29.4 0.0 200-202 24.1 1.5 240-242 1.2 0.4 260-262 34.9 1.2 280-282 14.1 2.4 300-302 5.5 0.0

195

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table 5.3 Foraminifera and opaline spherules per gram sediment in siliciclastic facies. forams/g spheral E32-13 20-22 0.0 0.1 42-44 2.8 0.0 65-67 3.3 0.0 84-86 3.8 0.0 98-100 1.1 0.1 120-122 4.3 0.1 140-142 1.7 160-162 2.7 0.0 182-184 1.7 0.2 202-204 2.1 0.0

E32-16 18-20 0.2 0.0 60-62 1.2 0.3 80-82 1.1 0.1 98-100 0.4 0.1 120-122 0.7 0.1 140-142 0.9 0.1 160-162 1.0 0.1 180-182 0.6 0.1 198-200 0.8 0.0 220-222 0.9 0.0 240-242 0.3 0.1 260-262 0.7 0.0 280-282 1.2 0.1 320-322 0.0 0.0 330-332 0.0 340-342 1.3 0.0 360-362 1.8 0.0 380-382 0.6 0.0

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Rejected Hypotheses

Two possible modes of spherule formation can be rejected. The first is that

the spherules are tektites from a meteorite impact in a quartz-rich area. The second is

that the spherules are volcanic. The evidence that the spherules are neither

extraterrestrial nor volcanic in origin is ( 1) their composition, ( 2) their laminated

configuration, and (3) the consistency of their spherical form.

Although silica is a major constituent of tektites, this silica is not opaline in

form. Further, tektites are 68-82% silica (Bates and Jackson, 1987), far less than is

seen in Ross Sea spherules. In addition, although tektites are rounded, they are also

pitted and jet-black, green, or yellow (Bates and Jackson, 1987). The transparent

spherules from the Ross Sea obviously do not match this description.

Primary volcanic rocks contain silica, but not opal (Blatt and Tracey, 1996).

Ross Sea spherules are found in association with carbonates and clastic rocks, not

volcanic ejecta. Therefore, the hypotheses that these spherules are volcanic in origin

is rejected.

Opaline Spherule Formation

Weiterman and Russell (1986) called the spherules siliceous ooids.

Spherules are concentrically laminated opaline silica, reminiscent of ooid lamination

(Plate 5.2), and probably form through chemical precipitation. However, currents at

the depths in which these spherules are found are not strong enough to create the

agitation necessary for true ooid formation.

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. All marine waters are undersaturated with respect to silica (Broecker and

Peng, 1982), and therefore opaline spherules do not generally form. In the Antarctic,

however, waters are much closer to silica saturation (Broecker and Peng, 1982),

allowing the possibility of opaline spherule formation. Ocean chemistry is primarily

controlled by temperature, pressure, and salinity. Temperature varies little in Ross

Sea waters (Jacobs et al., 1985) and pressure is constant at a given depth. Salinity,

however, varies significantly in Antarctic surface waters because of input of

freshwater from melting ice (Jacobs et al., 1979). Salinity (ionic strength) and pH are

the main controls on silica solubility (Faure, 1991) and, therefore, on opal

precipitation. Silica is less soluble in freshwater than in marine water, so opal should

precipitate when freshwater enters into the system (Faure, 1991). Freshwater input,

caused by melting ice, is necessary for the formation of opaline spherules. However,

their widespread environmental and temporal distribution suggests that opaline

spherules do not form in association with the large-scale melting during rapid ice-

shelf retreat. Instead, spherules are probably associated with seasonal sea-ice

melting. They are not very dense (<2.5 g/cc) compared to water, so they may drift

slowly through the surface water, accreting opaline silica in concentric layers.

Discussion

There are a few possible explanations for the higher sphemle concentrations

in the Ross Sea carbonate bank. The relative concentration of opaline sphemle may

relate to nutrient levels. The greatest concentration of opaline sphemles occurs in

Pleistocene sediments, in the northwestern part of the carbonate banks. This area

198

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. also shows the greatest macrofaunal diversity. In Chapter 2 ,1 suggest that this part of

the bank was subjected to a greater influx of nutrient-rich CDW in the Pleistocene

than today. Silica is among the nutrients delivered into the Ross Sea by upwelling

today (Jacobs, 1979). Therefore, a greater influx of CDW in the Pleistocene suggests

a higher silica concentration at that time. This would allow silica to reach saturation

more easily and precipitate with the influx of fresh meltwater.

Current activity in the Ross Sea is greatest in the northwestern bank area

(Anderson, 1984). Based on the foraminiferal assemblages, sediments the size of

opaline spherules appear unaffected by winnowing. However, the fine sediment

fraction has definitely been winnowed from that area (per. comm. Anderson, 1999).

Removal of the fine sediment fraction may have concentrated opaline spherules and

may also account for their high concentration in bank sediments.

Conclusions

The solubility of silica is much lower in freshwater than saltwater; therefore

opaline spherules precipitate when freshwater from melting ice mixes with saltwater.

Because the water at the bottom of the Ross Sea remains very saline, these spherules

almost certainly form in the upper part of the water column and fall to the sediments

below. The density of opaline spherules is low (<2.5 g/cc) compared to water

making it likely that they sink very slowly through the water column, allowing them

to accrete in the shape of a sphere.

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Chapter 6: Summary and Conclusions

This volume addresses three major topics: 1) environmental controls on the

distribution of benthic foraminifera in the Ross Sea, 2) benthic foraminifera and the

record of ice-shelf retreat in the Ross Sea, 3) formation of the opaline spherules

found in Antarctic sediments.

Pattern of benthic foraminiferal distribution in the Ross Sea

The distribution of benthic foraminifera in the Ross Sea has been addressed

in previous studies (McKnight, 1962; Pflum, 1966; Kennett, 1967, 1968; Fillon,

1974; Osterman and Kellogg, 1979). However, none of these studies considered the

Pleistocene position of the ice sheet when explaining foraminiferal distribution.

The present project attempts to determine controls on foraminiferal

distribution in the Ross Sea, with particular attention to the effect of the ice sheet on

that distribution. In the Pleistocene, the Ross Ice Sheet extended to the edge of the

continental shelf (Anderson et al., 1993). Since that time, the ice shelf has retreated

approximately 750,000 km2. Despite such an extensive retreat, it is still the largest

ice shelf that exists today.

Foraminiferal assemblages in the Ross Sea are predominantly calcareous or

agglutinated. Two calcareous foraminiferal faunas exist in the Ross Sea.

Angulogerina earlandi, Cibicides lobatulus, Discorbis vilardeboana, Ehrenbergina

glabra, Epistominella exigua, and Globocassidulina crassa are the numerically

significant contributors to both of these faunas. Concentration and diversity are

much higher in the carbonate bank fauna than in the Modem calcareous fauna.

200

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Earlier works (Domack, 1982; Domack et al., 1988; Anderson, 1993) have

suggested an association between ice-shelf position and Antarctic marine carbonate

formation. This study suggests another link between ice-shelf position and carbonate

formation, at least in the Ross Sea. The amount of CDW that reaches onto the

continental shelf is influenced by ice sheet position. The location of the CDW is a

controlling factor in the distribution of calcareous foraminifera because it is the most

nutrient-rich water mass in the Ross Sea. It is highly productive and the input of

phytodetritus caused by the nutrients has a major effect on foraminiferal faunas.

The Modem-calcareous fauna is found in areas where the CDW upwells into

the photic zone and the sediment surface is above the CCD. The carbonate-bank

fauna formed in the Pleistocene and represents a more productive period due to

increased CDW upwelling.

An agglutinated fauna is also found in the Ross Sea. It is found beneath the

CCD and where the CDW does not upwell into the photic zone. Three coretop

samples contain an abundant and somewhat diverse assemblage of agglutinated

foraminifera including Bathysiphon sp. A, Hormosinella ovicula, Miliammina

earlandi, Textularia wiesneri, and Trochammina quadricamerata. All other samples

contain only resistant forms of the abundant coretop assemblage, with Miliammina

earlandi most abundant. The sparse-agglutinated assemblage probably represents a

much richer agglutinated assemblage after taphonomic loss.

201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Foraminiferal Downcore Distribution and Historical Record

The downcore foraminiferal record in the cores used in this study is not

useful for reconstructing an historical record. Downcore faunal changes in samples

of the agglutinated fauna appear to be the result of taphonomic loss. Downcore

changes in the Modem-calcareous fauna are not apparent. In the carbonate-bank

fauna, changes downcore are evident, but are possibly due to reworking and cannot

be interpreted in a paleoenvironmental context.

Cold-Water Carbonates

The most common species in the Ross Sea carbonate-bank fauna are

Angulogerina earlandi, Cibicides lobatulus, Discorbis vilardeboana, Ehrenbergina

glabra, Epistominella exigua, and Globocassidulina crassa. Diversity, the number

of species per sample, and the concentration of foraminiferal tests are higher in the

carbonate bank than elsewhere in the Ross Sea.

Biogenic Silica

Biogenic silica is found in greater concentration in modem sediments which

contain calcareous foraminifera than in the Pleistocene carbonate bank. The biogenic

silica concentrations probably do not reflect the productivity during the formation of

these sediments. The lower concentrations in the carbonate bank are due to

winnowing and the greater exposure of mixed Pleistocene sediments to waters

undersaturated in silica.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Foraminiferal record and ice-shelf movement in the Ross Sea

Another part of this study seeks to determine if an ice-retreat signature is

detectable in downcore benthic foraminiferal distributions. The presence of

calcareous benthic foraminifera in glacial sediments would be particularly useful

because the age of calcareous foraminifera can be determined using radiocarbon

dating. Domack et al. (in press) interpreted glacial environments based on sediments

from several cores taken from glacially-carved troughs in the Ross Sea. Study of

benthic foraminiferal assemblages from those cores show that benthic foraminifera

cannot be used to distinguish paleoenvironments associated with ice-shelf retreat.

The ice-shelf proximal, ice-shelf distal, and open-water environments could not be

distinguished using benthic foraminiferal assemblages. This is not because ice-shelf

location has no effects on benthic foraminifera, but because the record has been

altered due to reworking and taphonomic loss. Some glacial tills described in this

study contained an abundant foraminiferal assemblage. However, glacial till consists

of reworked sediments, and the foraminiferal assemblages it contains are relict and

not related to ice-shelf environments.

Presence of opaline spherules found in Antarctic sediments

Opaline sphemles, first reported from the Ross Sea (Weiterman and Russell,

1986), but also found in the Weddell Sea (this study) were in association with

calcareous foraminifera. They were not found in samples barren of foraminifera or in

which the dominant fauna was agglutinated. No possible mode of formation for

these tiny opaline spherules has been offered previously.

203

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Opaline spherule distribution is limited to the area (most of the Ross Sea)

where sea ice is seasonal. Opaline spherules form when melting ice causes

freshwater to mix with saltwater. The solubility of silica in freshwater is much lower

than in saltwater and silica is close to the saturation point in Antarctic waters.

Therefore, when freshwater mixes with saltwater, it causes silica precipitation.

Because the water at the bottom of the Ross Sea remains very saline, these spherules

almost certainly form in the upper part of the water column and then fall to the

sediments below. The density is low (<2.5 g/cc) compared to water making it likely

that they sink very slowly through the water column, allowing them to accrete in the

shape of a sphere.

Connections

Opaline spherule density and benthic foraminiferal density increase together,

probably because both require high nutrient (silica) levels for production. Biogenic

silica concentration, however, is lower in sediments with high benthic foraminiferal

density. This may be the result of winnowing of fines (including diatoms) or

dissolution.

Major Conclusions

The distribution of benthic foraminifera in the Ross Sea is controlled by

phytoplankton productivity in surface waters, which is fueled by upwelling of the

nutrient-rich CDW into the photic zone. The foraminiferal record is not useful for

mapping the ice-shelf retreat history, because reworking and taphonomic loss have

obscured the foraminiferal faunal signal of glacial environments.

204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. References

Anderson, J. B. 1972. The marine geology of the Weddell Sea. Ph.D. Dissertation. The Sedimentological Research Laboratory Contrib. 35.

Anderson, J. B. 1975a. Ecology and distribution of foraminifera in the Weddell Sea of Antarctica. Micropaleo. 21:1:69-96.

Anderson, J. B. 1975b. Factors controlling CaC03 dissolution in the Weddell Sea from foraminiferal distribution patterns. Marine Geology 19:315-332.

Anderson, J. B. 1984. Sedimentation on the Ross Sea continental shelf, Antarctica. Mar. Geol. 57:295-333.

Anderson, J. B. 1993. Antarctic glacial marine sedimentation, in Bryan, Jonathan R. (ed.) Workshop on Antarctic Glacial Marine and Biogenic Sedimentation: Notes for a Short Course. Sedimentology Research Lab Contrib. 57:1:1-88.

Anderson, J. B. in press. Antarctic Marine Geology, Cambridge University Press, pp.

Bates, R. L., J. A. Jackson. 1987. Glossary of Geology. American Geological Institute. Alexandria, Virginia p. 676.

Blatt, Havery, Robert J. Tracey. 1996. Petrology: igneous, sedimentary, and metamorphic. 2nd ed. W.H. Freeman, New York. 529 p.

Boltovskoy, E. 1980 Atlas of benthic shelf foraminifera of the southwest Atlantic. 147p.

Bomemann, J. G. 1855. Die mikroskopische Fauna des Septarienthones von Hermsdorfbei Berlin. Deutsch. Geol. Ges., Zeitschr., Berlin, Deutschland, bd. 7, heft 2.

Brady, H. B. 1878. On the reticularian and radiolarian Rhizopoda (Foraminifera and Polycystina) of the North Polar Expedition of 1875-76, Ann. Mag. Nat. Hist., ser. 5, 1:425-440.

Brady, H. B. 1879. Notes on some of the Reticularian Rhizopodia of the Challenger Expedition. Part 1. On new or little known arenaceous types. Quarterly Report of Microscopical Science 19:20-63.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Brady, H. B. 1881. Notes on some of the reticularian Rhizopoda of the “Challenger” Expedition; Part HI. Quart. Jour. Micr. Sci., n. s., vol. 21.

Brady, H. B. 1884. Report on the Foraminifera dredged by H.M.S. Challenger. during the years 1873-1876: Reports of the Scientific results o f the Voyage of HMS Challenger, v. IX (Zoology), p.l-xxl, 1-814.

Broecker, Wallace, Tsung-Hung Peng. 1982. Tracers in the Sea. Lamont-Doherty Laboratory Geological Observatory, Columbia University, Palisades, New York.

Brookfield, M.E. 1988. A mid- temperate carbonate shelf - the Black River and Trenton Limestone Groups of southern Ontario, Canada. Sedimentary Geology 60:137-153.

Brotzen, F. 1936. Foraminiferen aus dem schwedischen, untersten Senon von Eriksdal in Schonen. Sweden, Sver. Geol. Unders. Avh., Ser. C, no. 36, &rsb. 30, no. 3.

Buchner, P. 1940. Die Lagenen des Golfes von Neapel und der marinen Ablagerungen auf Ischia. N. Acta Leopold., n.s., v. 9.

Burckle, L. H., J. Cirilli. 1987. Origin of diatom ooze belt in the Southern Ocean: Implications for late Quaternary paleoceanography. Micropaleo. 33:1:82-86.

Burckle, L. H., S. S. Jacobs, R. B. McLaughlin. 1987. Late austral spring diatom distribution between New Zealand and the Ross Ice Shelf, Antarctica: Hydrographic and sediment correlations. Micropaleo. 33:1:74-81.

Burke, S. C. 1981. Recent benthic foraminifera on the Ontong Java Plateau. J. of Foram. Res. 11:1-19.

Chapman, F. 1917. Report on the foraminifera and ostracoda out of marine muds from soundings in the Ross Sea. Brit. Antarctic Exped. 1907-1909, Sci. Invest. Repts., Geol., Vol. 2, Pt. 3.

Chapman, F. and W. J. Parr. 1937. Foraminifera. Australian Antarctic Expedition, 1911-1914, Scientific Reports Series C 1:2:1-190.

Collins, L.B. 1988. Sediments and history of Rottnest Shelf, southwest Australia: a swell-dominated, non-tropical carbonate margin. Sedimentary Geology 60:15-50.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Cooper, A. K., F. J. Davey, K. Hinz. 1990. Geology and Hydrocarbon Potential of the Ross Sea, Antarctica. AAPG Studies in Geology 31:47-67.

Corliss, Bruce. 1979. Recent deep-sea benthonic foraminiferal distributions in the southeast Indian Ocean: Inferred bottom-water routes and ecological implications. Marine Geology 31:115-138.

Crespin, 1960, Some Recent foraminifera from Vestfold Hills, Antarctica. Tohoku Univ., Sci. Repts., Sendai, Japan, ser. 2 (Geol.), spec, vol., no. 4.

Cushman, J. A. 1911. A monograph of the foraminifera of the North Pacific Ocean, U.S. Nat. Mus. Bull. 71.

Cushman, J. A. 1913. A monograph of the foraminifera of the North Pacific Ocean; Part in - Lagenidae. U. S. Nat. Mus., Bull. Washington D. C., U. S. A., no. 71.pt. 3, p. 14.

Cushman, J. A. 1933. Some new Recent foraminifera from the Tropical Pacific. Contr. Cushman Lab. Foram. Res., vol. 9, pt. 4, no. 137.

Cushman, J. A. 1945. Foraminifera of the United States Antarctic Service Expedition 1939-1941. American Philosophical Society, Proceedings 89:285-288.

Czjzek, J. 1848. Beitrag zur Kennings der fossilien Foraminiferen des Wiener Beckens. Naturw. Abh., Wien, Osterrich, Bd. 2, Abth. 1.

DeMaster, David J. 1981. The supply and accumulation of silica in the marine environment. Geochimica et Cosmichimica Acta 45:1715-1732.

Department of the Navy. 1985. Sea Ice Climatic Atlas: Volume I, Antarctic, (NAVAIR 50-1C-540), 131p.

Dervieux, E. 1894. Le Nodosarie terziarie del Piemonte. Soc. Geol. Ital., Bull., vol. 12 (1893), fasc. 4.

Domack, Eugene W. 1982. Sedimentology of glacial and glacial-marine deposits on the George V-Adelie continental shelf, East Antarctica. Boreas 11:79-97.

Domack, Eugene W. 1988. Biogenic facies in the Antarctic glacimarine environment: basis for a polar glacimarine summary. Palaeogeography, Palaeoclimatology, Palaeoecology 63:357-372.

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Domack, Eugene W., Taviani, Marco, Rodriguez, Anthony, submitted A. Recent Sediment Remolding on a Deep Shelf, Ross Sea Implications for Radiocarbon Dating of Antarctic Marine Sediments. Quaternary Geochronology.

Domack, Eugene W., Jacobson, Erik A., Shipp, Stephanie, Anderson, John B. submitted B. Sedimentologic and stratigraphic signature of the late Pleistocene/Holocene Fluctuation of the West Antarctic Ice Sheet in the Ross Sea: A New Perspective Part 2.

Draper, J.J. 1988. limestone in the southeastern Bowen Basin, Queensland: an example of temperate carbonate deposition. Sedimentary Geology 60:155- 162.

Earland, A. 1933. Foraminifera Part II South Georgia, In: "Discovery" Repts., issued by the "Discovery" Committee, Colonial Office, London. Cambridge, England, University Press, 7:27-138.

Echols, Ronald James. 1971. Distribution of foraminifera in sediments of the Scotia Sea area, Antarctic waters. Antarctic Oceanology I. Antarctic Res. Series. 15:93-168.

El-Sayed, Sayed Z., Douglas C. Biggs, Osmund Holm-Hansen. 1983. Phytoplankton standing crop, primary productivity, and near-surface nitrogenous nutrient fields in the Ross Sea, Antarctica. Deep-Sea Res. 30:8A:871-886.

Faure, Gunter. 1991. Principles and Applications of Inorganic Geochemistry: A comprehensive Textbook for Geology Students. McMillan Pub. Co., New York, New York.

Faure-Fremiet, E. 1914. Les Foraminiferes de la seconde Mission Antarctique Francaise II Campagne de Porqui Pas (note preliminaire). Geological Society of France Bull. 38:260-271.

Fillon, Richard H. 1974. Late Cenozoic foraminiferal paleoecology of the Ross Sea, Antarctica. Micropaleo. 20:2:129-151.

Finlay, H. J. 1939. New Zealand foraminifera: Key species in stratigraphy - No. 2. Roy. Soc. New Zealand, Trans. Proc., vol. 69, pt. 1.

Gooday, A. J. 1988. A response by benthic Foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:70-73.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Gooday, A. J. 1993. Deep-sea benthic foraminiferal species which exploit phytodetritus: Characteristic features and controls on distribution. Marine Micropaleo. 22:187-205.

Gooday, A. J. 1996. Epifaunal and shallow infaunal foraminiferal communities at three abyssal NE Atlantic sites subject to differing phytodetritus input regimes. Deep-Sea Res. 43:9:1395-1421.

Gostin, V.A., A.P. Belperio, J.H. Cann. 1988. The Holocene non-tropical coastal and shelf carbonate province of southern Australia. Sedimentary Geology 60:51-50.

Herb, Rene. 1971. Distribution of recent benthonic foraminifera in the Drake Passage. Biology of the Antarctic Seas IV. Antarctic Res. Series. 17:251- 300.

Hecker, B. 1994. Photographic evidence for the rapid flux of particles to the sea floor and their transport down the continental slope. Deep Sea Res. 37:1773- 82.

Herguera, J. C. 1992. Deep-sea benthic foraminifera and biogenic opal: Glacial to postglacial productivity changes in the western equatorial Pacific. Marine Micropaleo. 19:79-98.

Heron-Alien, E. and Earland, A. 1922. Protozoa, Part 2. Foraminifera. British Antarctic Terra Nova Expedition, 1910, Zoology, 35:599-647.

Heron-Alien, E., Earland, A. 1932. Foraminifera; Part I - The ice-free area of the Falkland Islands and adjacent seas. In: "Discovery" Repts., issued by the "Discovery" Committee, Colonial Office, London. Cambridge, England, University Press, vol. 4, p. 344.

Hofker, J. 1972. Primitive Agglutinated foraminifera. E. J. Brill, Leiden.

Ishman, Scott E.. 1990. Quantitative Analysis of Antarctic Benthic Foraminifera: Application to Paleoenvironmental Interpretations, unpublished dissertation Ohio State University, pp. 266.

Ishman, Scott E. 1991. Benthic foraminiferal ecology of the Antarctic Peninsula Pacific coast, in Thompson, M. R. A., J. A. Crane, J. W. Thomson, eds., Geological Evolution of Antarctica, Cambridge University Press, Cambridge, p.699-705.

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Ishman, Scott E. 1993. Circumantarctic benthic foraminifers. in Bryan, Jonathan R. (ed.) Workshop on Antarctic Glacial Marine and Biogenic Sedimentation: Notes for a Short Course. Sedimentology Research Lab Contrib. 57:2:105- 133.

Jacobs, S. S., A. L. Gordon, A. F. Amos. 1979. Effect of glacial ice melting on the Antarctic Surface Water. Nature 277:469-471.

Jacobs, S. S., R. G. Fairbanks,. Y. Horibe. 1985. Origin and Evolution of water masses near the Antarctic continental margin: evidence from H 218O/H2160 ratios in seawater, from Oceanology o f the Antarctic Continental Shelf, S. S. Jacobs, ed. 312p.

Jennings, Anne E., Gudrun Helgadottir. 1994. Foraminiferal assemblages from the fjords and shelf of eastern Greenland. J. of Foram. Res. 24:2:123-144.

Jones, T. R., W. K. Parker. 1860. On the Rhizopodal fauna of the Mediterranean, compared with that of the Italian and some other Tertiary deposits. Geol. Soc. London., Quart. Jour., London, England, vol. 16, p. 304.

Kamp, P.J.J., F.J. Harmsen, C.S. Nelson, S.F. Boyle. 1988. Barnacle-dominated limestone with giant cross-beds in a non-tropical, tide-swept, Pliocene forearc seaway, Hawke’s Bay, New Zealand. Sedimentary Geology 60:173-195.

Karrer, F. 1867. Zur Foraminiferenfauna in Osterreich. K. Akad. Wiss. Wien. Math.-Naturw. CL, Sitzber, Wien. Osterreich, Bd. 55, Abth. 1, p. 357.

Kellogg, Thomas B., Davida E. Kellogg. 1987. Microfossil distributions in modem Amundsen Sea sediments. Marine Micropaleo. 12:203-222.

Kellogg, Thomas B., Robert S. Truesdale. 1979. Late Quaternary paleoecology and paleoclimatology of the Ross Sea: The diatom record. Marine Micropaleo. 4:137-158.

Kellogg, Thomas B., Robert S. Truesdale, Lisa E. Osterman. 1979. Late Quaternary extent of the West Antarctic ice sheet: New evidence from Ross Sea cores. Geology 7:249-253.

Kennett, James P. 1966. Foraminiferal Evidence of a Shallow Calcium Carbonate Solution Boundary, Ross Sea, Antarctica. Science 153:191-193.

Kennett, James P. 1967. New foraminifera from the Ross Sea, Antarctica. Contrib. From the Cushman Foundation for Foram. Res. 18:3:133-135.

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Kennett, James P. 1968. The fauna of the Ross Sea, part 6, Ecology and distribution of foraminifera. New Zealand Dept. Sci. Ind. Research Bull. 186:1-46.

Lamarck. 1804. Ann. Mus. Nat. Hist., vol. 5, p. 35; 1807,. vol. 9.

Lampitt, R. 1985. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep Sea Res. 32:885-897.

Lampit, R., A. Antia. 1997. Particle flux in the deep seas: regional characteristics and temporal variability. Deep Sea Res. 44:1377-1403.

Lena, Haydee. 1980. Foraminiferos bentonicos del noroeste de la Peninsula Antarctica. Physics, Seccion A 39:96:9-20.

Licht, Kathy J, Anne E. Jennings, John T. Andrews, Kerstin M. Williams. 1996. Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica. Geology 24:3:223-226.

Loeblich, A. R., H. Tappan. 1955. Revision of some Recent foraminiferal genera. Smithsonian Inst., Misc. Coll., vol. 128, no. 5 (publ.4214), p. 12.

Loubere, P. M. Fariduddin. in press. Benthic Foraminifera and the flux of organic carbon to the seabed. In: Sen Gupta, B. K. (ed.), Modem Foraminifera. Kluwer.

Mackensen, Andreas, Robert J. Douglas. 1989. Down-core distribution of live and dead deep-water benthic foraminifera in box cores from the Weddell Sea and the California continental borderland. Deep-Sea Res. 36:6:879-900.

McKnight, W. M. 1962. The distribution of Foraminifera off part of the Antarctic coast. Unpublished Thes Mercer, J. H. 1978. West Antarctic ice sheet and C02 greenhouse effect: a threat of disaster. Nature 271:321-325.

Mercer, J. H. 1978. West Antarctic ice sheet and C 02 greenhouse effect: a threat of disaster. Nature 271:321-325.

Middleburg, J., T. Vlug, F. Van der Nat. 1993. Organic matter mineralization in marine systems. Global Planetary Change 8:47-58.

Milam, Robert W., John B. Anderson. 1981. Distribution and ecology of recent benthonic foraminifera of the Adelie-George V continental shelf and slope, Antarctica. Marine Micropaleo. 6:297-325.

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Montfort, Denys de. 1808. Conchyliologie systematique et classification methodique des coquilles. vol. 1.

Montagu, G. 1803. Testacea Britannica or natural history of British shells, marine, land andfresh-water, including the most minute. Romsey, England. J. S. Hollis.

Nelson, Campbell S.. 1988. An introductory perspective on non-tropical shelf carbonates. Sedimentary Geology 60:3-12.

Nelson, Campbell S., Sandra L. Keane, Philip S. Head. 1988. Non-carbonate deposits on the modem New Zealand shelf. Sedimentary Geology 60:71-94.

Omoto, K. 1983. The problem and significance of radiocarbon geochronology in Antarctica, p.450-452: in Oliver, R. L., P. R. James, J. B. Jago, eds., Antarctic Earth Science. Cambridge University Press, Cambridge, 797p.

d’Orbigny, A. 1826. Tableau m©thodique de la classe des C©phalapodes. Ann. Sci. Nat., Paris, France, s©r. 1, tome. 7.

d’Orbigny, A. 1839a. Voyage dans VAmerique Meridionale; Foraminiferes. Strausbourg, France, Levrault, tome 5, pt. 5, p. 74.

d’Orbigny, A. 1839b. In: Hist. Nat. des lies Canaries by MM. P. Barker-Webb and Sabin Berthelot. Bethune, Paris, France, tome 2, pt. 2, Zool., p. 128, pi. 2, figs. 33-34.

Osterman, Lisa E., Thomas B. Kellogg. 1979. Recent benthic foraminiferal distributions from the Ross Sea, Antarctica: Relation to ecologic and oceanographic conditions. J.F.R. 9:3:250-269.

Parker, W. K., T. R. Jones. 1865. On some foraminifera from the North Atlantic and Arctic Oceans, including Davis Straits and Baffin’s Bay. Roy. Soc. London, Philos. Trans., vol. 155, p. 348, 352, 419.

Parr, W. J. 1950. Foraminifera. B.A.N.Z. Antarctic Research Exped. 1929-1931, Repts., Adelaide, ser. B, vol. 5, pt. 6, p. 298.

Pearcey, F. G. 1914. Foraminifera of the Scottish National Antarctic Expedition. Royal Society of Edinburgh 49:4:991-1044.

Pflum, C. E. 1966. The distribution o f Foraminifera in the eastern Ross Sea, Amundsen Sea and Bellingshausen Sea, Antarctica. 106p.

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Rao, C.P. 1988. Paleoclimate of some Permo- carbonates of Malaysia. Sedimentary Geology 60:163-171.

Reuss, A. E. 1850. Neue Foraminiferen aus den Schichten des Osterreichishchen Tertiarbeckens. K. Akad. Wiss. Wien., Math.-Nat. Cl., Denkschr., Wien, Osterreich, Bd. 1.

Reuss, A. E. 1851. Die foraminiferen und Entomostraceen des Areidemergels von Lemberg. Naturw. Abh., Wein, Osterreich, Bd. 4.

Reuss, A. E. 1862. Palaontologische Beitrage. K. Akad. Wiss. Wien. Math.-Naturw. Cl., Bd. 44 (Jahrg. 1861), Abth. 1.

Reuss, A. E. 1863. Die Foraminiferen des norddeutschen Hils und Gault. K. Akad. Wiss. Wien. Math.-Naturw. CL, Sitzber, Wien. Osterreich, Bd. 46, Abth. 1 (1862).

Rzehak, A. 1888. Die Foraminiferen der Nummulitenschichten des Waschberges und Michelsberges bei Stockerau in Nieder-Osterreich. Austria, Geol. Reichsanst., Verh., Wien.

Schnitker, D. 1974. West Atlantic abyssal circulation during the past 120,000 years. Nature 247:385-387.

Schnitker, D. 1980. Quaternary deep-sea benthic foraminifers and bottom water masses. Ann. Rev. Earth Planet. Science 8:343-70.

Schnitker, D. 1994. Deep-sea benthic foraminifera: food and bottom water masses, in R. Zahn et al. (eds.) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change, NATO ASI Series 117:540—554.

Scoffin, T.P. 1988. The environments of production and deposition of calcareous sediments on the shelf west of Scotland. Sedimentary Geology 60:107-124.

Scoffin, T.P., G.E. Bowes. 1988. The facies distribution of carbonate sediments on Porcupine Bank, northeast Atlantic. Sedimentary Geology 60:125-134.

Seguenza, G. 1862. Dei terreni Terziarii del distretto di Messina; Parte II — Descrizione deiforaminiferi monotalamici delle mame mioceniche del distretto di Messina. Messina, Italia, T. Capra, p. 70.

Silvestri, A. 1903. Linguloglanduline e Lingulonodosarie. Accad. Pont. Nuovi Lincei, Atti., Roma, Italia, tomo 56 (1902-1903).

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Simone, L., G. Carannante. 1988. The fate of foramol (“temperate-type”) carbonate platforms. Sedimentary Geology 60:347-354.

Smith, C., R. Hoover, S. Doan, et al. (1996) Phytodetritus at the abyssal seafloor across 10 of latitude in the central equatorial Pacific. Deep Sea Res. 43:1309- 1338.

Smith, Walker O., David M. Nelson. 1985. Phytoplankton bloom produced by a receding ice edge in the Ross Sea: Spatial coherence with the density field. Science 227:163-165.

Streeter, S. S. 1973. Bottom Water and Benthonic Foraminifera in the North Atlantic - Glacial-Interglacial contrasts. Quaternary Res. 3:131-141.

Tappan, H. 1951. Northern Alaskan index foraminifera. Cushman Found. Foram. Res., Contr. v. 2, pt. 1, p. 7.

Taviani, Marco, David E. Reid, John B. Anderson. 1993. Skeletal and isotopic composition and paleoclimatic significance of Late Pleistocene carbonates, Ross Sea, Antarctica. J. of Sed. Pet. 63:84-90.

Truesdale, Robert S., Thomas B. Kellogg. 1979. Ross Sea diatoms: Modem assemblage distributions and their relationship to ecologic, oceanographic, and sedimentary conditions. Mar. Micropaleo. 4:13-31.

Uchio, Takayasu. 1960. Benthonic foraminifera of the Antarctic Ocean. Biological results of the Japanese Antarctic Research Expedition 12. Special Publications from the Seto Marine Biological Laboratory.

Walker, G., E. Jacob. 1798. In: Kanmacher, F., Adams’ Essays on the microscope. Ed. 2, London, England, Dillon and Keating, p. 642.

Ward, B. L., P. J. Barrett, P. Vella. 1987. Distribution and ecology of benthic foraminifera in McMurdo Sound, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 58:139-153.

Warthen, A. S. 1934. Foraminifera from the Ross Sea. American Museum Novitates 721:1-4.

Weiterman, S. D., M.D. Russell. 1986. Siliceous ooids from antarctic marine sediments. Antarctic Journal 159-160.

214

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Weston, Janice F., John W. Murray. 1984. Benthic foraminifera as deep-sea water- mass indicators. In: Benthos’83, 2nd Int. Symp. Benthic Foraminifera (Pau, April 1983), p. 605-610.

Wiesner, H. Die Foraminiferen der deutschen Sudpolar-Expedition 1901-1903. In: Drygalski, E. von, Deutsche Sudpolar-Expedition 1901-1903. Berlin u. Leipzig, Deutschland, de Gruyter. Bd. 20 (Zool. Bd. 12), p. 99.

Williamson, W. C. 1848. On the Recent British species of the genus Lagena. Ann. Mag. Nat. Hist., ser. 2, vol. 1.

Williamson, W. C. 1858. On the Recent foraminifera o f Great Britain. Proc. Ray Soc., London, England.

Wilson, J.B. 1988. A model for temporal changes in faunal composition of shell gravels during a transgression on the continental shelf around the British Isles. Sedimentary Geology 60:95-105.

Wollenburg, Jutta E., Andreas Mackensen. 1998. Living benthic foraminifers from the central Arctic Ocean: faunal composition, standing stock and diversity. Marine Micropaleo. 34:153-185.

Young, H.R., C.S. Nelson. 1988. Endolithic biodegradation of cool-water skeletal carbonates on Scott shelf, northwestern Vancouver Island, Canada. Sedimentary Geology 60:251-267.

215

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Appendix:

Abundance Data of Benthic Foraminiferal Species in Ross Sea sediments

216

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapiojqjj -

jtunujuvq vujjuaqouaj

y -d s sapjoujjnpjssvj

CN vuvjua-quvd sdpwuijnpissvj - -

sjjauaj vujjnpjssvj CN c n c n VO -

V ’d s vjpujiujpig vjvjsoojsvq vjputuijjng

Y *ds vujuujjng

vjvajnov vujiujjng

sapjouvjpxaj -p *ds vuiAjjog m

Djojnqjvds p "ds vujMjog

sjuvjnSauuj vjpujjnoojjg

Y 'd s uoqdjsdqjvg

3 "ds uojuououjsy -

g ’d s uojuououjsy

Y 'd s uojuououjsy N"

snojjouvjuv uojuououjsy

CN r - o o jpuvjuva vujuaSojnSuy - CN CN - CN - CN

Y 'd s vjuoiuiuy vjvuauiojS tnuu&joouapy

o CN 00 00 CN i CN 1 i o o 1 O 102-104 18-20 58-60 20-22 60-64 DF62-11 40-42 40-42 DF62-6 O r- o 00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. OO snjnjvqoj sopjojqjj VO

ltunujuvq vuiudqouaj CN

y -d s sopjoujjnpjssvj

vuvjuooymd sopjoujjnpjssvj -

sjjouoj vujjnpjssvj CN CO cn

y ‘d s vjjoujtujjng

vjvjsoojsvq vjpuiiujjng CN

Y 'd s vujiutjng

vjvojnov vujuujjng

sopjouvjjjxoj \ p d s vutAjjog

vjvjnqjvds \ p -d s vujAjjog

sjuvjnSouuj vjjoujjnoojtg

Y 'd s uoqdjsfyjvg

3 -d s uojuououjsy

g-d s uojuououjsy

Y 'd s uojuououjsy

snojjouvjuv uojuououjsy - C\ jpuvjuvo vujuoSojnSuy - CN -

V "ds vjuoiuiuy

vjvuouuojS vuiutQoouopy

00CN 1 o CN CN 00 i 1 148-150 160-162 120-122 DF87-9PC 220-222 DF87-5 DF87-8 200-204 O o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VOCN ON O snjnjvqoj sopjojqj3 c n 0 CN CN CN

juinujuvq vujjuoqouoj ■ n - CN CN VO VOCN

y ds sopjoujjnpjssvj

vuvjuoquvd sopjoujjnpjssvj - c o C O - CO

sjjouoj vujjnpjssvj -

Y 'ds vjjaujmjjng c n c o -

vjvjsoojsvq vjjoujuijjng CN CO

Y 'ds vujuijjng

vjvojnov vuimijng

sopjouvjjjxoj *jo 'ds vujAjjog

vjvjnqjvds -jo -ds vujAjjog - -

siuvjnSouuj vjjoujjnoojjg

V 'ds uoqdtSiCqjvg

3 'ds uojuououjsy - CN -

g 'ds uojuououjsy

Y 'ds uojuououjsy

snojjouvjuv uojuououjsy CNCN T t - CNCOCN

VO CO c n ON r-* 0 0 VO jpuvjuva vujuaSojnSuy m O s O OO 00 00 CN

Y 'ds vjuouuuty vjvuoiuojS vuuiQoouopy

1 00r - - CN CN CN 1 1 i 1 38-40 60-62 80-82 CN DF87-12PC 0 DF87-13PC O s O 2 0 - 2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. o 3 c s r - CO snjnjvqoj sapjojqj - co CO

jiunujuvq vujjuaqouaj CM

Y 'ds sapjoutjnpjssvj

ouvjuayuod sapjoujjnpjssvq - - CO

sjjauaj vujjnpjssvj

y ’ds vjjaujmjjng -

vjvjsoojsoq vgaujiujjngcm -

Y ‘ds vujuujjng

vjvajnon vujtujjng

sapjouvjjjxaj -jo -ds vujAjjog

vjvjnqjvds \p 'ds vujMjog - r -

sjuvjnSauuj vjjaujjnaojjg

Y 'ds uoqdjsiiqjvg

3 ’ds uojuououjsy in

g ’ds uojuououjsy -

Y 'ds uojuououjsy c o

snojjouvjuv uojuououjsy - CM CS jpuojuva vujuaSojnSuyin as VO VO CM ON o Os r - CM i“ “4

Y 'ds vjuoiuuiy vjvuauuojS muu&joouapy ;

CM CM CM 40-142 i i i 178-179 120-122 1 100-102 DF87-21 DF87-15PC o DF87-18PC O O |l60-162 |l60-162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapjajqjj ©cs C-- -

jiunujuvq vujjuaqouaj -

V 'ds sapjoujjnpjssvQ

vuvjuaquvd sapiomjnpjssvj -

sjjauaj vujjnpjssv^

V ’ds vjjaujiujjng vjvjsoajsvq vjjaujiujjng

Y -ds vujuujjng

vjvajnav vujtujjng

sapjouvjjjxaj ’jo ’ds vuptjog

vjvjnqjvds \p -ds vujMjog

sjuvjnSauuj vjjaujjnaojjg

Y ‘ds uoqdjs&qjvg

3 *ds uojuououjsy

g ’ds uojuououjsy

Y ‘ds uojuououjsy -

snojjouvjuv uojuououjsy

jpuvjuva vujuaSojnSuy os - r~~

Y 'ds vjuotutuy vjvuauiojS vutu&joauapy

cs co1 0 CS1 O 1 1 E32-11 20-22 E32-7 coretop? E27-8 E ll-5 o CO CO O I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snpnjvqoj sspjojqj^) -

jtunujuvq vujjudqousj

y -ds sapjoujjnpjssvj

vuvjuaquvd sapjoujjnpjssvq

sjjdudj vujjnpjssvj \o — < N c o CO

V -ds vjjaujiujjng -- vjvjsoojsvq vjjaujiujjng

y -ds vujuujjng

vjvajnov vujiujjng

sapjouvjjjxajp -ds vujAjjog

vjvjnqjvds jo -ds vujAjjog

sjuvjnSauuj vjjaujjnaojjg

y -ds uoqdjs&qjvg

3 ‘ds uojuououjsy

g "ds uojuououjsy

V -ds uojuououjsy -

snojjouvjuv uojuououjsy

tpuvjuva vujuaSojnSuy c o - CO CO CN c o - CO y -ds vjuouutuy vjvuaiuojS vuufcjoouapy

CN 0 OO 0 0 1 1 0 OO OO 163-165 120-122 140-142 101-104 200-202 260-262 E32-12 220-222 240-242 42-44 r- |60-62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapjojqjj t- Tt* N* CN

juinujuvq vujjuaqouaj -

Y 'ds sapjoujjnptssvj

vuvjuaquvd sapjoujjnpjssvj Ov in VO - - -

sjjauaj vujjnpjssvj - CN -

y 'ds vjjaujuijjnq

vjojsoojsvq vjjaujiujjng c n -

Y 'ds vujtujjnq

vjvajnov vuiiujjnq

sapjouvjjjxaj \p ‘ds vujMjoq

vjvjnqjvds -p *ds vujMjoq

sjuvjnSauuj vjjaujjnoojjq

Y 'ds uoqdjs/Cqjvq

3 -ds uojuououjsy CA

g*ds uojuououjsy

Y 'ds uojuououjsy -

snojjouvjuv uojuououjsy © 00 jpuvjuva vujuaSojnSuy COCN - CN vo - CN CN

Y 'ds vjuoiuiuy vjvuauuojS vumQoouapy

CN ! 00t cs1 o 120-122 160-162 140-142 65-67 84-86 20-22 98-100 60-62 o 00 E32-13 |42-44 |40-42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snptjvqoj sapptqtj -

tiunujuvq vupuaqouaj

V ’d s saptoutjnptssvj

vuvuaquvd saptoutjnptssvj cn

stjauaj vutjnptssvj -

y -d s vjpututtjng vjvjsootsvq vjpuituijng

V -d s vutuutjng

vjvajnov vutuutjng

saptouvjtjxaj -jo "ds vutAtjog

vjvjnqjvds \ p 'd s vuxMjog

stuvjnSauut vgautjnaopg

y -d s uoqdtsfyjvg

3 -d s uotuououjsy

g -d s uotuououjsy

y -d s uotuououjsy

snatjouvjuv uotuououjsy

tpuvjuva vuuaSojnSuy CN - - CN - cn

Y 'd s vtuouuuty vjvuaiuojS muuKjoauapy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapptqtj -

tuunujuvq vutjuaqouaj -

Y -ds saptoutjnptssvj

vuvuayuvd saptoutjnptssvj

stjauaj vutjnptssvj

y 'ds vjjauttutjng vjvjsooisvq vjjautiutjng

y -ds vutiutjng

vjvajnov vutiutjng

saptouvpjxaj •jd -ds vumtjog

vjvjnqjvds ‘jo 'ds vumtjog

suvjnSauut vjjautjnaojtg

Y ’ds uoqdtsfyjvg

3 -ds uotuououjsy

g "ds uotuououjsy

Y ‘ds uotuououjsy

snojjouvjuv uotuououjsy

tpuvjuva vujuaSojnSuy CN CN CN

Y 'ds vjuouuuty vjvuaiuojS ouu/Qoouapy 120-122 38-40 20-22 360-362 380-382 320-322 330-332 340-342 E32-37 240-242 260-262 280-282 CN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

jiunujuvq vujjuaqouaj cn -

y *ds sapjoujjnpjssvj)

vuvjuaquvd sapjoujjnpjssvj cn

CN sjjauaj vujjnpjssvj CN CN - CN

V 'ds vjjaujiujjng cn -

vjvjsoojsvq vjjaujiujjng cn

V 'ds vujiujjng

vjvajnov vujiujjng

sapjouvjjjxaj -jo 'ds vujAjjog

vjvjnqjvds \p -ds vumijog

suvjnSauut vjjaujjnoojjg

V 'ds uoqdtstCqjvg

3 ‘ds uotuououjsy o\ CN r - ~ O --

g ‘ds uotuououjsy

V 'ds uotuououjsy cn

snojjouvjuv uotuououjsy T t - CN

w - l O n cn tpuvjuva vujuaSojnSuy in >n oo © cn cn y 'ds vjuouimy vjvuaiuojS vuu/(joouapy

CN § OO I CN 1 o i o 160-162 100-102 120-122

140-142 140-142 i 2 20-22 60-62 41-43 242-244 O 00 |E32-43 1258-260 1258-260 j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapjojqjj- cn CN OV CN cn cn VO

jtunujuvq vujjuaqoua^ - CN - VO

y 'ds sapjoujjnpjssvj CN -

vuvjuaquvd sapjoujjnpjssvj o c-~ OO cn - CN

SJJ3U3J vujjnpjssvQ CN -

V 'ds vjjaujiujjng - vjvjsoojsvq vjjaujiujjng

V 'ds vujiujjng

vjvajnov vujiujjng

sapjouvjjjxaj -jo 'ds vumtjog

vjvjnqjvds -jo 'ds vumtjog -

sjuvjnSauuj vjjaujjnoojjg

V -ds uoqdjsKqjvg

3 -ds uotuououjsy

g 'ds uotuououjsy

y ‘ds uotuououjsy - -

snojjouvjuv uotuououjsy cn -

OO VO VO cn jpuvjuva vujuaSojnSuycn cn cn r-~ cn cn Ov c~-~ r~~ Y 'ds vjuouuuuy vjvuaiuojS vuutQoouapy

t" oo i 00m 165-167 178-179 180-182 145-147 225-227 300-302 240-242 280-282 E32-44 200-202 260-262 |340-342

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapjojqjjCN VO IT) vo m OO VO m © cn OO r - VO OO

jtunujuvq vwjuaqouaj- - CN - CN - vn cn CN Tfr

y *ds sapjoujjnpissvj

vuvjuayuvd sapjoujjnpjssvj CN

sjjauaj vujjnpjssvj

V -ds vjjaujiujjng — ----

vjvjsoojsvq vjjaujiujjng CN CN

y ‘ds vujiujjng

vjvajnov vujiujjng

sapjouvjjjxaj ’jo ‘ds vujAjjog

vjvjnqjvds \p -ds vujxjjog

sjuvjnSauuj vjjaujjnoojjg

Y -ds uoqdjsfcqjvg

3 'ds uojuououjsy - oo -

g 'ds uojuououjsy

V "ds uojuououjsy - -

snojjouvjuv uojuououjsyCO cn cn - CN CN m CT\

OO o jpuvjuva vujuaSojnSuyVO CN cn in CN - CN VO -

V -ds vjuoiuuuy vjvuaiuojS vuutCjoouapy 505-507 525-527 465-467 345-347 365-367 385-387 ; 425-427 445-447 485-487 305-307 325-327 245-247 265-267 |405-407

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. •'3- o in co OO o o 00 snjnjvqoj saptotqij CO CN »n CO CN CN CO -

ttunujuvq vutjuaqouaj - rf CN in - oo in in CN

V 'ds saptoutjnptssvj

vuvtuoquvd sdptoutjnptssvj -

stjauaj vutjnptssvj - -

y *ds vjjauttutjng - - CN

vjvjsootsvq vjjaujiujjng cn co

V ‘ds vujiujjng

vjvajnov vujiujjng

sapjouvjjjxaj ’jo ‘ds vujAjjog

vjvjnqjvds \p -ds vumtjog

sjuvjnSauuj vjjaujjnoojjg co - in CN

Y 'ds uoqdjstCqjvg

3 'ds uotuououjsy - CN -

g *ds uotuououjsy

V 'ds uotuououjsy

snojjouvjuv uotuououjsy o CN - in - co - c—

Cv o CN O n r- VO in Os ON jpuvjuva vujuaSojnSuy - 12 CN

00 00I i NO 14-17 370-372 450-452 330-332 250-252 290-292 410-412 565-567 E52-9 o 46-48 00 166-68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. On CN snjnjvqoj sapjojqj^j CN o- ”3" - -

jiunujuvq vujjuaqouaj o i

V 'ds sapjoujjnptssv 3

vuvuayuvd sapjoujjnptssv^) - - -

NO sijauaj vujjnpjssvj oo - VO CN t - cn Y -ds vjjaujiujjng vjvjsoojsvq vjjaujiujjng

V -ds vujmtjng

vjvajnov vujiujjng -

sapjouvjjjxaj -jo -ds vujMjog

vjvjnqjvds 'jo 'ds vujMjog

sjuvjnSauuj vjjaujjnoojjg

y -ds uoqdjsfyjvg

3 -ds uotuououjsy

g -ds uotuououjsy

Y 'ds uotuououjsy

snojjouvjuv uotuououjsy - CN

O n CN VO VO cn cn vo VO »o jpuvjuva vujuaSojnSuy CO *o 0 4

Y "ds vjuoiuuuy - vjvuauuojS vtuutQoouapy

------

ooCN 1 o CNi 00 120-122 140-142 160-162 100-102 60-62 80-82 20-22 GL76-1 489-490 470-472 o |4042 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapjojqjj

jtunujuvq vujjuaqouaj

V 'ds sapjoujjnpjssvj -

vuvjuaquvd sapjoujjnpjssvj

sjjauaj vujjnpjssvj cn cn cn --

V -ds vjjaujiujjng vjvjsootsvq vjjaujiujjng

V 'ds vujiujjng

vjvajnov vujiujjng

sapjouvjjjxaj vp 'ds vumtjog

vjvpqjvds •jo 'ds vumtjog

sjuvjnSauuj vjjaujjnoojjg

y 'ds uoqdtsfajjvg

3 -ds uotuououjsy

g 'ds uotuououjsy

V 'ds uotuououjsy

snojjouvjuv uotuououjsy

jpuvjuva vujuaSojnSuy cn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sopioiqiQ

tutnujuvq vuijuoqouoj

V *ds sopjomjnptssvQ

vuvjuoyuvd soptomjnptssv 3 -

sjjouoj vujjnpissv 3

y -ds vjjouiiutjng - vjvjsootsvq vjjoutiuijng

y ‘ds vuiuitjng

vjvojnov vutiutjng

soptouvjtjxdj \p -ds vumtjog

vjvjnqjvds 70 ’ds vumtjog

suvjnSouut vjjoujjnoojtg

Y -ds uoqdtsfcqjvg

3 -ds uotuououjsy

g -ds uotuououjsy

V 'ds uotuououjsy

snojjouvjuv uotuououjsy tjnivjuvd vujuoSojnSuy

V 'ds vtuotuiuy vjvuomojS vxuudjoouapy 1

CN OO 1 000 160-162 100-102 500-502 GL76-15 80-82 60-62 240-242 GL76-5 20-22 1298-300 138-40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapjojqjQ VO -

jiunujuvq vujjuaqouaj

V -ds sapjoujjnpjssvj

vuvjuaquvd sapjoujjnpjssvj

sjjauaj vujjnpissvQ

y ‘ds vjjaujiujjng vjvjsoojsvq vjjaujiujjng

V ’ds vujiujjng

vjvajnov vujiujjng

sapjouvjjjxaj \p -ds vujMjog

vjvjnqjvds \p -ds vujAjjog

sjuvjnSauuj vjjaujjnoojjg

y ‘ds uoqdjsfajjvg

3 -ds uojuououjsy -

g -ds uojuououjsy -

V 'ds uojuououjsy -

snojjouvjuv uojuououjsy - -

CO CN jpuvjuva vujuaSojnSuy CO 5 CO

y -ds vjuouiuuy vjvuaiuojS vtuutQoouapy

OO i 1 60-62 64-66 20-22 40-42 IWSOE70-2-19 20-30 20-22 IWSOE68-16 \o ! 23-25 74-76 CN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapjojqjj cn CN

jiunujuvq vujjuaqouaj

y -d s sapjoujjnpjssvj

vuvtuaquvd sapjoujjnpjssvj co --

SJjauaj vujjnpjssvj - CN

y ’ds vjjaujiujjng vjvjsoojsvq vjjaujiujjng

V -d s vujiujjng

vjvajnov vujiujjng

sapjouvjjjxaj jo 'd s vumtjog

vjvjnqjvds \ p -d s vumtjog

sjuvjnSauuj vjjaujjnoojjg

y -d s uoqdjstCqjvg

3 *ds uotuououjsy CN

g -ds uotuououjsy

y ’ds uotuououjsy

snojjouvjuv uotuououjsy CO O cr* CN CO jpuvjuva vujuaSojnSuy cn CN O co cs c—

y "ds vjuouttuy vjvuaiuojS vuudjoouapy

cs OO1

o 00-102 120-122 140-142 180-182 360-362 380-382 220-222 280-282 00 200-202 260-262 1320-322 1340-342 | |300-302 |l

234

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapjojqjj - - -

juunujuvq vujjuaqouaj

V ‘ds sapjoujjnpjssvj

vuvjuaquvd sapjoujjnpjssvj CN

SJJ9U3J vuijnpissvQ

y 'ds vjjaujiujjng vjvjsoojsvq vjjaujiujjng

y ’ds vujiujjng

vjvajnov vujiujjng

sapjouvjjjxaj \p -ds vujAjjog

vjvjnqjvds \p -ds vujxjjog

sjuvjnSauuj vjjaujjnoojjg

CO y 'ds uoqdjsfiijjvg CO

3 ’ds uojuououjsy

g ‘ds uojuououjsy

V -ds uojuououjsy Tt*

snojjouvjuv uojuououjsy

c o jpuvjuva vujuaSojnSuyCN ON NO - -

y ’ds vjuouuuuy vjvuaiuojS viuutCjoouapy

1 CN 8 CNi © 160-162 100-102 120-122 140-142 10-12 60-62 80-82 20-22 400-402 420-422 i O ■rf

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. snjnjvqoj sapptqtj CN CN

tutrujjoq;omjuaqojdj

y "ds sapiouijnptssvj

vuvuayjvd sapiouijnptssvj

sn3J3i vuijnpissvj

V ’ds vjjauiiuijng vjvjsooisvq vjjaujiujjng

V *ds vuiiuijng

vjvajnov vujiujjng

sapjouvjjjxaj -ds vujAjjog

vjvjnqjvds p -ds vujAjjog

sjuvjnSauuj vjjaujjnoojjg

OO Y *ds uoqdjsiCqjvg

3 -ds uojuououjsy

g -ds uojuououjsy

V 'ds uojuououjsy r ~ -

snojjouvjuv uojuououjsy

jpuvjuva vujuaSojnSuy m y -ds vjuoiuiuy 00 vjvuaiuojS viuutQoouapy CN ' CN i 120-122 100-102 10-12 180-182 80-82 20-22 NBP9902-12 4042

o 160-62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g 'd s vtfajdSSg

V ‘ds vipudSSg

itCpvjq vjpjaSSg

CN

V 'd s siqjojsiQ

VIVlUOUl VUl\OlU3 (J

vwjnoojpnvd vmimuviskQ

suvjnSuvui vuqnjojpruj

V 'ds uomououquj

y *ds VMdsntuoj

SU3 AJOAU1 VJldsniUOJ

sipqvuvA sappiqij

CN cn maSutpivqqns sappjqtj r-~ 00 - -

g *ds s9ptoppiqtj -

V -d s sspioppiqjj -

3 -ds ssp p iq ij

g ‘ds sappjqij

V -d s sappiqij -

O 00 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g 'ds vjpuaSSg -

y ‘ds vjpuaSSg

itCpvuq vjpuaSSg

CN vuvoqapuvjiA siquoostQ CN CO

V "ds siquoostQ

VJVUUOU1 VU1JVJU3Q

vutjnooponvd vuiuuuvjsfo

suvjnSuviuj vuijnoojpnu^

V ‘ds uoiuououquQ

V 'ds vuidsnuuoq

SU9AJOAU1 vuidsnuuoQ

sijiqviuvA sappiqij

liuoSuiptvqqns sappiqi3 CN - -

a 'ds sopioppiqij

V 'ds sapioppiqi3

3 ’ds sappiqi^f -

3 'ds sapptqi3 -

V -ds s a p p iq ij

CN 120-122 148-150 160-162 180-182 200-204 220-222 DF87-5 0 DF87-8 0 DF87-9PC |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g ’d s v p o u o S S g

Y -d s v j j o j o S S q

tiC pvuq vjjo u oSSq r - VO r - o 00 00 vuvoqopuvpn. siquoosiQ r - CO CO CO ONON

vjtuoutDOiuj siquoostQ "3- VO - -

y *ds s iq u o o s iQ

VJVUUOUl VU1JVJUOQ

ouijnooponvd vutiuiuvjstCj

suvjnSuvui vm jnoojpnuj

Y 'd s uoiuououquj

Y ‘d s v u i d s n u u o j

SUOAJOAU1 v u i d s n u u o j - -

sipqvuvA soppiqij

r - OV CO juoSuipwqqns soppiqij CO CN CN

a 'd s sopioppiqij

V 'd s sopioppiqij

3 -d s s o p p i q i j

3 'd s s o p p i q i j

Y 'd s s o p p i q i j

o CN 00 T f 1 1 CNi CNi CN■ 00 o 60-62 20-22 c n o DF87-13PC O DF87-14 o CO 00 IDF87-12PC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g ‘ds vpouoSSg

V 'ds vjjou oS S q

iKpvuq vjpuo88j]

(N a\ CO O vuvoqopuojiA siquoostQ cn cn Tj-

vivuoiuvoui siquoosiQ - CN

y 'ds siquoosiQ

VJDUUOU1 VU1JVJUOQ

vuijnoojpnvd vuiiuiuvjs&j)

siuvjnSuoiuj vuijnoojpnuj)

V 'ds uoiuououquj

V "ds vuidsnuuoj)

suoajoaui vuidsnuuoj)

sijiqvuvA soppiqij

0 moSuipivqqns soppiqij) 10 r-~ cn VO

3 'ds sopioppiqij)

V 'ds sopioppiqij)

3 "ds soppiqij)

3 'ds soppiqij) -

V 'ds soppiqij)

CN CNt 1 CN1 100-102 120-122 140-142 160-162 178-179 DF87-15PC O DF87-18PC O O |DF87-21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g-ds vjpuoSSj

y -ds vjpuoSSg

tiCpvuq vjpuoSSg On vuvoqopuvjiA siquoostQ OO N c-*- vivuoiuvoui siquoostQ *n cn

V ’ds siquoostQ

vjvuuout vuqvjuoQ

vuijnoojpnvd vuiiuuivjstCj

suvjnSuvtuj vuijnoojpnuj

y 'ds uoiuououqtuj

V ‘ds vuidsnuuoj

suoajoaw vuidsnuuoj

stjtqvtuvA soppiqij

tuoSuiptvqqns soptoiqtj cn cnvo cs

a 'ds sopioppiqij

Y ‘ds sopw pptqtj

3 -ds soppiqij

3 'ds soppiqij

Y 'ds soppiqij

o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g 'ds vjjauoSSg

Y 'ds vjjouoSSq

itCpvuq vjjouoSSq

vuvoqopuvjtA siquoostQ -- - vivuouuvoiut siquoosiQ

Y ’ds siquoosiQ

VJVUUOUl VU1JVJUOQ

vuijnoojpnvd vumnuvis£j

siuvjnSuviuj vuijnoojpnuj)

V 'ds uoiuououqtuj

y -ds vuidsnuuoj

suoajoaw vuidsnuuoj

stjtqvtuvA soppiqij -

tiuoSuipwqqns soppiqij VO CO co r-

g -ds sopioppiqij » 1 *

Y 'ds sopioptoiqtj -

j ‘ds s o p p iq ij

g -ds so p to iq ij

Y 'ds so ptoiqij 1 120-122 140-142 101-104 101-104 163-165 180-182 60-62 220-222 240-242 E32-12 78-80 200-202 42-44 1 |260-262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g ’ds v jjo u o SSq

V -d s vpouoSSj

ii(pvuq vpouoSSg

vuooqopuvjiA siquoosiQ VO - m o

vjvuoiudoiuj siquoosiQ

y "ds siquoostQ

DJVUUOU1 VU1JVJUOQ

vutjnooponvd vuimumis^j

siuvjnSuviuj vuijnoojpnuj

y -d s uomououqiuj

y 'ds vu id sm u o j

SUOK[OMUl nuidsnuuoj

sijiqvuvA. soppiqij

iiuoSuipivqqns soppiqij VO - m CN

a 'd s sopioppiqij

y -d s sopioppiqij

j -ds s o p p iq ij

a ‘d s s o p p iq ij

y -d s s o p p iq ij | CN1 120-122 140-142 160-162 80-82 84-86 60-62 20-22 65-67 98-100 o 40-42 E32-13 42-44 !

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g 'ds vjpuoSSg

y -ds vjpuoSSQ

tApvuq vjjouoSSq

vuvoqopuvjiA siquoosiQ CO - VIVUOlUVOlUl SiquoosiQ

V ’ds siquoosiQ

VlVUUOUl DU1JVJUOQ

vuijnooponvd vmuuuwjsiCj

siuvjnSuviui vuijnoojpnuj

V 'ds uoiuououquj

V -ds vuidsnuuoj

suoajoaui vuidsnuuoj

sijiqvuvA soppiqij

luoSuipmqqns soppiqij - - co -

3 'ds sopiopioiqij

V -ds sopw ppiqij -

3 ’ds soppiqij

3 'ds soppiqij

V 'ds soppiqij

CN 001 o 198-200 120-122 140-142 160-162 180-182 60-62 98-100 220-222 202-204 E32-16 00 118-20 |182-184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g ‘ds v jjo u o SSq

Y *ds v jjo u o 8 8q

itCpvuq vjjouoSSg

vuvoqopuvjiA siquoostQ- t o cn cn vjvuowvouj siquoostQ

V "ds siquoostQ

VlVUUOUl VU1JVJUOQ

vuijnoojpnvd vutiuuivjs^j

suvjnSuvui vuijnoojpnuj

V ’ds uoiuououquj

y 'ds vuidsnuuoj

s u o a j o a u i vuidsnuuoj

sijiqvtuvA soptoiqij

nuoSuipivqqns soppiqij -

g ‘ds sopioppiqij

Y 'ds sopiopiotqij

j -ds soppiqij

3 'ds soppiqij

Y 'ds soppiqij

Tf i 120-122 320-322 330-332 340-342 360-362 380-382 38-40 240-242 280-282 E32-37 CN 20-22 1 |260-262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g'ds vjp u o S S g

y -ds vjp u o S S g -

itipvuq v jjo u o SSq

vuvoqapuvjiA siquoostQ r- 0 c n — c n T}- r- VO

vpuoiuvouj siquoosiQ CN --

V 'ds siquoosiQ

VIVlUOUl VU1JVJU9Q

vuqnoojpnvd vuiuiuivfstj)

suvjnSuDtui vuijnooponuj)

V ‘ds uoiuououqiuj)

V ‘ds vuidsnuuoj)

suoajoaui vuidsnuuoj) -

sijiqvuvA soppiqij

nuoSuipivqqns soppiqij as C N c n 00

g‘ds sopioppiqij)

V 'ds sopioppiqij)

3 'ds so ppiqij)

g'ds so ppiqij)

V "ds so p p iq ij>

cn 1 140-142 1 0 0 -1 1 2 0 0 2 -140-142 1 2 2 160-162 2 0 - 2 2 60-62 80-82 242-244 258-260 E32-43 0 41-43

2 4 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g -ds vjpuoSSg

V ’ds v j j o u o S S q

liCpvuq vpouoSSjj| O vuvoqopuvjp siquoosiQo cn r~~ CN cn 00 wo cn CN oo C*- *** o\

vjvuoiuvoiuj siquoosiQ O wo CO wo

y -ds siquoosiQ

vwuuom V U IJV IU 3 Q

vuijnoojionvd vuimuuvisdj)

siuvjnSuviuj vuijnooponuj)

y 'ds uoiuououqiuj)

Y ‘ds vuidsniuoj)

s u o a j o a u i vuidsnuuoj)

stjiqvuvA soppiqij)

© uuoSuipwqqns soppiqij)cn CN r -

3 'ds sopioppiqij)

Y 'ds sopioppiqij)

3 'ds soppiqij)--

3 'ds soppiqij)

Y 'ds soppiqij) 180-182 145-147 165-167 185-187 178-179 200-202 240-242 260-262 280-282 300-302 340-342 E32-44 225-227

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g ‘d s vjjouoSSg

V -d s vjjouoSSq

idpvuq vjjouoSSq

m ON VO ON in OO VO CO cn O O n r - vuvoqopuvjiA siquoostQ 00 00 0 e'­ OO cn O CN ON OO OO

0 vjduoiuvoiuj siquoosiQ - en cn m CS m

V ’d s siquoosiQ -

vjvuuoui duijvjuoq

vutjnooponvd vuiiuuuvjsKj

suvjnSuviuj vuijnoojtonuj

y *ds uoiuououquj

y -d s vuidsnuuoj -

SUOAJOAUl vuidsnuuoJ

sijiqviuvA soptoiqij

nuoSuipivqqns soppiqij cn

g ‘d s sopioppiqij

y ‘d s sopioppiqij

3 ‘d s s o p p iq ij

g -d s s o p p iq ij

y ’d s s o p p iq ij 245-247 265-267 305-307 325-327 345-347 385-387 505-507 525-527 405-407 425-427 445-447 485-487 1365-367 1465-467

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g ‘ds vjjouoSSq

y -ds vjjouoSSg

lKpvuq vjjouoSSg

vuvoqopuvjiA siquoosiQ i t O O i n CN CN m r - O CN 1 0 vo • i t CTv 1 0 CO CO CO CN r ~ ~

vjvuotuvoiuj siquoostQ m - ( N m CN C O c o > n -

y "ds siquoosiQ

VlVUUOUl VU1JVJUOQ -

vuijnoojpnvd vuiiuiuvjs^j

suvjnSuviui vuijnoojpnuj -

V 'ds uoiuououquj

V ds vuidsnuuo j > n

suoAjoAui vuidsnuuoj i f - c o -- - -

sijiqviuvA soppiqij

CN VO 0 VO iiuoSutpivqqns soptoiqij r - i n c o ^“4 r- CN i t

3 ’ds sopioppiqij

V "ds sopioppiqij

3 -ds s o p p iq ij

a ’ds s o p p iq ij -

V ’ds s o p p iq ij

OO OO1 ""T vo 14-17 565-567 66-68 250-252 290-292 330-332 370-372 E52-9 0 46-48 OO 410-412 450-452 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g -ds vjjouoSSq

Y -ds vjjouoSSg

i/Cpvuq vjjouoSSq

CN CN co vuvoqopuvjp siquoosiQ OOVO OOOO CN CN VO

vjvuotuvoiuj siquoosiQ CO

V -ds siquoosiQ

viviu o u i vuijvjuoq

vuijnoojpnvd vuiuauvjsKj

siuvjnSuviuj vuijnoojpnuj

V 'ds uoiuououquj -

V 'ds vuidsnuuoj

sudAjoAui vuidsnuuoj

sijiqviuvA soppiqij

vo iiuoSuipwqqns soppiqij as CN VO 2 co OO VO

g 'ds sopioppiqij

V ‘ds sopioppiqij — j -ds s o p p iq ij -

3 'ds s o p p iq ij

y ’ds s o p p iq ij

CN OO 1 CN o i OO 100-102 120-122 140-142 160-162 80-82 GL76-1 20-22 470-472 489-490 O 40-42 160-62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g 'ds v j j o u o 8 8 q

y *ds v j j o u o S S q

ifa p v u q v jjo u o SSq

vuvoqopuvjiA siquoosiQ VO - - -

VJVUOUIVOIUJ SiquoosiQ VO

V -ds siquoosiQ

VJVIUOU1 VUIJVJUOQ

vuijnoojpnvd vuitutuvjsKj

siuvjnSuviuj vuijnoojpnuj

Y 'ds uoiuououqiuj - -

V 'ds vuidsnuuoj

s u o a j o a u i vuidsnuuoj

stjiqvuvA. soppiqij

o CN iiuoSuipivvjqns soppiqij CN cn - - ON cn - OO

a 'ds sopioppiqij

V 'ds sopioppiqij

j ‘ds s o p p iq ij

3 'ds s o p p iq ij

y *ds so p to iq ij 80-482 200-202 240-242 298-300 320-322 340-342 380-382 500-502 420-422 440-442 460-462 4 | 400-402 |260-262 |360-362

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g -ds v jjou o SSq

y *ds vjjouoSSjj

iKpvuq vjjouoSSg vuvoqopuvjm siquoosiQ

vjvuoiuvoiuj siquoosiQ

V 'ds siquoostQ

VJVlUOUl VU1JVJUOQ

vuijnoojpnvd vuiunuvjstCj)

siuvjnSuviuj vuijnoojpnuj)

Y -ds uoiuououquj)

V 'ds vuidsnuuoj)

SU3AJOAU1 vuidsnuuoj)

sijiqviuvA soppiqij)

liuoSuipivqqns sopioiqij) CN

a 'ds sopiopioiqij)

V 'ds sopiopioiqij)

3 ‘ds soppiqij)

3 'ds soppiqij)

V 'ds sopioiqij)

CN OO1 o 100-102 160-162 GL76-5 38-40 60-62 20-22 240-242 GL76-15 OO 480-482 1298-300 1500-502

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g‘ds vjpuoSSg

y 'ds vpouoSSg

itCpvuq vjjojoSSq

vuvoqopuvjiA siquoostQ - ON - VJVUOWVOIUJ siquoosiQ

V -ds siquoosiQ

VJVIUOU1 VU1JVJUOQ

vuijnoojpnvd vuiiuutvjsKj) -

suvjnSuvtui vuijnoojpnuj)

Y -ds uoiuououquj)

y ‘ds vuidsnuuoj)

suoajoaui vuidsnuuoj >

sijiqviuvA soppiqij) -

liuoSuipivqqns soppiqij)

g*ds sopioppiqij)

Y 'ds sopioppiqij)

j) 'ds sopioiqij)

3 'ds soppiqij)

Y 'ds soppiqij) -

OO1

20-30 20-22 IWSOE68-16 VO 23-25 64-66 cs 20-22 60-62 |74-76 |IWSOE70-2-19 |40-42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a -ds vjjouoSSg

y 'ds vjpuoSSg

ii(pvuq vjjouoSSq vuvoqopuvjiA siquoosiQ - vivuoiuvouj siquoosiQ

V 'ds siquoosiQ

VJVUUOU1 VU1JVJUOQ

vuijnoojpnvd vutuiuuvisfcj)

siuvjnSuviuj vuijnoojpnuj)

V ’ds uoiuououquj)

V ’ds vuidsnuuoj)

suoajoaui vuidsnuuoj)

sijiqviuvA sopioiqij)

liuoSuipivqqns soppiqij) - ---

a 'ds sopioppiqij)

V 'ds sopioppiqij)

3 -ds soppiqij)

3 'ds soppiqij)

V 'ds soppiqij)

o 1 8 120-122 140-142 180-182 300-302 320-322 340-342 360-362 380-382 200-202 220-222 260-262 280-282 180-82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g;’ds vjjouoSSg

y -ds vjjouoSSg

tKpvuq vjjouoSSg - vuvoqopuvjiA siquoostQ

vivuouivoiui siquoostQ

y ‘ds siquoostQ

vjvuuout VUIJVJUOQ

vuijnoojpnvd vuiiuwvjsiCj

siuvjnSuviut vuijnoojpnuj

V -ds uoiuououquj

y ’ds vuidsnuuoj

suoajoaui vuidsnuuoj

sijtqvuvA sopioiqij

liuoSuipivqqns soptoiqij c n

a ‘ds sopioppiqij

V 'ds sopiopioiqij -

j -ds s o p p iq ij

3 ‘ds so p io iq ij

y 'ds so p io iq ij

cs t 100-102 10-12 120-122 1 4 0 - 11 4 6 2 0 - 1 6 2 8 0 - 8 2 6 0 - 6 2 4 0 0 - 44 0 2 2 0 - 4 2 2 N Bo P 9 9 0 2 - 1 1 4 0 - 4 2 120-22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. g - d s vjjouoSSq

y ' d s djjouoSSq

ifcpvuq vjjouoSSq vuvoqopuvjiA siquoosiQ

VJVUOUUVOIUJ siquoosiQ

V 'ds siquoosiQ

VJVUUOU1 VUIJVIUOQ

vuijnoojpnvd vuiuiuuvis£j

suvjnSuvui vuijnoojpnuj

V "ds uoiuououqiuj

Y ' d s vuidsnuuoj

suoajoaui vuidsnuuoj

sijiqvuvA soppiqij

iiuoSuipimjqns sopioiqij

g 'ds sopioppiqij

Y " d s sopioppiqij

3 ’d s soppiqij

3 ' d s soppiqij

Y 'ds soppiqij

CNi 180-182 10-12 100-102 120-122 NBP9902-12 80-82 © 40-42 120-22 160-62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. o i n vssvuo vuijnpissvaoqojQ ri- o\ ON CO OO NO *■■■* CM

vuoiq vuijnpissvaoqojQ - - CO -

lsitwp " j o ‘d s vuioyuasunj

V - d s vuioajuasjinj CM 00

y *ds vuunssij CM

vjvuiSuviu-ouoSui - d s vuunssij

vjvipvj ' j o ' d s vuunssij

vjvutSuvuiopnasd vuunssij CM r - o NO - -

vuv&uSiquo vuunssij - vjvSiaavj vuunssij

tpuvjuva vuunssij -

vjvjoat\pv vuunssij

q - d s d) sapiuodj

snjnpiwnj sapiuodj

g 'dssapiuodj

V "ds sapiuodj

CO VO CO vnSixa vjjauiiuojsidj CM00 CO -

V ' d s v]]atpiqdjj

y - d s uimpiqdjj

vuqvjS vuiSuaquauqj r- c o ON NO - CM

o o CM NOi 001 001 CMi OO OO CMi o 1 8 - 2 0 1 0 2 - 1 0 4 6 0 - 6 4 4 0 - 4 2 O 4 0m - 4 2 r-* o OO | D F 6 2 - 1 1 | 2 0 - 2 2 | D F 6 2 - 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vssvuo vuijnpissvaoqojQ cn VO On o r-

vuoiq vuijnpissvaoqojQ cn cn - -

jsiAvp -jo -ds vuioyuasunj

V 'ds vuioyuasunj

V -ds v u u n s s ij

vivuiSuviu-ouoSuj p -ds v u u n s s ij

vivipvu -jo ’ds v u u n s s ij

vjvuiSumuopnosd vuunssij pi ■< i>

vuviCuSiquo vuunssij

vjvSiaovj v u u n s s ij

tpuvjuva vuunssij

vjvjoaAjv vuunssij

3 -ds (i) sapiuodj

snjnpiutnj sapiuodj

g -ds sa p iu o d j

V -ds sa p iu o d j

vnSixa vjjauiiuojsidj m CN 00

V ‘ds vjjaipiqdjj

y ‘ds u im p iq d jj cn vuqvjS vuiSuaquauqj - - cs

cs1 csi 160-162 120-122 148-150 180-182 DF87-9PC 200-204 220-222 o DF87-8 o |DF87-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. co ON o\ no cn VO O vssvuo ouijnpissvooqojQVO OO o cn r - CN cn

vuoiq vuijnpissvaoqojQ cn -

isiAvp -jo -ds vuwyuasunj

y -ds vuiaquasunj -

y -ds vuunssij cn 04 - --

vivuiSumu-ouoSui 'jo -ds vuun ssij

vivipvu -jo -ds vuunssij

T}- cn o i n o in vjvuiSutnuojmasd vuunssij N cn CN

vuviCuSiquo vuunssij CN -

vjvSiAavj vuunssij —

ipuvjuva vuunssij CN -

vjvjoaAjv vuunssij CN co - VO r -

0 ds {i) sapiuodj (N

snjnpiuinj sapiuodj

g -ds sapiuodj

y -ds sapiuodj

to cn vnSixa vjjauimoisidjOO r - cn oo C- co ON Y 'ds vjjaipiqdjj

Y 'ds iumpiqdjj

ON ■<3- VO cn vo m vuqvjS vuiSuaquauqj3 co 00 OO o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. c— o CN CT\ OO vssvuo vuijnpissvaoqojQ 3 r - Os c n

vuoiq vuijnpissvaoqojQ T f r n - -

lsiAvp p 'd s vm oquasunj

V -d s vuioyuasunj -

V -ds v u u n s s ij - - —

vjvuiSumu-ouoSuj p -d s v u u n s s ij

vjvipvu p *ds v u u n s s ij

OO vjvuiSutnuopnasd vuunssij c n < N m CN VO

vuv&uSiquo vuunssij CN CN

vivSmavj vuunssij CN

lpuvjuva vuunssij CN CN

vivjooajv v u u n s s ij c n -

3 -d s (i) sapiuodj

snjnpiumj sapiuodj

g -ds sa p iu o d j

y -d s sa p iu o d j

m 00 CN r — vnSixa vjjauiuiojsidj CN c n OO O -

V "ds vjjaipiqdjj

V ’ds lu m p iq d jj

r - o OO c n VO © OO vuqvjS vuiSuaquauqj r - r - ~ 'O CN v o c n 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. o o VO w o vssvuo vuijnpissvaoqojQ CT\ CO s CO

vuoiq vuijnpissvaoqojQ - 00

tsiAvp - p -ds vw o yu o su n j

y -ds vuioyuosunj

y -ds v u u n sst^ CN

vjvuiSumu-ouoSiuj p ‘ds v u u n s s ij

vivipvu p ■ds v u u n s s ij

vjvutSumuopnosd vuunssij ON w o

vuviCuSiquo vuunssij

vjvSiaovj v u u n s s ij -

lpuvjuvo vuunssij

vivjooajv vu tu n ssij CN -

3 ds (i) sopiuodj

snjnptuim sopiuodj

g ’ds so p iu o d j

V ‘ds so p iu o d j

O vnSixo vjjoutiuojsidj i n CO

Y -ds vjjoipiqdjj

Y *ds u in ip iq d jj

o 0 wo vuqvjS vuiSuoquouqj CN CN CN

0 CN i 1 30-32 20-22 E32-7 E27-8 E27-5 coretop? O CO O |E32-11 I j j

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. © VSSVUD VUljnpiSSDDOqOJQ v o r - CN CO -

vjoiq vwjnpissvooqojQ CO - -

jsiAvp \ p - d s v u io y u a sm j

y - d s vuioquasunj

y - d s v u u n s s ij

vjvuiSjvui-ouoSuj j o ' d s v u u n s s ij

vivipvu - j o - d s v u u n s s ij

vivuiSuvuiopnasd vuunssij - - -

vuviCuSiqjo vuunssij vivSmavj vuunssij

lpuvpva vuunssij

vivjodAjv vuunssij

3 - d s (i) sapiuodj

snjnpiium sapiuodj

g * d s sa p iu o d j

V " d s sa p iu o d j

vnSixa vjpuiuiojsidj - -- -

V ' d s v jp ip iq d jj

Y - d s tu m p iq d jj

vuqvjS vuiSuaquauqj CN - C N < N < N CN 1 8 0 - 1 8 2 120-122 1 6 3 - 1 6 5 1 0 1 - 1 0 4 1 4 0 - 1 4 2 200-202 220-222 2 4 0 - 2 4 2 E 3 2 - 1 2 6 0 - 6 2 7 8 - 8 0 4 2 - 4 4 | 2 6 0 - 2 6 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. m m m ON OO o ON vssvud vmjnpissvDoqojQ in o r-* ON 2 CN o vuotq vuijnpjssvaoqojQ co vo - - -

isiwp p 'ds vutoquasunj

V -ds vuioquasunj -

y -ds vu u n ssij - - - - vivuiSumu-ouoSui p -ds vu u n ssij

vivipvu p -ds vu u n ssij

vivuiEuvuiopnasd vuunssij 00 cn c s

vuv&uSiquo vu u n ssij - vjvSiadv] vu u n ssij

ipuvjuva vu u n ssij -

vjvjodajv vu u n ssij -

3 -ds (i) sapiuodj

snpnpiumi sapiuodj

g -ds sapiuodj

V -ds sapiuodj -

vnSixa vpautiuojstdj o vo ON CO co c s -

V 'ds v]]aipiqd]j -

V 'ds tum piqdjj

vuqvjS vuiSuaquauqj cn m co in - CN CN

n oo1 cn1 O 160-162 120-122 140-142 84-86 65-67 98-100 20-22 o 60-62 oo 42-44 |E32-13 |40-42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. O vssvuo DUijnpissvooqo]£)Os Os Os - CO CN

vuotq vutjnptssvooqoi*)

tsiAvp -jo -ds vuioyuasunj

y -ds vuioyuasunj V ’ds vuunssij

vivuiSuvui-ouoSui p 'ds vuunssij

vivipvu p -ds vuunssij

vivuiSumuopnasd vuunssij - vuvfluSiquo vuunssij

vivSmsv] vuunssij lpuvjuva vuunssij

VJVJ03AJV vuunssij

3 -ds ( i ) sapiuodj

snjnptuini sapiuodj

a 'ds sapiuodj

Y -ds sapiuodj

vnStxa vijauiiuoistdjc s CO CO CN

Y 'ds vjjaipiqdjj -

Y ‘ds tuntpiqdjj -

vuqvjS vuiSuaquauqjCN -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. c n vssvuo vuijnpissvooqoiQc n V O OO CN

vuoiq vuijnpissvooqojQ

tsmvp -jd -ds vuioquasunj

y -ds vuioyuasunj

V 'ds vuunssij

vivuiSuvuu-ouoSui ' j o ’ds vuunssij

vivipvu -jo •ds vuunssij

vivuiSumuopnasd vuunssij vuvtCuSiquo vuunssij vivSiAdvj vuunssij

ipuvjuva vuunssij

v j v j o o a j v vuunssij

3 ds (i) sapiuodj

snjnpmm sapiuodj

g 'ds sapiuodj

V 'ds sapiuodj -

vnSixa vjjauiiuoisidj - CN

y -ds vpaipiqdjj

Y 'ds uinipiqdjj

vuqvjS vuiSuaquauqj-- CN

o 1 OO 120-122 3 3 0 - 3 3 2 3 8 0 - 3 8 2 2 4 0 - 22 4 6 2 0 - 2 6 2 3 4 0 - 3 4 2 E 3 2 - 3 7 2 8 0 - 2 8 2 CN cn 120-22 1 3 2 0 - 3 2 2 1 3 6 0 - 3 6 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VO vssvuo vwjnpissvaoqojQ ON On O 00 - oo 00 5 m c s

vuotq vuqnpissvooqojr)

istAvp -jo -ds vuioyuasunj

V -ds vuioyuasunj - - V -ds v u u n s s ij

vivutSumu-ouoSui -jo ds v u u n s s ij

vivipvu ’jo ’ds v u u n s s ij

o m CS m m m m vjvuiSuviuopnasd vuunssij c s

vuvt(u8iquo vuunssij - cn vjvSiAdvj vuunssij -

ipuvjuva vuunssij - c n -

vivjo3A]v vuunssij VO - c n

3 ‘ds 0i) sapiuodj -

snjnpimni sapiuodj -

g 'dss a p iu o d j - -

y 'ds sa p iu o d j

00 ON r~ O c n r- vnSixa vpauiuioisidj m r~~ - in c s

V 'ds v p a ip iq d jj

V 'ds u tn ip iq d jj

o o CM c n vuqvjS vuiSuaquauqj c n cn CN cn 00

00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. i n vssvuo vuijnpissvooqojQ V) r- *n \D cn VO CN 0 0 CN cn cn

vuoiq vuijnpissvooqojf)

lsm vp -p -ds vuioyuosunj

y *ds vuioyudsunj

V 'ds v u u n s s ij - - CN

vjvuiSumu-ouoSu} *p -ds vu u n ssij) -

vivipvu -jo *ds vu u n ssij)

CN 0 0 CN CN cn vjvuiSuviuopnosd vuunssij) «r> 0 0 - r —H - CN CN (N cn vuvduSiquo vuunssij) - cn

v iv Siaovj vu u n ssij) -

lpuvjuva vuunssij) - cn

vjvjooajv vu u n ssij) - cn - CN

3 "ds (i) sopiuodg _

snjnpiuuni sopiuodsj

g -ds sopiuods)

y 'ds sopiuodg

oo vnSixo vjjouituoistds) CO VO CN CN cn CN CN CN CN VO vo 0 \ V 'ds vpoipiijdjg

V 'ds um ipiqdjg

vuqvjS vuiSuoquouqs) CN CO >/-> CN -

OOCN t o 0 0 145-147 165-167 178-179 185-187 340-342 240-242 260-262 300-302 280-282 225-227 1200-202 |E32-44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CO o CN cn ON vssvuo vuijnpissvooqoj£) CN ON ON OO CN CN N* VO CN oo CN

vuoiq vuijnpissvooqojf)

ism vp vp ’ds vuioyuasunj

V "ds vuioyuasunj - - m

V ds v u u n s s ij CN

vjvuiSjvui-ouoSu i -jo -ds v u u n s s ij

vivipvu jo 'ds v u u n s s ij

CN CN CN cn VO CN N" m ON r - r*- vivuiSuvuiopnasd vuunssij CO CN CO CN CN CN CN ON CN vuvKuSiquo vuunssij - - CN cn ON CN cn t-

vivSiaovj v u u n s s ij CN CN cn - cn vo cn CN

ipuvpva vuunssij - - CN cn ON CN cn r-

VJVJOOAJV v u u n s s ij -

O 'ds Q.) sa p iu o d j

snjnpiuuni sapiuodj

g ‘ds sa p iu o d j

V ‘ds sa p iu o d j

r~- VO 00 vnSixa vpauiuioisidj o CN CN VO cn cn m CN VO ON a vo c-- ON ON 8 CN

V ’ds vjjaipiqdjj

y ‘ds lunipiqdij

o o ON vuqvjS vuiSuaquauqj CO rt* - r-~ — s CN CN in CN vo S - 505-507 525-527 345-347 365-367 305-307 385-387 465-467 265-267 405-407 425-427 445-447 245-247 1485-487 1325-327

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 0 0 cn o ON o o r - - o m vssvuo vutjnpissvooqojQm cn cn CN CN cn VO v o CN

vuotq vuijnpissvooqojQ cn - v o - cn m m

tsiAvp -jo -ds vuioquasunj

y -ds vuioquasunj ''3’ o -

V ‘ds vuunssij

vjvuiSuvtu-ouoSui -jo -ds vuunssij

vivipvu -jo -ds vuunssij

r - CN CN o vivuiSumuopnasd vuunssij cn CN OO ON ON CN r - VO

vuviiuSiquo vuunssijCO - m OO i n

vivSmovj vuunssij -

ipuvjuva vuiunssij CO - i n o o m

vwjooAjv vuunssij CN

3 ds ( £) sapiuodj -

snjnpiiuni sapiuodj

g ‘ds sapiuodj cn

V ‘ds sapiuodj

t— 00 m CN — o CN vnSixa vjjauiuioisidj r - CN CN r - u o

V "ds vjjatpiqdjj

V 'ds mnipiqdjj

cn ON vuqvjS vuiSuaquauqjco VO cn o o CN CN CN o CN r - cn r - o O n 00 00

i 14-17 86-88 565-567 66-68 250-252 290-292 330-332 370-372 46-48 410-412 E52-9 O 450-452

269

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vssvud r - c n 00 NO ON 00 cn vutjnpissvooqojQCN m vo cn i n S i n CN CN

vuotq vutjnpissvooqojQr*~) r-- i n cn -

istMvp -jo -ds vuioyuosunj -

Y ds vuioyuosunj -

y ’ds vuunssij -

vjvuiSuvtu-ouoStujp *ds vutunsstj

vivipvu p -ds vuunssij

oo CN vivuiSuvuiopnosd vuunssij VO - CN CN i n CN - vuvKuSiquo vuunssij

v j v S i a o v j vuunssij

tpuvjuvo vuunssij-

v j v j o o a j v vuunssij

3 'ds (i) sapiuodj —

snjnpivuni soptuodj

g -ds sopiuodj

y 'ds sopiuodj -

CO c n i n i n O vnSixo vjjouiuuojsidj CN cn NO CN CN cn

V ’ds vjjoipiqdjj

V *ds umipiqdjj - c n

cn cn o vuqvjS vuiSuoquDuqjoo ON O n NO 00 i n r- r- NO 00

CN 00 CN 1 i o 100-102 120-122 140-142 160-162 180-182 GL76-1 20-22 60-62 470-472 489-490 o oo |4042

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. co cn in CO i i CN vssvud vutjnpissvooqojQ in CNCN-

vuotq vutjnpissvooqojQ

tsiAvp 'jo -ds vuioyuasunj

y -ds vuioquasunj

V -ds v u u n s s ij - - - -

vjvuiSuvui-ouoSiuj -jo -ds v u u n s s ij

vjvipvu -jo -ds v u u n s s ij

vivuiSuviuopndsd vuunssij cn - CS - CNin - COCO vuvKuSiquo vuunssij vjvSiAdvj vuunssij

ipuvjuva vuunssij

vjvjooajv v u u n s s ij

3 ds {i) sa p iu o d j

snjnpiuint sapiuodj

g-ds sa p iu o d j

V -ds sa p iu o d j

vnSixa vjjauiuiofsidj COm - cn CNCN in CN- -

y ’ds vjjaipiqdjj

Y -ds u im p iq d jj -

vuqvjS vuiSuaquauqj in COCN- vo woCN ON CN c o m 500-502 340-342 380-382 320-322 420-422 480-482 240-242 240-242 298-300 1 ! 400-402 200-202 1440-442 1460-462 |360-362 |260-262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vssvuo vuqnpjssvooqojQ - o -

vuotq vui\npissvooqo\Q

ism vp ’ds vuioyuasunj

y ’ds vuioyuasunj

y -ds v u u n s s ij

vjvuiSuvui-ouoSuj -jo 'ds v u u n s s ij

vjvipvu 'jo ’ds v u u n s s ij

vjvuiSuvuiopnasd vuunssij - - vuvKuSiquo vuunssij vjvSiAav] vuunssij

lpuvjuva vuunssij

V}V]OdA]V v u u n s s ij

3 -ds (i) sa p iu o d j

snjnpiutnt sapiuodj

g -ds sa p iu o d j

Y ‘ds sa p iu o d j

vnStxa v\\auiuuoisidj

V ‘ds v p a ip iq d jj

Y 'ds w n ip iq d jj

vuqvjS vuiSuaquauqj 100-102 160-162 80-82 240-242 298-300 GL76-15 38-40 60-62 500-502 20-22 480-482 | |GL76-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vssvuo vuijnptssvDoqojf) VO lO OO

vuoiq vui\npissvDoqo\£) ONNO

isiAvp p ’ds vuioopuasunj

Y ’ds vuioquasunj NO r-

Y ‘ds v u u n s s ij

vivuiSumu-ouoSui p "ds v u u n s s ij

vivipvu p ’ds v u u n s s ij

vivutSumuopnasd vuunssij - CO - vuvduSiquo vuunssij -

v iv Smdvj v u u n s s ij

ipuvjuva vuunssij -

VJVJ09AJV v u u n s s ij CO

3 ds (i) sapiuodj

snjnpiuini sapiuodj

g -ds sa p iu o d j

Y "ds sa p iu o d j

o oo 00 vnSixa vpauiuioistdj ■NSf

Y ‘ds vjjaipiqdjj

Y 'ds u in ip iq d jj

vuqvjS vuiSuaquauqj - O1n 04i O w s OOi ^r 64-66 20-22 60-62 20-22 23-25 74-76 20-30 v©

65 140-42 |IWSOE68-16 04

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vssvuo vutjnpissvooqojQ 3 CN CN r- CN ON r- - CN

vuotq vutjnpissvooqojQ - oo - o CO CN CN r-

tsiMvp -jo -ds vuioojuasunj

Y -ds vuioyuasunj - CN - o CO Y -ds vuiunssij

vivuiSumu-ouoSiuj \p ’ds v u u n s s ij

vivipvu -jo -ds v u u n s s ij

vivuiSuvuuopnasd vuiunssij - - - vuvtCuSiquo vuiunssij

vivSiaovj v u u n s s ij -

ipuvjuva vuunssij

VWJOaAJV v u u n s s ij CN -

3 -ds (i) sa p iu o d j

snjnpiuim sapiuodj

a 'ds sa p iu o d j

Y 'ds sa p iu o d j

vnSixa vjjautiuoistdj CN - ON -- Tj-

Y 'ds vjjaipiqdjj

Y 'ds uum piqdjj

vuqvjS vuiSuaquauqj CN CN cn

00CN o1 100-102 120-122 180-182 140-142 340-342 220-222 260-262 300-302 380-382 oo 200-202 [280-282 [320-322 |360-362

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. v s s v u d vuijnpissvDoqo]£)vo cs

vuotq vujjvpissvDoqojf)i n - -

isiAvp-p -ds vuioquasunj

V "ds vuioquasunj i n V ds vuunssij

vivuiSuvuu-ouoSui -jo 'ds vuunssij

vivipvu p -ds vuunssij

vivuiSumuopnasd vuunssij vuvfcuSiquo vuunssij vivSiAavj vuunssij tpuvjuva vuunssij

v i v j o d a j v vuunssij

3 -ds (i) sapiuodj

snjnpiuim sapiuodj

g -ds sapiuodj

y 'ds sapiuodj

vnSixa vjjautuioisidj -

y -ds vpaipiqdjj

y 'ds uimpiqdjj

vuqvjS vuiSuaquauqj

OO1 (Ni o 160-162 100-102 120-122 140-142 10-12 60-62 20-22 40-42 400-402 420-422 NBP9902-11 O oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vssvuo vuijnpissvooqojQ -

vuoiq vuijnpissvooqojQ

isiAvp -p d s vuioquasunj

y 'd s vuioquasunj

y 'ds vuunssij

vivuiSuvuu-ouoSiui ’jo ’ds vuunssij

vivipvu p -ds vuunssij

vivuiSuviuopnasd vuunssij vuviCuSiquo vuunssij vwSmavj vuunssij

ipuvjuva vuunssij

vjvjooAjv vuunssij

q d s (i) sapiuodj

snjnpiium sapiuodj

g ’d s sapiuodj

Y 'ds sapiuodj

vnSixa vjjauiuiojsidj - cn to

Y 'ds vjjaipiqdjj

Y 'ds uumpiqdjj

vuqvjS vuiSuaquauqj

CN• 100-102 120-122 10-12 180-182 80-82 20-22 60-62 40-42 NBP9902-12 o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sutffb siuopjq

y ■ds sisdouijnmSuvffl

V3JJJA vuijnSutj

y -ds vuijnotjus'j

susSjsauoo vmjnoijuzj -

vopouviuv vutSisoSwCjrrj

vjdruudjm -j b a vjvujs vusSrrj *“■4 CN - -

V 'ds vusSrrj

vjvSiAav] vusSrrj

vjnpidsiii DUdSrrj -

vjnpidsiy vusStrj

vivjnoidv vusStrj -

vjsooiinov vusSrrj - CN - - vjnoiAo viputsouuofi

voifpvd vuisuiydof]

1UOSJ1M V1U3]]VUOJ3fJ

V ‘ds vuisauiCvf]

sisuauvuvo sapiotuSvjtfdojdvff

y ’ds vwpioj^Q --

nuvp\oso3u vuipioutCQ - 1

O o CN oo 1 CN CNt 00 oo i 102-104 80-82 58-60 DF62-11 20-22 60-64 DF62-6 O 40-42 O 40-42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. suiffb siuopjq

y ■ds sisdouijnuiSuvpy

vdJjtA vuijnSui'j

y 'ds vuijnoiiu^'j

suaSuaAuoo vuijnopua^f -

V31JOUVJUD muSisoSuLnrj

vjdrujajuf ‘j b a djvujs vu a S trj

V 'ds vuaSrrj

vjv8 m9V] vusSrrj

vjnpidsiif vuaStrj

vjnpidsii[ vuaStrj

vjvjnoido vusSrrj

visoopnov vuaStrj vjnoiAO v \p m s o u u o fj

voifpvd vuisujydoj]

1UOSJ1M ViUdtfVUOJSf]

y -ds vu isd u fo fi

S1SU91JVUVO SdpiOlu8vJlfdO]dV£[

V -ds vuipiojt(£)

nuvpjosoau vmpioj^Q

OO 1 r - o o CN CN i i 180-182 120-122 148-150 160-162 DF87-9PC DF87-5 O Q o |200-204 1220-222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. suiffv smopjq

y •ds sisdouijnuiSunpy

V3UJ1A. vuijnSuiq

V ’ds vu ijn o p u a j

suaSusMioo vuijnoijudj -

vopojvjuv viuSisoSufatrj

vjdnjusfuj -j b a vjvtujs vuaSzrj --

y 'ds vudStrj

vft?8iA.9vj vuaStrj -

vjnpjdsiij vuaSzrj

vjttpidsiti vuaSzrj

vivjnoidv vuaStrj

vjsoDjinoD vuaSzrj « CN CN — m vjnoiAO npduisoiujoji

votfpvd vutsutydoj]

7UOSJ1M VlUdJJVUOUSfJ - CN -

y ’ds vuisdutCvjj

S1SU3UVUOO SSpiOluSvjlfdOjdDfl

V 'ds vuipiojiCQ

nuvpjoso3u vuiptoufcf)

cn1 CNi CNi 80-82 20-22 60-62 DF87-13PC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. suiffv smopjq

y •ds sisdouiptuiSuvj^

V3JJ1A vuijnSuij

y *ds owjnoijuaj

sud§jdt\.uoo tmijnoiius'j

voijojvjuv muSisoSuiOtrj -

vjdtuuaiui -j b a vjvujs vuaStrj cn

V "ds vuaStrj

vjvSm9vj vuaSzrj

vjnpidsiii vuaStrj

vjnptdsiif vusSrrj

vjDjnotdo mtaStrj

visooiinov vudSrrjC-l - cn — vjnoiAO vpsuisouuofj

voiftovd Dwsuiydofj

luosjiM vtusjjvuouafjf-

y ‘ds vuisdUiCvjj -

sisuauvuvo s9pwtuSvjifdo]dvfj[

V 'ds vmpiojtCQ

UUVpjOSOdU VUtpiOU&Q

CN cn1 CNi i 100-102 120-122 160-162 140-142 178-179 DF87-15PC o DF87-18PC O DF87-21 O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sutffv siuopjq

y ■ds sisdoutjnwSjvffl

V3J}M vMjnSui'j

y "ds Dui]notju 9rj

sudSudAiioo omjnotjurj

vjjjzjnluv viuSisoSuLurj

vjdrujsjut '.reA vivuis vusSrrj

y "ds vuaStrj

vjvSiAdVj vudStrj

vjripidsiif vuaStrj

vjnpidsttf vuaStrj

vivjnotdv vuaStrj

visootjnov vuaStrj vpnomo vjpuisouuofj

votfiovd nutsuiydofj

1UOSJJM VlU9]]DUOJ3fJ

Y 'ds vmsaufofj

S7SU9UVUVO SdptOUlSvUlldojdVfl

V 'ds vuipwu&Q

ItUVpjOSOBU VUiptOJiCQ

o CS i I i 30-32 E32-11 20-22 E32-7 E27-8 E27-5 coretop? o CO o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sutffb siu o p p i

y •ds stsdouijnutSuDffl

V3JJ7A VUljnSui1

V ’ds vutjnopu3rj

sus Susauoo vuijnoijuaj

vojiojvjUD muSisoSufarrj

vjdrujdjui -j b a vjvujs vusStrj

y -ds vudSzrj

vivSiasvj vusSrrj

vjnpidsiij wudStrj

vjnpidsiy vudStrj

vjvjnojdv vuaSrrj

vjsooijnov vusStrj - - vjnomo vjjswsouuoff

voifiovd vm suiydof]

7UOSJ7M VlU3JJVUOJ3ff

y ‘ds vuissuiCvjjf

SISU3UVUV0 S3piOlu8vjtfdOjdVff

y -ds vuipioj/CQ

niiVp>]0S03U vuipiou&Q 101-104 120-122 180-182 200-202 220-222 240-242 42-44 78-80 260-262 E32-12 |60-62 1140-142 |163-165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. suijfv siuopjq

y •ds sisdouijnmSjvjq - V9JIM vuiin8uirj

V -ds vuijnonuaq

s u s Su s a u o o vujjnotjuaj

v o ij d u v j u v viu8iso8u

vjdruuajut - j b a v j v u j s vuaStrj

y *ds vuaStrj

vjvSmav] vuaSerj

vjnpidsitf vuaSzrj

vjnpidstif vuaStrj

vtvjnoidv vuaStrj

vjsoojjnov vuaStrj - - - - vjnotAO vjjamsoiuaopi

voifiovd vuisutydojj

tUOSJtM VlllBJJVUOJdfJ

v ‘ds D U lSSU & D fJ

sisuauvuvo sapioiuSvjtfdoidvjj

y -ds vutpwutiQ -

nuvpjosodu vuiptojfcQ

oo1 CM1 o 160-162 120-122 140-142 84-86 65-67 98-100 60-62 E32-13 20-22 o 40-42 oo J42-44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sutffv stuopjq

y •ds sisdouijnui3.lv

v 3 J } i a vmjnSmq

V -ds vutjnoijuaj

sudSu 3A.U 03 vuijnoijuaj

voiioaviuv muStsoSutCitrj

njdnjuaiui - j b a v j v u j s vuaSrrj

V ’ds vuaStrj

v j v S m o v \ vuaStrj

vjnpidsitf vuaSzrj

vjnpidsiif vuaStrj

vjvjnoidv nuaStrj

vjsoopnov vuaStrj - vjnoiAO vjpuisouuoff

votfpvd vuisutydofj

1UOSJ1M. V1U3JJVUOJ3JJ

Y 'ds vuisauiCvff

sisuauvuvo sapioiuSvjijdojdvfjf

V *ds vuipiou&Q

nuvpjosoduv u ip iO A d Q -

CN OO o 1 182-184 160-162 180-182 18-20 120-122 140-142 198-200 202-204 E32-16 60-62 00 98-100 220-222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sutffv stuopjq

y •ds stsdoutjnmSavfl

vaupA vmjn8uirj

y 'ds vupnaijuaj

suaSuaAuoa ouijnapuaj

vapauvjuv vuiSisoSutLitrj

vjdnjuajut m b a v i v u j s vuaStrj

V "ds vuaStrj

vjvSiAavj vuaStrj

vjnpidsiij vuaStrj

vjnpidsiif vuaStrj *“4

vivjnotdv vuaStrj

vjsoopnov vuaStrj - vjnoiAO Djjauisouuoff

vatfiovd ouisuiydoff

luosjiM. vtuajjvuouaff

y ‘ds vuisaufofj

sisuauvuvo saptowSvuifdojdvjj

Y ‘ds vuipiojiCf)

nuvpjosoau vutpiojiCf) 120-122 240-242 260-262 280-282 320-322 330-332 340-342 360-362 380-382 38-40 20-22 E32-37 CN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SUtffv SlUOpjAl

y -ds sisdouijnui 8uvj\j

vajjJA vutjnSut'i

y ‘ds vuijnoijuaq

suaSuaAUOD vuijnoijuaq -

v o ijm v ju v vuiStsoSu^urrj

vtdmuajw -j b a v iv u js vuaStrj - CN CN -

y -ds rruaSrrj -

ojvSiA3V] vuaStrj CN

vjnptdstif vusSrrj

vjnpidsivj vuaStrj -

vjvjnojdv vuaStrj

visoopnov vuaStrj CN CN - vjnojAO vjpuisoiuuof]

voifiovd vmsupdofj

1UOSJ1M VlU3JJVUOJ3ff -

V ‘ds vmsautCvpj

S1SU3UVUV3 S3ptOUl8vJl{dO]dVfJ

V ‘ds vujpiojtCQ

nuvpjosoau vutpjou&Q

CM 100-102 120-122 140-142 160-162 242-244 258-260 60-62 80-82 E32-43 O 20-22 41-43 1140-142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. smffv siuopjM

y ■ds stsdoutjnuiSjvffl CO

oajjm vuijnSuij

V "ds vuijnopuaj

suaSuaAuoo vuijnapuaj -

voijojojuv tnuStsoSu/Citrj

Djdtujajw 'JBA v jv u js vuaStrj »o - CN CNCN

V ’d s vuaSrrj

vjvSiAdvj vudStrj

vjnpidstif vudStrj

vjnpidsjif vuaSrrj

vjvjnoidv vuaStrj -

vjsoDijnov vuaSrrj*•—4 CN CNCN vjnoiAo vjjauisouuoff

votfpvd vuisuiydofj

luosjiM viuajjvuojajf -

y 'd s vuisauKvjjf

sisuauvuvo sapwiuSvutjdojdDH

Y -d s vuipjouKf)

nuopjosoau vuipiou&Q 1

185-187 145-147 165-167 178-179 225-227 260-262 300-302 340-342 E32-44 240-242 280-282 200-202 j 180-182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sutffv siuoppy

y ■ds stsdouijnutSuvjq

vajjiA vuipiSuvj

V ‘ds vmjnopudj

sudSjBAuoo vuijnotjuaq -

V01J3JVJUV tnuSisoSuAutrj

njdtujsjui - m \ v j v i j j s vuaSvj -- CS -- Y ‘ds vuaSzrj

v j d S i a s v ] vusSrrj

vjnptdsttf vuaSrrj

vjnptdsjjf vuaSzrj

vivpioidv vuaStrj - -

vjsootjnov vusStrj 03 cs 03 - - vjnojAO vjpuisouuoff

votfpvd vutsmydofj

lUOSJIAA VlU3]]VUOJ3fJ - \o 03

V "ds vuisauiCvf /

sisuduvuvo sapwwSvutfdojdvff

y 'ds vuipwutCf)

nuvpjoso3u vuipiojtCf) -1 265-267 305-307 325-327 345-347 365-367 385-387 245-247 405-407 505-507 525-527 425-427 445-447 485-487 1465-467

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. suxffv SlUOJdffl

y •ds sisdouijnmSuvffl -

v 9jjm vuijnSui'j T—H

I y ds vuijnoijuaj -

sudSudAUOO outpojju^J -

voijojvjuv muStsoSutCizr] - -

vidnuuajm 'j b a vjvujs vuaSrrj -

V -ds vuaSrrj

njvSiAdvj vuaStrj - vjnpjdsty vusStrj

vjnpidsty vuaSirj

vtvjnoidv vuaSrrj -

vjsooijnov vuaStrj - r - - VO CO VO CS - vjnoiAO vjjdujsouuofj

voifpvd vuisuiydofj

juosjm viu3]]vuojdfj - CN

V ‘ds vmsaufofj

sisuduvuvo sapioiuSvjifdojdvfj

Y 'ds vmptou^Q

nuvpjosoau vmpiouKf)

00 001 i \£> 14-17 565-567 66-68 330-332 E52-9 250-252 290-292 370-372 46-48 o 450-452 00 1410-412

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SUlffv Slltopffl -

y •ds sisdowjnutSjvffl

V9JJM vuijn8uirj

y ‘ds vutjnoijuaj

suaSusAuoo vujjnoiju^j

VJtjouviuv viuSisoSuiQzrj

vjdruu9}w 'se a vjvuis vuaStrj - CN V -ds vuaStrj

vjvSjasvj vudStrj

vjnptdsiii vudStrj

vjnpidsiif vusSrrj

vivpoidv vuaStrj

vjsoopnov vuaStrj CN Tj- - CN vjnojAO vipuisouuofi

v^rfpvd nuisuiydofi -

mospM viu9]]mioJ9H -

V -ds vuisaufofj

sisu 9uvudo saptoiuSDJtfdojdvfj

V ‘ds vuipwjKf)

iiuvpjososu VUipiOjKf) !

00CN cn o 1

1 100-102 140-142 160-162 180-182 120-122 20-22 GL76-1 GL76-1 40-42 470-472 o 00 [60-62 1489-490

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. suxffv sxuopyq

y •ds stsdouijnuiSuvpy

V9JJJA vuijnSui'j

y -ds vutjnopus'j

suaSudAuoo vutjnoijudq CN

voijojvjuv vwSisoSuiQtrj

vidmudim -j b a vivujs vuaStrj

y ‘ds vuaSrrj

vjvSiAat7 vuaSrrj

vjnptdsttf vuaStrj

vjnptdsitf vusSzrj

vjvjnoidv vusStrj

vjsooijnov vuaStrj CN - CO CN - - - - vjnoiAO vjpuisouuofj

votfpvd vuisuiydofj

1UOSJ1M VlU9]JVUOJ9ff

y *ds vuisautCvfj

sisuduvuvo sspioiuSvjydojdvfi

y *ds vutpiojiCQ

tiuvpjososuVUipJOJtCf)

00CN 00o 380-382 500-502 320-322 340-342 360-362 440-442 460-462 298-300 400-402 420-422 200-202 240-242 260-262 'St

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SUtffv SlUOJ9p\l

y 'ds sisdouijnuiSuvfy

V9JJ1A vuijnSut']

V - d s vuijnoiju9 7

suaSjzAuoo vui]H3i}U9rj

vpijouvjuv muStsoSuiCjtrj

vjdtuj 9jui \n?A vjvujs vuaStrj '

y - d s vuaStrj

vjv8ia9vj vuaStrj

vjnptdsti{ vuaStrj

vjnptdsiif vuaSrrj

Dwjnoidv vudStrj

visooynov vudStrj vjr&iAO vjjauisouuofj

votfpvd vmsuiydofj

1UOSJ1M VJUdJJVUOJdfJ

y ' d s vuisautCvfj

sisuauvuvo sapioiuSvuifdojdvH

V " d s vuipioj^Q - -

nuvp[oso 9u vuipioji(Q

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SUtffv SlUOJOffl

y 'ds sisdoutjnuiSjvffl

V9JJM vuynSutj

V *ds vuynoyuoj

suaSuaAUOO vutjnoyuoj

VOyOUVlUV viu8iso8u

vidmuaiut mba vjvujs vudSrrj

y 'ds vusSrrj

vjvSjAavj vusStrj

vjnpidsiy vuoStrj

vjnpidsiy vudSzrj

vivjnoidv vuaStrj

visooynov vuaStrj vjnotAO vjjdujsouuofi

voifpvd vujsuiydoff

tuosjm viuopvuouofj

V ‘dS VUlS9Ui(Vff

S1SU9UVUVO S3piOlu8vJl{dO[dvp[

V ’ds vuipioJtC{)

nuvpjoso3u vuipwuiCr)

OOi 60-62 23-25 64-66 IWSOE70-2-19 20-22 40-42 20-30 IWSOE68-16 VO CM 120-22 (74-76 [

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sujffv siuoppy

y •ds sisdouijnuiSuvpy

V3JJM m n jn S u rj

Y -d s vuijnoijua^i

SU98U3AUOO VUJjn01}U9'J

VDiiojiviuo vuiSisoSuiO irj

vidm udiui ' j b a vwujs vuaSrrj --

Y 'd s vuaStrj

vivSmavj vusStrj -

v\npidsti[ vm Strj

v}tipidsii{ vuaSrrj

vwjnojdv vuaStrj -

visooiinov vuaSrrj vjtuiAo vjpmsouuopj

votfpvd vuisuiydofj

1UOSJIM VlU3]]VUOJ3f J

Y 'd s vuisau/Cvfj

SISU9UVUVO sapioiuSvutfdojdDfj

Y "ds vwpioutCQ

nuvpjosoau vuipiou^Q 120-122 100-102 140-142 180-182 80-82 320-322 200-202 220-222 260-262 280-282 340-342 380-382 1300-302 1360-362

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SUtffv Siuopffl

y •ds stsdouijnuiSuvffl

vdJim vutjnSuij

V *ds nuijnopuaj

sudSusAUOO tmtjnotjuaj

votjjuvjuv viuSisoSuKuvj

vjdruuajui -jba vjvujs vudStrj

y -ds vuaSzrj

vjvSmav] vuaSzrj

vjnpidstif vuaStrj

vjnpidsiif vudStrj

vivjnoidv vuaStrj

visoDtwov vuaStrj

v\nomo vipmsouuofj CO

voifpvd vutsuiydofj

1UOSJ1M. V1U3JJVUOJ3JJ

Y ’ds vuissudvpi

sisuauvuvj sapwiuSvuifdoidvjj

Y 'ds vuiptOM£q -

nuvpjosoau vuipioj/Cf) !

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. sutffv siuopjq

y •ds sisdouijnutSuvffl

vajjjA vuijnSuij

y ’ds vuijnopua'j

SU9%J3AU03 VUl\nO]lUdrJ

voitouviuv niuSisoSuLirrj

vjdruuafm j b a v i v u i s vudStrj

Y 'ds vuaStrj

vjvSmavj vudStrj

vjnptdstif vudStrj

vjnpidsiy vuaSzrj

vivjnojdv vuaStrj

visoopnov vusSrrj vjnotAo vftamsoiuaoH i n

votfpvd vutsutydofj

1UOSJ1M VlU9]]VUOJdff

Y 'ds vuisdu/Cvff

S1SU9UVUVD S3piOUiSvJ1{dO]dvfj[

Y "ds v u j p j o j Kq

UUDpjOSOaU VUiptOU&Q

CM oo t CNi o 180-182 10-12 100-102 120-122 60-62 20-22 40-42 NBP9902-12 o 00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VJVtUOUl VU1JOQ

vuoSvxdij vuijoo vjdjnosxa vuijoo vjvjnojdv vuijoo

ltCpvuq vjjauojuo/q - CO ON CN npvuq vjjauoiuojq

q -ds uotuojq

3 ’ds uoiuo/q

g'ds uoiuoft T—H

y 'd s uotuojq

lunjvssvjom vp -ds uotuo/q

jiuanbuaj vuiquouoooa/q WJJ3A VJJ3UlJO!Jlffl a 'ds vjjauijoijijq V 'ds vjjduijoijipy

suvjnoup vjjduijoijipy

lpuvjuva vmtutuvijtjq

V ‘ds smojspj

uinuv33juvq siuojajq

O o CN VO 00 00 CN i i CO oo i o 18-20 102-104 DF62-6 40-42 DF62-11 20-22 60-64 o r*- O 40-42 00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VIVtUOUl VUIJOO

nuoSvxaq vuijoo vidjnosxd vuijoo

vjvjmidv vuijoo -

j(Cpvuq vjjauoiuotf CN CN

jjpvuq vjjauoiuo/q

<3 'ds uomojsj

3 -ds uoiuotf

g -ds uoiuojq -

V -ds uoiuojq

lumvssvjoui 'jo 'ds uotuojq

lutanbudi vuiquouoooa/q CN IVJJdA vjjduijotjtjq g "ds vjjsuijoijijq Y "ds VJJ9UIJOJJIJAI

suvjnojp vjjauijoijjjq

jpuvjuvB vuiiuuivijijq

y 'ds stuoj9jq

umuvaajuvq stuojajq ------■

CNi CNi 148-150 1 2 0 -12 2 160-162 180-182 DF87-9PC DF87-5 DF87-8 2 2 0 -2 2 2 O O |200-204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vivuuom vuijoo

vuoSvxsq vuijoo - - vidjnosxa vuijoo

vivjnoidv vuijoo -

liCpvuq vjjduoiuo/q OO CO VO m CN CN

npvuq vjjauoiuojq

q -ds uoiuojq

3 *ds uotuojq

g -ds uoiuotf

Y -ds uoiuotf

lunjvssvjoui - p ’ds uotuo/q

tuianbuai vuiquouoooa/q - >/■> CN

1VJJ3A VJJ9UlJ01J1ffl

a ’ds vjjduijoijiyi

y -ds vjjauijoijiffl

suvjnouio vjjduijoijijq

tpuvjuva vutuiuivijijq

V ’ds stuojajq

uinuvaajuvq smojay^

00CN T f CN c s CN 1 i t 1 i o 38-40 60-62 20-22 DF87-14 CN DF87-12PC O o O 00 |DF87-13PC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VJVUJOU1 VUIJOO

vuoSvxaq vuijoo - vjdjnosxa vuijoo

vivjnoidv vuijoo -

i&jpvuq vjjauoiuojq VO

tipvjq vjjauoiuojq

Q -dS UOJUOft

3 -ds uoiuofl

g -ds uotuotf

V *ds uoiuotf

lumvssvuoui vp *ds UOlUOtf

tiuanbuaj vuiquouoooapj - - TI­ WJJ3A vjjauijoijijq cs g‘ds VJJ9U1J01JJW

Y ‘ds vjjauijoijiffl -

suvjnouio vjjauijoijijy

ipuvjjva vuiwuivijiffl

V ‘ds siuojajq

uinuvaajuvq siuojajq |

CN CS1 CNt 160-162 100-102 120-122 140-142 178-179 DF87-15PC O DF87-18PC o DF87-21 O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VIVlUOUl VUIJOQ

vuoSvxaq vuijoq

vjdjnasxa vuijoq

vjvjnaidv vuijoq

jKpvuq vjjauoiuojq

npvuq vjjduoiuotf

G -ds uoiuofij

3 'ds uotuotf

g 'ds uoiuotf

V 'd s uotuojq

lunjvssvuDui 'jo -ds uoiuopj

nuanbuai vmquouoaoatf cs •n-

mjj9A vjjamjoijtjAj

a 'ds vjjauijotjtffl

y ’ds vjjautjoijtjq

suvjnaup vjjauijoijijq

tpuvjuva vuiunuvtjjpq

y ‘ds siuojapj

tunuvaajuvq siuojajq

© CS1 1 E27-5 coretop? E27-8 20-22 30-32 E32-7 ° 1 CO E32-11 o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VJVUJOU1 VUIJOO

vuoSvxaq vuijoo vidjnosxa vuijoo

vjvjnoidv vuijoo

ittpvuq vjjduoiuojq

upvaq vjjduoiuo/q

q -d s uoiuo/q

3 d s uoiuojq

g -d s uotuojq -

y -ds uotuojq

tumvssvuout 'j o ’d s uotuojq

luonbuaj vuiquouooodjq

1VJJ3A vjjouijoijiyi

g -d s vjjouijoijijAi

y ‘d s vjjdutjoijjw

siuvjnoup vjjauijotjiffl

jpuvjuvd vuituuivijijq -

V -d s smojaffl

uinuvadjuvq siuojapy 1

CN 00 ©i 00 163-165 101-104 120-122 140-142 220-222 240-242 260-262 E32-12 200-202 42-44 78-80 1 1 160-62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VJVUUOU1 VUIJOQ

vuoSvxaq vujjoq

vjdjnosxs vuijoo

vivjnoidv vuijoq

t&pvuq vjjauoiuotf --

npvuq vjjauotuotf

Q ‘ds UOJUOfrl

3 -ds uom o^j

g -ds uoiuofl

V 'd s uoiuotf

UiflJVSSVJOUl -jo "ds U O lU O tf

iiuanbusi vuiquouooodtf

WJJ9A vjjauijojjjyq

g ’ds vjjsmjojjjjq

V ‘ds vjjauijotjijq —

suvjnouio vjjzuijoijijq

lpuvjuvd vutiuiuvijijq

y -ds sjuoj9jq

uinuvaajjvq stuojajq -

cs1 160-162 140-142 120-122 84-86 98-100 80-82 20-22 42-44 65-67 60-62 E32-13 o 40-42 |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. — vim uout vujjoq

VUOSVX9JJ VUJJOQ

vjdjnosxj vujjoq

vivjnojdv vujjoq

jfcpvuq vjjduojuoj\[ CN - - CN

npvuq vjjauomojq

Q ’ds UOJUOtf

2) *ds uojuo/q -

g 'ds uowojq -

V -ds uojuojq

jimivssvuouj -p -ds uojuoft

jjuanbusi vujquouoooatf

JVJJ3A VJJ9UJJOJJJJQ

a 'ds vjjdUJjojjjjq

V ‘ds vjjaujjojjjpi CN

sjuvjnoup vjjaujjojjjyi

jpuvjuva vuiwiuvjjjffl

Y -ds sm ojspi

junuvddjuvq sjuojapq - -- -

00CN o 1 120-122 180-182 198-200 18-20 140-142 160-162 182-184 220-222 60-62 98-100 E32-16 00 1202-204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VIVUUOUt VUIJOQ

vuoSvxaq vujjoq

vidjnosxd vuijoq

vivjnojdv vujjoq

jiCpvuq vjjauojuoftj

jjpvuq vjjauojuoft

Q 'ds U O JU O tf

3 -ds uojuotf -

g -ds uojuojsj

y -ds uojuotf

uimvssvjouj vp -ds uojuo^j

jtuanbuat vujquouoooajq

JVJJ9A vjjsujjojjjjq

a 'ds VJJ9UJJOJJJPI

V 'ds vjjdujjojjtjq

sjjvjnojjo vjjdujjojjjffl

jpuvjuva vujiuuivjjjjq

V 'ds sjuojajtf

iunuv99juvq sjuojajq -- 120-122 20-22 340-342 360-362 380-382 260-262 330-332 330-332 n E32-37 280-282 240-242

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjvuuoui vuijoq

OUOSvX9l{ VUIJOO

vwjnoidv vuijoo

ttCpvuq vjjsuoiuofq cs

npvuq vjjvuotuoft

q 'ds uotuojq

j *ds uoiuojq

g -ds uoiuotf

V -ds uoiuojjq

lunjvssDjjut 'jo 'ds uoiuojq

ivudnbusi vuiquouoooa/q - WJJ3A VJJ9UIJOIJ1JAJ a 'ds VJJ3UlJ01Jip\J y 'ds vjjautjoijiffl

siuvjnouio vjjauijoijipi

tpuvjuva vuiiuiuvijijq

V ‘ds stuojajq -

uinuvaajuvq siuojapq

(N C4 o 1 i o cs1 8

120-122 T—H 160-162 140-142 60-62 80-82 20-22 242-244 258-260 E32-43 O 41-43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VJVUJOUJ VUIJOQ

vuoSvxaq VUJJOQ -

vjdjnosxd vujjoq

vjvjnojdv vujjoq

j&pvuq vjjduojuo/q © CO r— VO CO

jjpvuq vjjauojuotf

q - d s U O tU O tf

3 - d s uojuo/q

g- d s uoiuojq

V ' d g uojuojq

lumvssvuouj \ p * d s uojuojq --

jiudnbuai vujquouooosjq CS cs -

JVJJ3A VJJ9UJJOJJJW

a ‘d s VJJ3UJJOJJ1JW

y ‘ d s v]jdu\jojj\y$

sjuvjno.no vjjaujjojjipj

jpuvjuvs rrujuiuivjjjjfl -

V " d s sjuojapy

mnuvddjjvq sjuojapj 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjvuioui vuijoo

vuoSvxaq vuijoo vjdjnosxa vuijoo

vjvjnoidv vuijoo -

CN r- tKpnuq vjjauoiuotf 00 VO o\ CN OO <3\ CO CN

npvuq vjjauoiuotf

q -d s U O lU O tf

3 "ds uoiuoj y

a 'd s uoiuo/\[

V ' d s uoiuojq

wnjvssvjoui v p -d s uomotf

tuianbuat vuiquouooodjq CN CN - iv]j3A vjjauijoijipq -

a 'd s vjjauijoijipf -

V 'd s VJJaUlJOlJipi

suvjnoup vjjauijoijiyi

lpuvjuva vuiiuwvijipi

y 'd s siuojay^

lunuvsajuvq siuojapq 305-307 325-327 385-387 505-507 405-407 425-427 445-447 465-467 525-527 485-487 1245-247 1265-267 |345-347 |365-367

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VIVUJOUl VUIJOQ

vuoSvxaq vuijoq

vjdjnosxd vuijoq

vivjnoidv vujjoq

j&pvuq vjjauojuotf ON - CN CN - VO m

Jipvuq vjjauoiuojq

q ’ds uoiuo/q

3 *ds uotuojq

g -ds uoiuo/q

V 'd s uojuojq

tumvssvjioui -ds uotuojq

liuanbuai vujqjouoooa/q - CN

1VJJ9A vjjauijojjjp\[ - -- -

g ’ds vjjauijojjjjq

V "ds vjjaujjojjjffl CN

siuvjnouto vjjauijoijijq

JpUVJUVB VUIUIUIVIJIJAJ

V ‘ds stuojajq

lunuvaajuvq siuojsyq

'

00 001 1 SO 14-17 330-332 250-252 290-292 66-68 565-567 410-412 450-452 E52-9 O 46-48 00 1370-372

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VJVIUOU] VUJJOQ

vuoSvxaq vuijoo - vjdjnosxd vuijoo

vjvjmtdv vuijoo -

jiCpvuq vjjzuotuojq CN

jjpvuq vjjauojuojq

q ‘ds uotuojq

3 -ds uotuojq

g -ds uojuojq

y -ds uojuojq CO CN

uinjvssvjouj -jp -ds uotuotf

jiuanbuaj vujquouoooa/q

1VJJ9A vjjduijotjijq CN

g -ds vjjaujjojjipu y ‘ds vjjdujjojjjpy

sruvjnoup vjjaujjojjjpi

1J7UVJJV9 VUJUIUlVlJJjZJ

y 'ds sjuojdjfl -

uinuvasjuvq stuojapj -- -- zzi-ozi 140-142 100-102 160-162 180-182 80-82 60-62 GL76-1 40-42 489-490

470-472 o 120-22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VlVlUOUt VUIJOQ

DUoSoxatj v u ijo o -

vjdjnosxa vuijoq

vjvjnotdv vuijoq -

j&pvuq vjjsuotuo/q -

npvuq vjjduoiuojq

q 'ds uotuotf

3 ‘ds uoiuojq

g -ds uoiuojq - CN

Y 'ds uoiuo/q -

lunjvssvuoui *jo ’ds uojuo/q

iiuanbuaj vutquouoooa/q

1VJJ3A VJJ3UIJOIJ1JAJ

3 'ds vjjsuijoijipu

y -ds vjjduijotjtyi

suvjnoup vjjautjojjjjfl

jpuvjuva vuiwuivijipi

Y 'ds siuojsyn CN

um uvdajjvq siuojajq 380-382 500-502 320-322 340-342 360-362 480-482 260-262 298-300 400-402 420-422 440-442 460-462 240-242 200-202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjmuoui vutjOQ

vuoSvxdtj vuijoo

vjdjnosxd vuijoo

vivjnoidv vuijoo

tiCpvuq vjjauoiuojq

iipvuq vjjauoiuo/q

G -ds u o iu o tf

3 -ds u o iu o tf

g-ds u o tu o tf -

V 'd s u o tu o ft

w m v ssv u o u t 'jo -ds UOlUOtf

ltuanbudj vutquouooosjq

IVJJ3A VJJSUlJOlJlffl

g'ds VJJ9UIJ01JIJAJ

V -ds vjjauijoijiyt

suvjnoup vjjauijoijipj

ipuvjuva vuiiuiuvtjiffl

V -ds siu o ja jq

uinuvaajjvq siuojajq 1—^

CN 001 o 160-162 100-102 500-502 GL76-15 38-40 60-62 480-482 20-22 00 1240-242 |298-300 |GL76-5 |GL76-5 |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VJVUJOW DU1JOQ

vuoSvxaij vmjoo - vidjnosxa vuijoo

vjvjnoidv vuijoo

l&pvuq vjj9uotuoj\j vn VOr-~ CO iipvuq vjjduoiuojsj

q -ds U O lU O tf

3 -ds uoiuotf

g* d s uoiuojq

V -d s uotuotf

uintvssvuoui 'jo -ds uotuojq

luuanbuai vuiquouoooajq lvjjdA vjjauijotjipi

3 ' d s VJJ3U1J01J1JAJ

V ' d s vjjouijoijiyi

suvjnoup vjjauijotjipj

lpuvjuvo vuiunuvijiffl

V - d s siuojopq

lunuvosjuvq stuojapi

001 20-30 64-66 IWSOE70-2-19 20-22 60-62 20-22 VO 23-25 74-76 | |IWS0E68-16 140-42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjmuout vuijoo r-

vuoSvxaq vuijoo vjdjnosxd vuijoo

vfvjnoidv vuijoo

iiCpvuq vjjBuotuoft CO - jjpvuq vjjauoiuoft

q 'ds UOlUOtf

3 -ds uotuo/q

g ‘ds uoiuotf

V 'd s uomoft

lunjvssvjouj -p -ds uotuo/q

tutanbuai vmqjouoooa/q 1VJJ3A VJJdUlJOlJtJAJ a 'ds vjjauxjoijiyi y -ds vjjauijoijiffl

suvjnoup vjjdujjoijtffl

jpuvjuva vmutuivjjipy »—HCO o

y -ds sjuojapi

lunuvaajuvq smojayq i

CN 001 o 140-142 140-142 180-182 ! 100-102 120-122 360-362 380-382 300-302 220-222 260-262 280-282 oo 200-202 1340-342 1320-322

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjvuuoui vuijoo

vuoSvxaq vuijoo vidjnosxa vuijoo

vivjnoidv vuijoo

iKpvuq vjjsuoiuofij -

iipvuq vjjauoiuojq

Q ’ds UOlUOtf

3 ‘ds uotuojq

g -ds uoiuojq

V ’d s uoiuojq cs

uinivssvuoui 'jo ‘ds uoiuojq

luisnbudi vuiquouoooa/q

1VJJ9A vjjauijoijipi g ’ds vjjduijoijiyi V 'ds vjjauijoijijq

suvjnoup vjjouijoijipi

jpuvjuva vunuiuvijijq es CO CO r-

V 'ds siuojapi

lunuvoojuvq siuojajq

O i Ni o 10-12 120-122 140-142 160-162 80-82 400-402 20-22 420-422 NBP9902-11 O 4042 | 160-62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VJVlUOUt VUIJOO

vuoSvxaq vuijoo vidjnosxa vuijoo

vivjnoidv vuijoo

i<(pvjq vjjauoiuotf

iipvuq vjj9uotuo/q

q 'ds uoiuojq

3 -ds uoiuojq

g -ds uoiuojq

V ‘d s uoiuoft

uinjvssvuoui ‘jo 'ds uotuo/q

iiuanbuai vuiquouoooa/q

IVJJ3A VJJ3UIJOIJIJW

a ‘ds vjjduijoijiyi

V -ds vjjauijoijiffl

suvjnouio vjjduijoijiyi

CO tpuvjuva vuiiuiuvijijq CN O s

y -ds stuojdjfl

umuvdajuvq siuojajq

CNi 100-102 120-122 180-182 10-12 60-62 80-82 NBP9902-12 O 40-42 120-22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpwuSSns

vjvjnojaqnj vuijjiutdg

vivquiij vuijiutdg

sapiojjnq vwpiouavqd^

vjvuoqutn vuijiowSjs lussusjjolu xvqdoan vaiuoSvjvd 'jo 'ds vuijnoojanbin'Q

y ‘ds vuijnoojanbuinQ

siuuofoqojS vjjaoSuKj

snjnqojSqns oSjKj

vivuuvoqns viuajjnj -- - CN - CN

51 -ds viuajjnj

sapiojjnq viuajjnj

iipvuq vuvsopouopnasj

vivSnuuoo vuijjajvj

vuaSi&vja vuunssifvjvj

vuvoqapuvjiA vuijoo

vwajns-vsouivnbs vuijoo CO CO

vsoqojS -jo -ds vuijoo

V 'ds vuijoq

§1 CN■ CNl o 18-20 102-104 58-60 60-64 80-82 DF62-6 78-80 20-22 o 40-42 o | DF62-11|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpuruSSns -

vivjnousqni vuijjiutds

vjuqiuij vuijutds

sspiojjnq vujpiouovqds

vjvuoqiun vuyiowSis o

M 3su 3jJotu xv q d o o y

vojuoSvivd jo -ds vutjnoojsnbinQ

y ’ds vmjnoojdnbumQ

siuuofoqojS v j j s o Sj i Cj

snjnqojSqns oSutCj

vivuuvoqns vtudjjnj - - r-

5[ -ds v iu s jjn j

sspiojjnq vtudjjnj

iipvuq vuvsopouojonssj

vjvSnuoo vuijjsivj

vudSiAVjo v u u n s s jfv jv j

vuvoqspuvjiA VUIJOQ

vivojns-vsoiuvnbs vuijoq -

vsoqojS -jo -ds vuijoq

V 'ds vuijoq

oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnouaqnj vuijjiuidg

vjvquuij vutjiuidg

sopiojjnq vmpiousvqds

vjvuoquin vmjiotuSig •st - r-~ CN CN u-> - tuasuojuoiu xvqdoo# votuoSvjvd jo -ds vuijnoojonbinQ

V ’ds vuijnoojonbuinl 5

stuuofoqojS vjjooSuiCj

snjnqojSqns oSu/Cj

vivuuvoqns viuajjnj 'Tf CN VO — CO -

3 -ds v iu a jjn j

sopiojjnq viuojjnj

iipvuq vuvsopouopnosj

vjvSnuuoo vm jjow j r- -

vuoSiavjo vuunsstfvuvj -

vuvoqopuvjiA vuijoo

vivojns-vsouirmbs vuijoo - CO < N O r-- - CO

vsoqojS jo -ds v u ijo o

V -ds vuijoq -

CN 001 i - CN1 < N1 CN1 0 20-22 38-40 60-62 O DF87-13PC O O 00 |DF87-12PC [DF87-14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnouoqnj vuijjutdg

vjvquttj vutjuids -

sopiojjnq vuiptouomjds

vjvuoqiun vuijiouiSig - - CO

iuosuojuoui xvq d o o y vom oSvjvd p 'ds vmjnoojonbmf)

y 'ds vuijnoojonbum'Q

siuuofoqojS vjjooSukj

snjnqojSqns o 8ut(j -

vivuuvoqns vmojjnj - wo -

‘ds v iu o jjn j

sopiojjnq vtuojjnj

npvuq vuvsopouopnosj

vjvSnuuoo vuijjoivj -

vjoSiavjo vuunssifijuvj

vuvoqopuvjiA VUIJOQ

vjvojns-vsouivnbs vuijoq - oo CO

vsoqojS -p 'ds vuijoq

V -ds vu ijo q 1

CNi CNi CNi 178-179 100-102 120-122 140-142 160-162 DF87-15PC DF87-18PC DF87-21 ------O O O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnauaqnj vuijjiuidg cs

vjvquiij vuijtutdg

saptojjnq vwpiouavqdg

vjvuoquin vuijjoiuSjs c— luasuajuoui xvqdoaj

voiuoSvjvd -jo ‘ds vuijnoojanbjnQ

V 'ds vuijnoojanbwnQ

siuuo/oqojS vjjaoSut(j

snjnqojSqns oSufij

vjvuuvoqns viuajjnj VO

-ds v iu a jjn j

sapjojjnq viuajjnj

npvuq vuvsopouopnasj

vjvSnuuoa vuijjajvj cn

vuaSiADja v u u n ssifv u v j

vuvoqapuvjtA vuijoq

vjvajns-vsowvnbs vuijoq -

vsoqojS 'jo ‘ds vuijoq

Y -ds vuijoq

o CNi i i coretop? 20-22 30-32 E27-5 E27-8 E32-7 O CO E32-11 o |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. visnqou vpumSSng

vivjnouaqm vuijjiutdg

Djvqwi] vuijm ds

sapiojjnq vuipiouavqds

vjouoqiun vuijwuiStg juasuajuoui xvqdoaj

voiuoSvivd \p ‘ds vuijnaojanbtnQ - y *ds vuijnaojanbmnQ

siuuojbqojS vjjaoSjiCj

snjnqojSqns oSjKj

vivuuvoqns viuajjnj

-ds viuajjnj

sapiojjnq viuajjnj

iipvuq vuvsopouopnasj

vivSmuoa vuijjawj

vuaSmvjo vuunssifvuvj

vuvoqapuvjtA vuijoq

vivajns-vsoiuvnbs vuijoo

vsoqojS -jo 'ds vuijoq

y -ds vuijoo

Tt* o 1 © 163-165 120-122 140-142 60-62 42-44 78-80 200-202 240-242 260-262 E32-12 1180-182 1220-222

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. visnqou vpunuSSng -

vivjnouaqm vuijjiutdg

vjvqiuij vutjiuidg 1 sapiojjnq vuipiouavqdg

vjvuoquin vuijiotuSjs juasuajuoiu xm jdoaj voiuoSvwd'p "ds vuijnoojanbtnQ

V ’ds vuijnoojanbutnl 5

siuuofoqojS vjjaoSu&j

snjnqojSqns oSuKj

O vivuuvoqns viuajjnj VO - - T t v o CO - CO

-ds viuajjnj

sapiojjnq viuajjnj -

iipvuq vuvsopouopnasj

vivSnuuoo vutjjaivj

vuaSmvjo vuunssifvuvj -

vuvoqapuvjm v u i j o q

vivojns-vsouivnbs v u i j o q -

vsoqojS- p -ds v u i j o q

Y ’ds v u i j o q

CN GO1 I 0 120-122 140-142 160-162 84-86 60-62 20-22 65-67 98-100 42-44 40-42 00 ° 1 |E32-13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnouaqnj vuijjiuidg

vjvquuij vuijtuidg

sapiojjnq vuipiouavqdg

vjvuoqiun vuijioiuSjs juasuajuoiu xvqdoaj voiuoSvjvd jo -ds vuijnoojanbinQ

y 'ds vuijnoojanbuinQ

siuuofoqojS vjjao8u<(j

snjnqojSqns o8u£j

vjvutuvaqns viuajjnj -- -

-ds viuajjnj

sapiojjnq viuajjnj -

iipvuq vtuvsopouopnasj

vjvSnuuoa vuijjajvj

vuaSixvjo vuiunssifvuvj

vuvoqapuvjtA. vuijoo

vjvajns-vsoutvnbs vuijoo

vsoqojS -jo -ds vuijoo

V "ds v u ijo q

00 00CN 1 1 00CN o00 120-122 140-142 160-162 198-200 18-20 80-82 60-62 98-100 220-222 E32-16 1202-204

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnouaqnj vuijjiuidg

vjvqtutj vuijiuidg

sapiojjnq vuipnouavqdg

vjvuoqiun vuijiotuSjs juasuajuotu xvqdoaj voiuoSvjvd -jo -ds vuijnoojanbinQ

y ’ds vuijnoojanbum'Q

siuuofoqojS vjjaoSu&j

snjnqojSqns oSu/Cj

vivuuvoqns viuajjnj

-ds viuajjnj

sapiojjnq viuajjnj

iipvuq viuvsopouopnasj

vivSmuoo vuijjajvj

vuaSiAvjo vuiunssifvuvj

vuvoqapuvjiA vuijoo

vjvojns-vsoiuvnbs vuijoo

vsoqojS ’jo 'ds vuijoo

V -ds vuijoo

'T 120-122 260-262 280-282 330-332 340-342 360-362 38-40 240-242 E32-37 CN 20-22 (320-322 1380-382

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunu 3 Sn$

vjvjnouaqnj vuijjuidg CN

vjvqtutj vutjuidg - j sapiojjnq vuipiouavqdg - co

vjvuoqiun vutjiotuStg CN t- luasuajuoui xvqdoaj

voiuoSvjvd -jo -ds vuijnoojanbmQ - - ■ i

V 'ds vuijnoojanbum'Q

siuuofoqojS vjjaoSuKj

snjnqojSqns oSu/Cj

00 vjvuuvoqns viuajjnj VO CO - CN -

31 -ds v iu a jjn j

sapiojjnq viuajjnj

npvuq viuvsopouopnasj

vjvSnuuoo vuijjajvj

vuaSmvjo vuiunssifvuvj

vuvoqapuvjm vuijoq

vjvojns-vsotuvnbs vuijoq VO - - VO r*-4

vsoqojS -jo -ds vuijoq -

V -ds vuijoq i

CN 140-142 100-102 120-122 140-142 160-162 242-244 258-260 20-22 60-62 80-82 E32-43 o 41-43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnouaqnj vuijjiuidg - -

vjvqiuij vuijiuidg cs -

sapiojjnq vuipiouamjdg

CN vjvuoqiun vuijiotuSig - CN CN - luasuajuoui xvqdoaj voiuoSvjvd -jo -ds vuijnoojanbmQ

Y ‘ds vuijnoojanbuinQ

siuuofoqojS vjjaoSuKj -

snjnqojSqns oSuKj

vjvuuvoqns viuajjnj CN - -

31 -ds viuajjnj

sapiojjnq viuajjnj

iipvuq vuvsopouopnasj

ON o 00 V > vjvSnuuoo vuijjajvj r t CN m

vuaSmvjo vuiunssifvuvj -

vuvoqapuvjiA. vuijoq

vjvojns-vsoiuvnbs vuijoo CN - vsoqojS -jo ’ds vuijoo

V 'ds vuijoo 145-147 165-167 178-179 185-187 | 180-182 300-302 225-227 200-202 240-242 260-262 280-282 E32-44 |340-342

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnouaqnj vuijjiuidg - - - CN CN

vjvquuij vmjuids - - -

sapiojjnq vuipiouavqds CN -

as co */N o CO vjvuoqiun vuijiouuSjs CN c- oo r- ON ON m luasuajuoui x v q d o a j

voiuoSvjvd \p -ds vuijnoojanbinf) CN

Y ’ds vuijnoojanbuiriQ CN

siuuofoqojS vjjaoSuKj

snjnqojSqns oSuKj

vjvuuvoqns viuajjnj - CN

yj -ds v iu a jjn j

sapiojjnq viuajjnj

iipvuq viuvsopouopnasj

o r*- oo O r- SO vjvSnuuoo vuijjajvj CN CN CN CN CN CO CN

vuaSiAVjo vuiunssifvuvj - CN co - CN -

vuvoqapuvjiA vuijoq - -

vjvojns-vsoiuvnbs vuijoq - in - CN - CN - CO CO

vsoqojS vp 'ds vuijoq

V "ds vuijoq 365-367 505-507 525-527 245-247 265-267 305-307 325-327 385-387 485-487 405-407 425-427 445-447 |345-347 1465-467

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vjninuSSns

vjvjnouaqnj vuijjuidg - -

vjvqiuij vuijiuidg - 04 -

sapiojjnq vuipiouavqds -

OO cn 00 vjvuoquun vuijioiuSjs Os cn 04 04 cn ON u-> r- luasuajuoui xvqdoaj

voiuoSvjvd -p -ds vuijnoojanbinQ -

y ‘ds vutjnoojanbumQ 04

siuuofoqojS vjjaoSutCj 04

snjnqojSqns oSufij

vjvuuvoqns viuajjnj 04 in - 04 04 cn - -ds viuajjnj

sapiojjnq viuajjnj

iipvuq viuvsopouopnasj -

vjvSnuuoo vuijjajvj in 04 cn 04 cn t—

vuaSmvjo vuiunssifvuvj

vuvoqapuvjiA vuijoo

vjvojns-vsoiuvnbs vuijoo 04 in - - - cn - vsoqojS 'jo -ds vuijoo

V ’ds vuijoo

00 001 i VO 14-17 565-567 250-252 290-292 330-332 370-372 66-68 E52-9 46-48 © 00 410-412 450-452

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnouaqnj vuijjiutdg

vjvqiuij vutjuids

sapiojjnq vuipiouavqdg --

vjvuoqiun vuijiouiSjs JO OO masuajuoiu xvqdoaj voiuoSvjvd \p ’ds vuijnoojanbtnQ

Y -ds vuijnoojanbuiriQ

siuuofoqojS vjjaoSuKj

snjnqojSqns oSudj

vjvuuvoqns viuajjnj CO CO CO - \o CO CN -

-ds viuajjnj -

sapiojjnq viuajjnj

iipvuq vuvsopouopnasj

vjvSnuuoo vuijjajvj CO f—*

vuaSiAvjo vuiunssifvuvj

vuvoqapuvjtA vuijoq

vjvojns-vsoiuvnbs vuijoo Tt* - - - *—H CN vsoqojS "ds vuijoo

V 'ds vuijoq

CN © CN OO1 I cs1 O s 120-122 140-142 160-162 180-182 GL76-1 20-22 60-62 489-490 o oo 1470-472 140-42

330

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnouaqnj vuijjiutdg

vjvqiuij vuijtuids

sapiojjnq vuipiouatnjds

vjvuoqiun vuijioiuSjs

masuajuoiu xvqdoaj

voiuoSvjvd -jo 'ds vuijnoojanbmfi

V ‘ds vuijnoojanbumQ

siuuofoqojS vjjaoSu&j

snjnqojSqns oSu&j

vjvuuvoqns viuajjnj - -

^ ’ds v iu a jjn j

sapiojjnq viuajjnj -

iipvuq vuvsopouopnasj

vjvSnuuoo vuijjajvj

vuaSiAvjo vuiunssifvuvj

vuvoqapuvjiA vuijoq

vjvojns-vsouwnbs vuijoq - -

vsoqojS ‘jo ’ds vuijoq

y -ds vuijoq

CN OO "T 00o 200-202 240-242 260-262 298-300 320-322 340-342 360-362 380-382 500-502 400-402 420-422 440-442 460-462

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqoj vjounuSSng

vjvjnouaqnj vuijjuidg

vjvqiuij vuijtutdg

sapiojjnq vuiptouavqdg -

vjvuoqiun vuijioiuSjs masuajuoiu xvijdoaj voiuoSvjvd p ‘ds vuijnoojanbinQ

Y -ds vuijnoojanbuinQ

siuuofoqojS vjjaoSuiCj

snjnqojSqns oSu&j

vjvuuvoqns viuajjnj

-ds viuajjnj

sapiojjnq viuajjnj

iipvuq vuvsopouopnasj

vjvSnuuoo vuijjajvj

vuaSmvjo vuiunssifvuvj

vuvoqapuvjiA vuijoo

vjvojns-vsoiuvnbs vuijoo

vsoqojS -jo -ds vuijoo

V 'ds vuijoq

CN OO o 1 100-102 160-162 500-502 GL76-15 60-62 240-242 298-300 GL76-5 20-22 38-40 00 1480-482

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSn £

vjvjnouaqnj vutjjuids

vjvquiij vmjutds

sapiojjnq vutpiouavqds - vjvuoqiun vuijioiuSig luasuajuoui xvqdoaj voiuoSvjvd -jo -ds vuijnoojanbmQ

y 'ds vuijnoojanbuinQ

siuuofoqojS vjjaoSutij

snjnqojSqns oSut(j

vjvuuvoqns viuajjnj CN OO

‘ds viuajjnj

sapiojjnq viuajjnj

iipvuq vuvsopouopnasj

vjvSnuuoo vuijjajvj

vuaStAvjo vuiunssifvuvj

vuvoqapuvjiA vuijoo

vjvojns-vsoiuvnbs vuijoo

vsoqojS ’jo "ds vuijoo

y -ds vuijoo

© CO1 o 00 1 IWSOE68-16 23-25 64-66 74-76 IWSOE70-2-19 20-22 60-62 CN VO CN 40-42 120-22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpunuSSng

vjvjnouaqnj vuijjuids

vjvqiuij vutjuids

sapiojjnq vutpiouavqds

vjvuoqiun vuijioiuSjs masuajuoiu xvqdoaj voiuoSvjvd jo -ds vuijnoojanbmf)

V 'ds vuijnoojanbuinQ

siuuofoqojS vjjaoSu/Cj

snjnqojSqns oSuiCj

vjvuuvoqns viuajjnj »o cn VO —

'X -ds viuajjnj

sapiojjnq viuajjnj

iipvuq viuvsopouopnasj

vjvSnuuoo vuijjajvj

vuaSiAvjo vuiunssifvuvj

vuvoqapuvjiA. vuijoq

vjvojns-vsouivnbs vuijoo

vsoqojS \p 'ds vuijoo

y -ds vuijoq

CN OO 1 00o 100-102 140-142 80-82 300-302 320-322 340-342 360-362 380-382 200-202 220-222 260-262 1 1120-122 1280-282

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vpuruSSns

vjvjnouaqnj vuijjuidg

vjvquqj vuijiuidg

sapiojjnq vuipiouavqdg

vjvuoqiun vuijioiuSjs masuajuoiu xvqdoaj CN voiuoSvjvd -jo -ds vuijnoojanbinQ

V 'ds vuijnoojanbuinQ

siuuofoqojS vjjaoSutCj

snjnqojSqns oSutCj

vjvuuvoqns viuajjnj CN

31 -ds viuajjnj

sapiojjnq viuajjnj

iipvuq viuvsopouopnasj

vjvSnuuoo vuijjajvj

vuaSitwjo vuiunssifvuvj

vuvoqapuvjiA vuijoo

vjvojns-vsouuvnbs vuijoo

vsoqojS -jo -ds vuijoo

V -ds vuijoo 120-122 100-102 140-142 160-162 10-12 80-82 NBP9902-11 40-42 400-402 © 120-22 160-62 1420-422

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vjsnqou vjounuSSng

vjvjnouaqnj vuijjiuidg

vjvqiuij vutjutds

sapiojjnq vuipiouavqds

vjvuoqiun vuijiouiSig

masuajuoiu xvqdoaj o voiuoSvjvd -p 'ds vuijnoojanbmQ

V ’ds vuijnoojanbuinfi

siuuofoqojS vjjaoSuKj

snjnqojSqns oSu&j

vjvuuvoqns viuajjnj

^ ’ds v iu a jjn j

sapiojjnq viuajjnj

iipvuq vuvsopouopnasj

vjvSnuuoo vuijjajvj

vuaSiMvjo vuiunssifvuvj

vuvoqapuvjiA vuijoq

vjvojns-vsoiuvnbs vuijoq

vsoqojS -jo -ds vuijoq

V 'ds vuijoq

©CN 1 CN o i o 180-182 10-12 120-122 NBP9902-12 20-22 60-62 80-82 O 40-42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. cs in VO in ajdures ui pjjojL - m vo VO CO in

V 'ds tm u sS m fi

vjruadsv vuiuaSm/j

sspiojvtfo viuvjsiqsqsjfj

Y ‘ds vmiuiuvt{ooj£

vommusvi vutiuwoqoojx vjvuaiuvouptmb vuiunuvqooujL

vaovuqoo vutiuiuvqooux

vuqvjS vmiutuvqoojj[

vjnuoSui vuipnoo\uj[

V 'ds vuijnoojujt

g "ds vu v jn jx sx V 'ds vuvjnjx3£ U3US31M. vu vjn jxa x

O ^r CO1 041 o OO CO1 18-20 102-104 58-60 DF62-6 DF62-11 20-22 80-82 o ! r*- o 40-42 |60-64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ojduiBS ui OO ON VO O r-* oo CN CN OO cncs vjnujiu vmjmauuaA U9US31M. sapiouiuouapA y 'ds vuuaSiAfi

v\ru9dsv vuu92iA.fi sspiouvqo viuvisiyaqsfi

V 'ds vuiutuivqoojx VOlUVlUSVl DU11UIUVI/30JJ[ vjvj9tuvoupvnb vuiuiuivqooux

V99VUlfDO DUllUUimjJOJf

vuqvjS vuiunuvqoojj'

vjnuo2uj vuijnooiuj

V 'ds vuijnoojux g -ds vjjvjn)x9£ V -ds VUVJWX9J,

.U9US91AA VlJV]n}X9J[

CSi CNi 120-122 148-150 160-162 180-182 200-204 DF87-9PC 220-222 DF87-5 o DF87-8 O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. r- CO CO W-) o OO OO qdures ui jbjox OV OO - CO r-

V -ds DUUdSlAfl

vjni3dsv vuudStAf}

sspiojvijo viuvisiysqsf}

V ’ds vmiuiunqooux

voiumusvj vuiuitumpojix mVJ3lUV3UpDTlb VUIUilUVIjJOJJ' vsovuqoo Duiiutuznfooux

vuqvjS vuiiutuvqaoux

vjnuoSui vuqnoojux VO - CN>n

V ‘ds vutjnoojux

g -ds vu vjm xd x y -ds v jjv jw xsx U3US31M V1JVjnjX3X

1 CN1 CN1 cs1 60-62 80-82 38-40 DF87-14 20-22 DF87-13PC cs DF87-12PC o o o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CO CO t" O' aidures ui pzjox 8 04 OO VO t— ON CO 5 CO r- >n 04 CO vinmiu vui]imuj9A udusdiM sapiouiuouspA

y ‘ds vuusSiAfi

vjmadsv vuuaSmfi

sapiouvqo vmnisiyaqsfi

V -ds VUtlUlUV1{OOJ£

voiutnusvi vuiiuiuvifoouj vwusiuvDupvnb vuiiinuvqooux vaovuqoo vuiiuiunqooux

vuqvjS vuitutuvqoojx

vjnuoSuj vuijnoojux

V -ds vuqnoojuj

g ‘ds vuvjnp&x y "ds vuvjnixax uausam vuojmxffx

csi 04i 04 100-102 160-162 178-179 120-122 140-142 DF87-15PC o DF87-18PC O | DF87-21 o |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. as cs c*- o ajdures ui pjjcu oi vO cs CN c*i vjnuiiu vutjmaiu9/\ U9US31M. sspiom uoaspA

y -ds ouudStAfi

vjrusdsv vuusSmf}

sspiojoqo viuvjstyaqsfl

V 'ds vuiuiiuvqoouj.

votumusvi vuitutuvqooux vivusuivoupvnb vwiuiuvqooux vsovuqoo vuiiuiuvqoouj.

vuqvjS vuiiuuimjDOJj'

vjnuoSuj vuijnoojuj.

y -ds vutjnoojux

g-ds vu vjw xa jr y -ds v u v p ijxsj, U3US31M ZfUVjnjXSX

o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CN o VO Ov cs Ov © OV o cn ojdures ui [Bjox OO

1J9U S9JMsapioutuouapA

V -ds vuuaStAfi

vjnuadsv vuuaSm/j

sapjouvifo viuvjsiyaqsfl

V -ds vutwutmpojix

VOtUVlUSV} VUtWWVlf30J£ vivuaiuvouptmb vuitutumfDoux vaovuqoo vutiutuvqooux

vuqvjS vuiiuiuvyoojji

vjnuoSuj vutptoojux

V -ds vufinoopux

g *ds vuvjnjxsx Y 'ds vuvjmxax uausdiM. vuvpnjxax 180-182 120-122 101-104 140-142 163-165 60-62 220-222 42-44 78-80 240-242 260-262 E32-12 | 1200-202

342

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VO m o VO CO VO t— ajduiBS ui i b j o j . O n ON c s c s cn co vO CO vjnutui vuipnaiua/^ uausdtM. sapiouiuoaapA

V -d s vuuaStA/j

vjruadsv vuuaStAfl sapiojvyo viuvjsiyaqs/}

V -d s vuiwutvijoojj^

voiumusvi Dutwtuvijoojx vivuauivoupvnb vuiuauvqoojji VSDVUIjDO VUlUllUVtfOOJJ'

vjqvjS vuiuiiuvqoou£

vpiuoSui vujjnoopjx

V 'd s vuijnDojux

g -d s vunimxajL

V ‘d s vuDjmxax udusdtAA vuvjnjxaj,

o o 1 c s1 oo 140-142 120-122 160-162 65-67 80-82 60-62 E32-13 20-22 o 40-42 42-44 a\ |84-86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ON ON cn o 3 [ d l U B S UI IBJOJ, CN cn CN r*- ON ON mnuiiu VUl]W3lU3y\ USUSSIM. S9piOUlUOJ3]dj\

y 'ds vuuaSiAfi

vjruadsv vuua8iA.fi

sapiouvqo viuvjsiyaqsfi

V -ds ouiwmm/oojj

VDtumusvi vuiunumiooujL vivuaiuvoupnnb vuttuuitniooux vsovuqoo vuiiuiumiDoujL

vuqvjS vuituiuvqoouji

vjnuoSui vutjnoojuj'

y ‘ds vuijnoojuf

g *ds vuvjnjxax y 'ds vuvjntxax uausdiM. vuvjrijxaf 182-184 18-20 120-122 140-142 198-200 160-162 80-82 202-204 98-100 220-222 | E32-16 | 160-62 1180-182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. on ON o j d u r e s ui ibjoj. m r '■ 1 CN in OO vjnwiu vutjmatua^ U9US91M. sapiomuojapA

V " d s vuuaSiAf]

vjruadsv vuudSiAfj

sapiouvijo vtuvisiyaqsfi A

V - d s vuiutiuvifoojj'

voiumusvi vuiiuium{oouj[ vivusiuvouptmb vuiiuiuvi{oouji vaovjqoo vmiuiuvi{ooj£

vuqnjS vuiiuiuvqooux

vjnuoStuj vuijmojujL

V ‘ d s vuijnoopuj'

g- d s vuv]njx9£

Y - d s vuvjWX9£ udusaiM. viivjnjx3ji 120-122 38-40 320-322 340-342 360-362 240-242 260-262 280-282 E32-37 CN |20-22 |330-332 |380-382

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CN CO WO NO WO wo ajdures ui jejox - CN ON CO r~- CO wo WO CN CO CO CN CO CO vjnuttu vuijmsuaaA U9US9JM. sapwmuouapA

y ’ds vuudSiAfl

vjruddsv vuudSiA/j

Sdpwum{3 vmvisppqspi

V "dS VUllUUiVtjOOJ£

vommusvj vutiuiumfjouj^ vivudiuvouptmb vuiiuiuvi{30Jji V90VJl[30 VUllUWmj30J£

vuqvjS vuiunutn(oou£

vjnuoSuj vuijnoo]U£ - N* wo CN

y *ds nuifnoojij£

g ’ds vuvjm x9£ Y ’ds out?jnjx9£ U9US91M mjmjnjx9£ 1

CNi 100-102 120-122 160-162 140-142 140-142 140-142 80-82 60-62 242-244 242-244 | E32-43 O 20-22 41-43 1258-260

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. © cn a s 0\ Tf ajdures ui jbjox o

y -ds mtuaSiAfi

vjmadsv vuuaSmf}

sapiouvqj viuvisppqsfi

Y -ds vwiuiuoifDOjj

vommusm vmunum{30J£ vivjauivoupvnb vuiunuvqoou£ vaovjLipo vuiiuuivqoouj.

vuqvjS vuituuivqoou£

vjnuoSut vuijnoojuj,

V ‘ds vui\noo\u£

g ’ds vuvjwxajL y -ds VUVjmX9£ uausaxM. v u v jn jx a j

cs 00 1 ooo 145-147 165-167 178-179 185-187 225-227 340-342 240-242 260-262 200-202 1300-302 |E32-44 |280-282

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. oo r- VO CN vo r- ON CN OO t^- o vo ajdures ui ibjojl CN oo ov o 00 cn ON OV ON OV cn cn cn CN cn CO cn cn CN cn CN vn CN vjnutiu vuijmaiuaA U9US91M. SBpiOUtUOJapA

V ‘ds vu uaSm fi

vjm a d sv vuusSja/j

S3p\oum{3 vmvisppqsfi

V *ds vutiuiuvqoouj

voiumusvj vuttuiuviioojj vivuauivouptmb vuiiuiuvqoojj^

vaovuqoo vuiiumvqoojj

vuqvjS vuituiuvqoojx

vjnuoSuj vuynoojuj' cn CN

V -ds vwjnoopjx CN

a ds vu vim xd £ y -ds vuvjmxax

U9US31M. m uvjnjxax 1 505-507 525-527 485-487 385-387 425-427 445-447 465-467 305-307 325-327 345-347 245-247 1405-407 |265-267 1365-367

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. CO CO in CN 04 wo CO Tt 00 aidures ui [bjoj . OS in 00 O O 0 4 O 3 04 CO C 4 CO *■■* "St CO 04 CO ^1- COs CN 0 4 vjnuiiu vui]tnau4dA U9US91M. ssptoutuouspA V 'ds vuusSiA.fi >/->

vjruadsv vuusSmfi

ssptoumfs vvuvisppqsfi

y -ds vuiiuuivqoojx

voiumusvj vwwuivtfDOJX vtvuaiuvoupvnb vuiunuvqooux vsovjtfoo vutwuimfooax

vuqojS vmunuvqooux

vjnuoSuj vutjnoojux CO so

V -ds vutjnoojuj - -

g ds vuvjnjxsx y -ds vuvjnjxsx usussiM vuvjnjxsx

00 oo1 1 so 14-17 290-292 330-332 370-372 450-452 66-68 250-252 410-412 46-48 565-567 E52-9 o 00

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. o o VO r - OO VO VO 3[dures ui pjjoj, O v 3 w o CO v o (N c n < N 0 0 54 67 innutui vuipnaiua/^ uausdtM. sapiouiuouapA

Y ‘ds vuuaSiA/j < N

vjtuadsv vuuaSiA/j

saptouvqa vtuvjstyaqs/}

y -ds vuitutuvqoouj^

voiumusvi vwiuiuvqoojj^ vjvuauivaupvnb vuiiuiuvqooux vaavuqoo vmtmuoqooj^

vuqvjS vutiuiuvqoou£

vjnuoSuj vuijnoojux

Y ‘ d s vuijnoopjj' -

g -ds vuvjm xaj Y 'ds vuvjrtjxaj[ uausam vijnjnjxaj' 1

< N i 100-102 120-122 160-162 180-182 80-82 489-490 GL76-1 20-22 o 40-42 (60-62 |470-472 1140-142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ON o cn ON o ON aidures ui [ejoj.

y -ds vuua8tA.fi

vjmadsv vuuaSiAfj saptouvqo vtuvisppqsfi

V ’ds vutuiuivi/oouji

voiumusvi vutunumjaoux vjvuauivaupvnb vutunuvqaoux vaovjqao vutiuuivijooux vuqvjS vutiuuiznjoojji

vjnuoSuj mitjnoojux

Y 'ds vutjnoojux

g 'ds vuvjmxax Y "ds vuvjmxax uausatM. vuvjnjxax i

CN 00 o oo 360-362 380-382 420-422 320-322 340-342 500-502 440-442 460-462 200-202 240-242 298-300 400-402 1260-262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3[duiBS UI [BJOX CN '■O - - - CN -

Vinuiui VU1JW31U3 j\ ususaiM sapwuiuouapA

y -ds twu38iA.fi

v p u sd sv VUUSSlAfl

sspiouvqo viuvisiysqsfi

y -ds vuiiuiuvijoojx -

D31UVIUSVJ vuitutuvqooux vivj3iuvouptmb vuiiuuivqoou£ vsoouqoo vuiiutuvi{30J£

vuqojS vmtuumqooji£

vjnuoSuj vujjnooju£

V 'ds vui]nooju£

g -ds vuvjm x3 £ Y ‘ds v u vjw x3 £ U3US31M. VUV\niX3£

OOCN © 1 o 00 00 160-162 100-102 500-502 GL76-15 240-242 298-300 60-62 20-22 CO Tfr |80-82 IGL76-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Os ordures ui jbjox Tfr ON cn CM cn --- vo CM Os vjnutiu vuipnsiusA

usussim sapiouiuouapA y -ds mius8iA.fi

vjnusdsv vuusSiAfi

ssptouvqo viuvjsiqsqsfi

V -ds vmnnuvqsoxx

vsmmusvj vuiiutuvqsoux vjvusmvoupvnb vutiuiuvqooux vssvuqso vuttutuvqsoux

vuqvjS vuiiuiuvqoojf

vjnuoSuj vupnoojux

y *ds vuijnsojux

g'ds vuvjnjxsx y ds vuvjnjxsx

usussim vuvjnjxsx

OO 1 60-62 20-22 23-25 74-76 IWSOE68-16 20-30 20-22 \ o CN 140-42 IIWSOE70-2-19 164-66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ri- CO ON ON in O r- CO CN ajduiBS ui [bjojl On co oo 5 CO CN r- CN CN 2 NO CN CN vjnuitu vuijinauua/^ jjausaiM sapjouiuouaja^

y ‘ds tmua8iA.fi

vjruadsv vuuaSiAfi CN - in sapjoimp Dtuwsjyaqsfi

V 'ds vuiuiiumjoojj

VDtumusvi vuiiuiuvqooux vjvjaiuvaijpvnb vmiuiuvqaojj vaavuqao vujtuiuvijoojj

vuqvjS vmiuiuvqooux

vjnuoSjjj vuijnaojiuj'

y -ds vuijnaojiux

g -ds Djjojtijxaf Y 'ds vjjvjnjxaj' jjausaiM vuvjnjxaj'

CN 001 o 120-122 180-182 100-102 140-142 280-282 320-322 340-342 360-362 ; 380-382 n 220-222 260-262 00 200-202 1300-302

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. © N CO d ajdures ui [bjojl CO cn cn r- - - - ■'3- d

vwuiui vutjmaiaa/^ - 1J3US91M. saptoumouapA r- V -ds vuudSiAfi

vjruadsv vuudStAfj - sapjouvqo vmvisiipqsfi

V 'ds vuiuiiumpojj[

votumusvi vmtuwvifooj£ 00

ON vivuaiuvouptmb vuiiuiumjooux r - Vd3VJl[30 VUJiUlUVHOOJJ' CN

vuqvjS vmiutuvifooux

vjnuoSui vutjnoojux

V -ds vuijnoojux

g ‘ds vuvjnjxax

V -ds vuvjm xax i n

tjsusam vuvjnjxsx r - ~

od d ^r i 8 d ■ o 1 6 0 - 1 6 2 1 4 0 - 1 4 2 100-102 120-122 6 0 - 6 2 20-22 4 0 - 4 2 4 2 0 - 4 2 2 N B© P 9 9 0 2 - 1 1 180-82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. VO to CO o o ajdures ui CO COON CO vjmitut vui]in3iu9A - U3US91M. sapwuiuoaapA o

y -ds vuuaStAfl

vjnuadsv vuuaSiA/j r-

sapiouvqo viuvispisqsfi to

y 'ds vuiiuuiDijoojj'

VDiumusvi vujiuiuvqoojj to vivuaiuvDtupvnb vuiiuium{ooujj ONo V90VJ1{3O VUllUUim{OOUJl vo

vuqvjS vuiiuiuvqooux

vjnuoSui vutjnoojijx

Y 'ds vutjnoojux

g -ds vuvimxdx Y "ds vuvjnv& 'i o uausdiM. vuvjmx3£ Tl-

n oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Vita

Pamela Jo Perry was bom in Pensacola, Florida. She graduated from W. J.

Woodham High School in 1990. In 1994 she obtained a bachelor of science degree

in geology from Florida State University. She began graduate work at Louisiana

State University in August, 1994, and defended her dissertation in June, 1999. She is

currently a geologist with the Exxon Exploration Company.

357

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DOCTORAL EXAMINATION AND DISSERTATION REPORT

Candidates Pamela Jo Perry

Major Field: Geology

Title of Dissertation: Quaternary Benthic Foraminiferal Distribution in the Ross Sea, Antarctica, and its Relationship to Oceanography

Approved:

TfowutxMs Major Professor and Chairman

Dean of the Graduate School

EXAMINING COMMITTEE:

<=vu2_j

Date of Examination:

June 9, 1999

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.