Games of Perfect Information and Backward Induction Economics 222 - Introduction to Game Theory

Total Page:16

File Type:pdf, Size:1020Kb

Games of Perfect Information and Backward Induction Economics 222 - Introduction to Game Theory Games of Perfect Information and Backward Induction Economics 222 - Introduction to Game Theory Shih En Lu Simon Fraser University ECON 222 (SFU) Perfect Info and Backward Induction 1 / 14 Topics 1 Basic Setup for Games of Perfect Information 2 Going from the Game Tree to the Normal Form 3 Problems with Nash Equilibrium 4 Backward Induction and Subgame-Perfect Equilibrium ECON 222 (SFU) Perfect Info and Backward Induction 2 / 14 Introduction to Sequential Games Up to now: studied games where players move simultaneously. But often, people/firms observe what others do before acting. Does it make a difference? Example: Battle of the Sexes Guy Ballet Hockey If simultaneous-move: Girl Ballet 2,1 0,0 Hockey 0,0 1,2 What happens if Girl texts Guy: "I’mgoing to the ballet, and my phone is dying. See you there!" So if Girl has the opportunity to send that text (and, for whatever reason, Guy doesn’t),will she do it? ECON 222 (SFU) Perfect Info and Backward Induction 3 / 14 The Extensive Form A good way to represent a sequential game is the extensive form, often called a "game tree." Consider the Battle of the Sexes, with the girl (player 1) first deciding "Ballet" (B) or "Hockey" (H), and then becoming out of reach. Each branch is an action. Let’scall the guy’s(player 2’s)actions B’ and H’to distinguish them from the girl’s. Each non-terminal node is a place where the specified player has to make a decision. Each terminal node is an outcome: still a combination of actions (but, in general, no longer necessarily one per player since a player might move more than once). The numbers below each terminal node are the payoffs from the outcome corresponding to the node. As usual, the first number is player 1’spayoff, the second is player 2’s,etc. ECON 222 (SFU) Perfect Info and Backward Induction 4 / 14 Perfect Information We will first study games of perfect information: one player acts at a time, and each player sees all previous actions. Simultaneous-move games are NOT games of perfect information (when at least two players have at least two actions each). Later, we will look at games that do not have perfect information. Example of the latter: playing a prisoner’sdilemma more than once. Note: don’tconfuse perfect information with complete information! ECON 222 (SFU) Perfect Info and Backward Induction 5 / 14 Strategies in Sequential Games A player’s strategy specifies a probability distribution over her actions at each node where she plays, regardless of whether that node is reached. Nodes that are reached form what is called the path (of play). Thus, a strategy must specify how a player plays both on-path and off-path. In other words, a strategy is a player’s full contingency plan. In our example, the Guy’sstrategy must include what he would do if the Girl’schooses H, even if we don’texpect the Girl to choose H. Example 1: Guy chooses H’regardless of what Girl does. (B H’,H H’) ! ! Example 2: Guy chooses the same thing as the Girl. (B B’,H H’) ! ! Just like before, a strategy profile is a collection of strategies with exactly one from each player. ECON 222 (SFU) Perfect Info and Backward Induction 6 / 14 Nash Equilibrium in Sequential Games Let’sfind the pure-strategy NE in this game. As before, we use the normal form: (B B’,H B’) (B B’,H H’) (B H’,H B’) (B H’,H H’) B! 3,1! ! 3,1! ! 0,0! ! 0,0 ! H 0,0 1,4 0,0 1,4 Are these pure-strategy NE all realistic? ECON 222 (SFU) Perfect Info and Backward Induction 7 / 14 Backward Induction Idea: should require that players play a best response (given what they know) at all nodes, even those that are not reached. Strategy profiles satisfying the above are called subgame-perfect (Nash) equilibria (SPE or SPNE) in games of complete information. In games of perfect information, solving for SPE is particularly easy: just start at the terminal nodes to infer what players will do at the last step. Given that, figure out what happens at the second-to-last step, and so on. This procedure is called backward induction. Let’sdo this for the sequential battle of the sexes. ECON 222 (SFU) Perfect Info and Backward Induction 8 / 14 Exercise 1 Consider Rock-Paper-Scissors, but suppose player 2 sees what player 1 does before acting. Payoff is 1 for a win, -1 for a loss, and 0 for a tie. Draw this game in extensive form, and find its pure-strategy SPE(s) using backward induction. ECON 222 (SFU) Perfect Info and Backward Induction 9 / 14 Some Questions on SPE When is there a unique SPE in perfect information games? ECON 222 (SFU) Perfect Info and Backward Induction 10 / 14 Commitment versus Flexibility In Battle of the Sexes, players gain from committing to a course of action. As a result, there is a first-mover advantage: the Guy would like to threaten to go to the hockey game after the Girl has gone to the ballet dance, but cannot do so credibly. As we saw, NE allows for such non-credible threats, while SPE doesn’t. By contrast, in Rock-Paper-Scissors, flexibility creates a second-mover advantage. There are also games where neither is the case. ECON 222 (SFU) Perfect Info and Backward Induction 11 / 14 Exercise 2 (Ultimatum Game) Player 1 proposes a division of a payoff of 100 by offering x to player 2 and keeping 100 x. x must be an integer (whole number) from 0 to 100, so player 1 has 101 available actions. Player 2 then decides whether to accept the proposal. If player 2 accepts, the proposal is enacted: player 1’spayoff is 100 x and player 2’spayoff is x. If player 2 rejects, both players receive a payoff of zero. MOBLAB: indicate both how much you would offer as Player 1, and how you would play as Player 2. As player 2, MobLab limits you to (pure) strategies of the form "I accept if and only if x is at least _." Payoffs are determined by matching you to every respondent, taking averages of how you would have done as player 1 and as player 2, and adding up your two averages. The number of MobLab units you earn is your payoff divided by 10. ECON 222 (SFU) Perfect Info and Backward Induction 12 / 14 Problems with Backward Induction May not be reasonable when game is long and/or complicated, e.g. chess. This is a similar problem as in ISD: we assume that players can do long chains of reasoning, that they trust others to do so, that they trust others to trust others to do so, and so on... Even if you accept this assumption, you need a further assumption when a player has multiple best responses at a node: players correctly anticipate what others will do, even though this cannot be deduced by logic alone. This is an assumption we also made for NE. Philosophical aside: unexpected hanging paradox. ECON 222 (SFU) Perfect Info and Backward Induction 13 / 14 Recap We introduced games of perfect information, and solved them using backward induction. Perfect information: one player acts at a time, and each player sees all previous actions. We represented these games using the extensive form (game tree). Backward induction: start at the bottom of the game tree, figure out the best response(s) at each node, and work our way up the tree. We said that the resulting strategy profile(s) is/are SPE(s). ECON 222 (SFU) Perfect Info and Backward Induction 14 / 14.
Recommended publications
  • Lecture 4 Rationalizability & Nash Equilibrium Road
    Lecture 4 Rationalizability & Nash Equilibrium 14.12 Game Theory Muhamet Yildiz Road Map 1. Strategies – completed 2. Quiz 3. Dominance 4. Dominant-strategy equilibrium 5. Rationalizability 6. Nash Equilibrium 1 Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy). Matching pennies with perfect information 2’s Strategies: HH = Head if 1 plays Head, 1 Head if 1 plays Tail; HT = Head if 1 plays Head, Head Tail Tail if 1 plays Tail; 2 TH = Tail if 1 plays Head, 2 Head if 1 plays Tail; head tail head tail TT = Tail if 1 plays Head, Tail if 1 plays Tail. (-1,1) (1,-1) (1,-1) (-1,1) 2 Matching pennies with perfect information 2 1 HH HT TH TT Head Tail Matching pennies with Imperfect information 1 2 1 Head Tail Head Tail 2 Head (-1,1) (1,-1) head tail head tail Tail (1,-1) (-1,1) (-1,1) (1,-1) (1,-1) (-1,1) 3 A game with nature Left (5, 0) 1 Head 1/2 Right (2, 2) Nature (3, 3) 1/2 Left Tail 2 Right (0, -5) Mixed Strategy Definition: A mixed strategy of a player is a probability distribution over the set of his strategies. Pure strategies: Si = {si1,si2,…,sik} σ → A mixed strategy: i: S [0,1] s.t. σ σ σ i(si1) + i(si2) + … + i(sik) = 1. If the other players play s-i =(s1,…, si-1,si+1,…,sn), then σ the expected utility of playing i is σ σ σ i(si1)ui(si1,s-i) + i(si2)ui(si2,s-i) + … + i(sik)ui(sik,s-i).
    [Show full text]
  • 1 Sequential Games
    1 Sequential Games We call games where players take turns moving “sequential games”. Sequential games consist of the same elements as normal form games –there are players, rules, outcomes, and payo¤s. However, sequential games have the added element that history of play is now important as players can make decisions conditional on what other players have done. Thus, if two people are playing a game of Chess the second mover is able to observe the …rst mover’s initial move prior to making his initial move. While it is possible to represent sequential games using the strategic (or matrix) form representation of the game it is more instructive at …rst to represent sequential games using a game tree. In addition to the players, actions, outcomes, and payo¤s, the game tree will provide a history of play or a path of play. A very basic example of a sequential game is the Entrant-Incumbent game. The game is described as follows: Consider a game where there is an entrant and an incumbent. The entrant moves …rst and the incumbent observes the entrant’sdecision. The entrant can choose to either enter the market or remain out of the market. If the entrant remains out of the market then the game ends and the entrant receives a payo¤ of 0 while the incumbent receives a payo¤ of 2. If the entrant chooses to enter the market then the incumbent gets to make a choice. The incumbent chooses between …ghting entry or accommodating entry. If the incumbent …ghts the entrant receives a payo¤ of 3 while the incumbent receives a payo¤ of 1.
    [Show full text]
  • Minimax TD-Learning with Neural Nets in a Markov Game
    Minimax TD-Learning with Neural Nets in a Markov Game Fredrik A. Dahl and Ole Martin Halck Norwegian Defence Research Establishment (FFI) P.O. Box 25, NO-2027 Kjeller, Norway {Fredrik-A.Dahl, Ole-Martin.Halck}@ffi.no Abstract. A minimax version of temporal difference learning (minimax TD- learning) is given, similar to minimax Q-learning. The algorithm is used to train a neural net to play Campaign, a two-player zero-sum game with imperfect information of the Markov game class. Two different evaluation criteria for evaluating game-playing agents are used, and their relation to game theory is shown. Also practical aspects of linear programming and fictitious play used for solving matrix games are discussed. 1 Introduction An important challenge to artificial intelligence (AI) in general, and machine learning in particular, is the development of agents that handle uncertainty in a rational way. This is particularly true when the uncertainty is connected with the behavior of other agents. Game theory is the branch of mathematics that deals with these problems, and indeed games have always been an important arena for testing and developing AI. However, almost all of this effort has gone into deterministic games like chess, go, othello and checkers. Although these are complex problem domains, uncertainty is not their major challenge. With the successful application of temporal difference learning, as defined by Sutton [1], to the dice game of backgammon by Tesauro [2], random games were included as a standard testing ground. But even backgammon features perfect information, which implies that both players always have the same information about the state of the game.
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • SEQUENTIAL GAMES with PERFECT INFORMATION Example
    SEQUENTIAL GAMES WITH PERFECT INFORMATION Example 4.9 (page 105) Consider the sequential game given in Figure 4.9. We want to apply backward induction to the tree. 0 Vertex B is owned by player two, P2. The payoffs for P2 are 1 and 3, with 3 > 1, so the player picks R . Thus, the payoffs at B become (0, 3). 00 Next, vertex C is also owned by P2 with payoffs 1 and 0. Since 1 > 0, P2 picks L , and the payoffs are (4, 1). Player one, P1, owns A; the choice of L gives a payoff of 0 and R gives a payoff of 4; 4 > 0, so P1 chooses R. The final payoffs are (4, 1). 0 00 We claim that this strategy profile, { R } for P1 and { R ,L } is a Nash equilibrium. Notice that the 0 00 strategy profile gives a choice at each vertex. For the strategy { R ,L } fixed for P2, P1 has a maximal payoff by choosing { R }, ( 0 00 0 00 π1(R, { R ,L }) = 4 π1(R, { R ,L }) = 4 ≥ 0 00 π1(L, { R ,L }) = 0. 0 00 In the same way, for the strategy { R } fixed for P1, P2 has a maximal payoff by choosing { R ,L }, ( 00 0 00 π2(R, {∗,L }) = 1 π2(R, { R ,L }) = 1 ≥ 00 π2(R, {∗,R }) = 0, where ∗ means choose either L0 or R0. Since no change of choice by a player can increase that players own payoff, the strategy profile is called a Nash equilibrium. Notice that the above strategy profile is also a Nash equilibrium on each branch of the game tree, mainly starting at either B or starting at C.
    [Show full text]
  • 1 Bertrand Model
    ECON 312: Oligopolisitic Competition 1 Industrial Organization Oligopolistic Competition Both the monopoly and the perfectly competitive market structure has in common is that neither has to concern itself with the strategic choices of its competition. In the former, this is trivially true since there isn't any competition. While the latter is so insignificant that the single firm has no effect. In an oligopoly where there is more than one firm, and yet because the number of firms are small, they each have to consider what the other does. Consider the product launch decision, and pricing decision of Apple in relation to the IPOD models. If the features of the models it has in the line up is similar to Creative Technology's, it would have to be concerned with the pricing decision, and the timing of its announcement in relation to that of the other firm. We will now begin the exposition of Oligopolistic Competition. 1 Bertrand Model Firms can compete on several variables, and levels, for example, they can compete based on their choices of prices, quantity, and quality. The most basic and funda- mental competition pertains to pricing choices. The Bertrand Model is examines the interdependence between rivals' decisions in terms of pricing decisions. The assumptions of the model are: 1. 2 firms in the market, i 2 f1; 2g. 2. Goods produced are homogenous, ) products are perfect substitutes. 3. Firms set prices simultaneously. 4. Each firm has the same constant marginal cost of c. What is the equilibrium, or best strategy of each firm? The answer is that both firms will set the same prices, p1 = p2 = p, and that it will be equal to the marginal ECON 312: Oligopolisitic Competition 2 cost, in other words, the perfectly competitive outcome.
    [Show full text]
  • Economics 201B Economic Theory (Spring 2021) Strategic Games
    Economics 201B Economic Theory (Spring 2021) Strategic Games Topics: terminology and notations (OR 1.7), games and solutions (OR 1.1-1.3), rationality and bounded rationality (OR 1.4-1.6), formalities (OR 2.1), best-response (OR 2.2), Nash equilibrium (OR 2.2), 2 2 examples × (OR 2.3), existence of Nash equilibrium (OR 2.4), mixed strategy Nash equilibrium (OR 3.1, 3.2), strictly competitive games (OR 2.5), evolution- ary stability (OR 3.4), rationalizability (OR 4.1), dominance (OR 4.2, 4.3), trembling hand perfection (OR 12.5). Terminology and notations (OR 1.7) Sets For R, ∈ ≥ ⇐⇒ ≥ for all . and ⇐⇒ ≥ for all and some . ⇐⇒ for all . Preferences is a binary relation on some set of alternatives R. % ⊆ From % we derive two other relations on : — strict performance relation and not  ⇐⇒ % % — indifference relation and ∼ ⇐⇒ % % Utility representation % is said to be — complete if , or . ∀ ∈ % % — transitive if , and then . ∀ ∈ % % % % can be presented by a utility function only if it is complete and transitive (rational). A function : R is a utility function representing if → % ∀ ∈ () () % ⇐⇒ ≥ % is said to be — continuous (preferences cannot jump...) if for any sequence of pairs () with ,and and , . { }∞=1 % → → % — (strictly) quasi-concave if for any the upper counter set ∈ { ∈ : is (strictly) convex. % } These guarantee the existence of continuous well-behaved utility function representation. Profiles Let be a the set of players. — () or simply () is a profile - a collection of values of some variable,∈ one for each player. — () or simply is the list of elements of the profile = ∈ { } − () for all players except . ∈ — ( ) is a list and an element ,whichistheprofile () .
    [Show full text]
  • Chapter 16 Oligopoly and Game Theory Oligopoly Oligopoly
    Chapter 16 “Game theory is the study of how people Oligopoly behave in strategic situations. By ‘strategic’ we mean a situation in which each person, when deciding what actions to take, must and consider how others might respond to that action.” Game Theory Oligopoly Oligopoly • “Oligopoly is a market structure in which only a few • “Figuring out the environment” when there are sellers offer similar or identical products.” rival firms in your market, means guessing (or • As we saw last time, oligopoly differs from the two ‘ideal’ inferring) what the rivals are doing and then cases, perfect competition and monopoly. choosing a “best response” • In the ‘ideal’ cases, the firm just has to figure out the environment (prices for the perfectly competitive firm, • This means that firms in oligopoly markets are demand curve for the monopolist) and select output to playing a ‘game’ against each other. maximize profits • To understand how they might act, we need to • An oligopolist, on the other hand, also has to figure out the understand how players play games. environment before computing the best output. • This is the role of Game Theory. Some Concepts We Will Use Strategies • Strategies • Strategies are the choices that a player is allowed • Payoffs to make. • Sequential Games •Examples: • Simultaneous Games – In game trees (sequential games), the players choose paths or branches from roots or nodes. • Best Responses – In matrix games players choose rows or columns • Equilibrium – In market games, players choose prices, or quantities, • Dominated strategies or R and D levels. • Dominant Strategies. – In Blackjack, players choose whether to stay or draw.
    [Show full text]
  • Dynamic Games Under Bounded Rationality
    Munich Personal RePEc Archive Dynamic Games under Bounded Rationality Zhao, Guo Southwest University for Nationalities 8 March 2015 Online at https://mpra.ub.uni-muenchen.de/62688/ MPRA Paper No. 62688, posted 09 Mar 2015 08:52 UTC Dynamic Games under Bounded Rationality By ZHAO GUO I propose a dynamic game model that is consistent with the paradigm of bounded rationality. Its main advantages over the traditional approach based on perfect rationality are that: (1) the strategy space is a chain-complete partially ordered set; (2) the response function is certain order-preserving map on strategy space; (3) the evolution of economic system can be described by the Dynamical System defined by the response function under iteration; (4) the existence of pure-strategy Nash equilibria can be guaranteed by fixed point theorems for ordered structures, rather than topological structures. This preference-response framework liberates economics from the utility concept, and constitutes a marriage of normal-form and extensive-form games. Among the common assumptions of classical existence theorems for competitive equilibrium, one is central. That is, individuals are assumed to have perfect rationality, so as to maximize their utilities (payoffs in game theoretic usage). With perfect rationality and perfect competition, the competitive equilibrium is completely determined, and the equilibrium depends only on their goals and their environments. With perfect rationality and perfect competition, the classical economic theory turns out to be deductive theory that requires almost no contact with empirical data once its assumptions are accepted as axioms (see Simon 1959). Zhao: Southwest University for Nationalities, Chengdu 610041, China (e-mail: [email protected]).
    [Show full text]
  • Pure and Bayes-Nash Price of Anarchy for Generalized Second Price Auction
    Pure and Bayes-Nash Price of Anarchy for Generalized Second Price Auction Renato Paes Leme Eva´ Tardos Department of Computer Science Department of Computer Science Cornell University, Ithaca, NY Cornell University, Ithaca, NY [email protected] [email protected] Abstract—The Generalized Second Price Auction has for advertisements and slots higher on the page are been the main mechanism used by search companies more valuable (clicked on by more users). The bids to auction positions for advertisements on search pages. are used to determine both the assignment of bidders In this paper we study the social welfare of the Nash equilibria of this game in various models. In the full to slots, and the fees charged. In the simplest model, information setting, socially optimal Nash equilibria are the bidders are assigned to slots in order of bids, and known to exist (i.e., the Price of Stability is 1). This paper the fee for each click is the bid occupying the next is the first to prove bounds on the price of anarchy, and slot. This auction is called the Generalized Second Price to give any bounds in the Bayesian setting. Auction (GSP). More generally, positions and payments Our main result is to show that the price of anarchy is small assuming that all bidders play un-dominated in the Generalized Second Price Auction depend also on strategies. In the full information setting we prove a bound the click-through rates associated with the bidders, the of 1.618 for the price of anarchy for pure Nash equilibria, probability that the advertisement will get clicked on by and a bound of 4 for mixed Nash equilibria.
    [Show full text]
  • Extensive Form Games with Perfect Information
    Notes Strategy and Politics: Extensive Form Games with Perfect Information Matt Golder Pennsylvania State University Sequential Decision-Making Notes The model of a strategic (normal form) game suppresses the sequential structure of decision-making. When applying the model to situations in which players move sequentially, we assume that each player chooses her plan of action once and for all. She is committed to this plan, which she cannot modify as events unfold. The model of an extensive form game, by contrast, describes the sequential structure of decision-making explicitly, allowing us to study situations in which each player is free to change her mind as events unfold. Perfect Information Notes Perfect information describes a situation in which players are always fully informed about all of the previous actions taken by all players. This assumption is used in all of the following lecture notes that use \perfect information" in the title. Later we will also study more general cases where players may only be imperfectly informed about previous actions when choosing an action. Extensive Form Games Notes To describe an extensive form game with perfect information we need to specify the set of players and their preferences, just as for a strategic game. In addition, we also need to specify the order of the players' moves and the actions each player may take at each point (or decision node). We do so by specifying the set of all sequences of actions that can possibly occur, together with the player who moves at each point in each sequence. We refer to each possible sequence of actions (a1; a2; : : : ak) as a terminal history and to the function that denotes the player who moves at each point in each terminal history as the player function.
    [Show full text]
  • UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society
    UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title Language as a Tool for Thought: The Vocabulary of Games Facilitates Strategic Decision Making Permalink https://escholarship.org/uc/item/2n8028tv Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28) ISSN 1069-7977 Authors Keller, Josh Loewenstein, Jeffrey Publication Date 2006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Language as a Tool for Thought: The Vocabulary of Games Facilitates Strategic Decision Making Jeffrey Loewenstein ([email protected]) McCombs School of Business, 1 University Station B6300 Austin, TX 78712 USA Josh Keller ([email protected]) McCombs School of Business, 1 University Station B6300 Austin, TX 78712 USA Abstract thereby influence key decision makers to favor their desired policies. More than 60 years ago, the sociologist Mills People in competitive decision-making situations often make (1939) argued that problems are perceived relative to a poor choices because they inadequately understand the vocabulary. For example, what counts as murder seems decision they are to make, particularly because they fail to straightforward, but should differ substantially across consider contingencies such as how their opponent will react vegans, anti-abortion activists, lawyers, soldiers and the to their choice (Tor & Bazerman, 2004). Accordingly it would be useful to have a generally applicable vocabulary to guide (hopefully extinct) ritual practitioner of human sacrifice people towards effective interpretations of decision situations. (Clark, 1998). The vocabulary of games provides one such toolkit. We One role of language is to invoke particular framings or presented 508 participants with words from the vocabulary of interpretations.
    [Show full text]