Research Article Jmb

Total Page:16

File Type:pdf, Size:1020Kb

Research Article Jmb J. Microbiol. Biotechnol. (2013), 23(11), 1–7 http://dx.doi.org/10.4014/jmb.1404.04021 Research Article jmb Table S1. All GenBank (and JGI) sequences used in this study, their database identification, and corrected species information. GenBank Numbers Species Group Original ID (including JGI sequence) ITS B. adusta B. adusta Bjerkandera adusta JGI, AB096737, AB567717, AB592333, AB733118, AB733157, AF455410, AF455440, AF455468, AF455521, AY319191, AY354210, AY618221, AY781249, AY787666, AY805605, AY805628, EF441742, EU918694, FJ228211, FJ608590, FJ810147, FJ850965, FJ903311, FN995241, GU062301, GU067733, GU731546, HE774483, HQ327995, HQ331068, HQ331091, HQ916334, JF340266, JF439464, JN182863, JN198491, JQ697552, JX049389, JX082339, JX424327, JX946675, JX946676, KC176308, KC176310, KC176311, KC176312, KC176315, KC176317, KC176322, KC176323, KC176332, KC176334, KC176335, KC176339, KC176354, KC460894, KC484654, KC768070, KC831590, KF313125, KF381079, KF475891, KF562014, KF562019, KJ093490, KJ140569 Bjerkandera adustus AY089741 Bjerkandera adjusta AJ006672 B. fumosa Bjerkandera fumosa JX891534 Bjerkandera sp. Bjerkandera sp. AB638337, AM981215, AY633927, DQ060095, DQ060096, EU162066, HM595572, HQ637322, KC834790, KF208520, KF802455 Uncultured Bjerkandera FJ824611 R. solani Rhizoctonia solani isolate AF455419, AJ276054, KF758399 Rhizoctonia sp. DQ117961, FJ853489 Thanatephorus cucumeris AJ000198, EU326212, FJ791155, FR670341, JN104544 Thanatephorus cucumeris isolate AF455435, AF455438, AF455445, AF455459, AF455461, AF455463, DQ426512, DQ426519, DQ426529, EF155506, FJ426396, FJ441020, GU480955, KJ093500, FJ467364, FJ467377, GQ996576, KC460872, KF381087, KF990139 Other spp. Ceratobasidium stevensii AJ427405 Entrophospora sp. AY035664 Ganoderma lobatum strain JQ520165 Trichaptum abietinum U63474 Trichaptum abietinum strain FJ768676 Unidentified Agaricomycetes sp. JF288553, KF159979 Agaricomycetes strain GQ221186, GQ221187 Basidiomycete isolate AF455417, AF455421, AF455454 Basidiomycete sp. AM084821, AM084841, AM930994, AM981213, AM981217, DQ355927, AB075608, AB075609, AB075610, AJ279464, AJ279465, AJ279471, GQ922566, HM589360, KF638514, KF638527 Fungal endophyte sp. FM200566, HM537062 Fungal sp. AM231371, FJ609288, FJ609294, FJ609296, GQ906943, HQ834829, JF330182, JQ070429, JQ070430, JQ919920, JQ919921, JQ919922, JQ919923, KF212216 Fungal sp. clone KF212215 Polyporales sp. JQ312134, JQ312173 Uncultured basidiomycete AM901877, AM901992 Uncultured fungus clone FJ213533, FJ213541, FJ820495, GQ999352, GQ999360, GU559103, HM164585, JF721422, JF721423, JF721425, KF780611 The name in the group column refers to the name in Figs. 2B and 2C. September 2013 ⎪ Vol. 23⎪ No. 9 2 Name et al. Table S1. Continued. GenBank Numbers Species Group Original ID (including JGI sequence) B. fumosa B. adusta Bjerkandera adusta AB733156, DQ060097, JN182883, KF681360 B. fumosa Bjerkandera fumosa AJ006673, FJ903376, KJ140583 Bjerkandera sp. Bjerkandera sp. JQ388260 Unidentified Uncultured fungus FJ820598 Other Others Bjerkandera adusta JN628105, JN861758 Bjerkandera sp. HQ596906, KF578081, KJ174457 Outgroup Phanerochaete chrysosporium AY219344 LSU B. adusta B. adusta Bjerkandera adusta JGI, AB096738, AB733334, AY858352, FN298244, FN996994, GQ470629, JF416673, JQ388758, KC176308, KC176309, KC176310, KC176311, KC176312, KC176315, KC176317, KC176322, KC176323, KC176332, KC176334, KC176335, KC176339, KC176354 Bjerkandera sp. Bjerkandera sp. HM595615 Uncultured Bjerkandera JX132617 A. malicola Antrodia malicola AY333836 Unidentified Fungal sp. JQ249221 B. fumosa B. adusta Bjerkandera adusta AB733333, AF287848 Other Others Bjerkandera adusta AJ406530 Bjerkandera sp. KF578081 Outgroup Phanerochaete chrysosporium JN874484 Fig. S1. Unrooted maximum likelihood analyses of the four datasets. Clusters for Bjerkandera adusta, B. fumosa, and misidentified species are noted with the dotted lines. J. Microbiol. Biotechnol. Title 3 Fig. S2. Neighbor-joining analysis of the ITS sequences labeled as “Bjerkandera” in GenBank. Numbers at nodes indicate support values from the bootstrap analysis. September 2013 ⎪ Vol. 23⎪ No. 9 4 Name et al. Fig. S3. Neighbor-joining analysis of the ITS sequences labeled as “Bjerkandera”, along with highly similar sequences in GenBank identified using BLAST. Numbers at nodes indicate support values from the bootstrap analysis. J. Microbiol. Biotechnol. Title 5 Fig. S4. Neighbor-joining analysis of the LSU sequences labeled as “Bjerkandera” in GenBank. Numbers at nodes indicate support values from the bootstrap analysis. September 2013 ⎪ Vol. 23⎪ No. 9 6 Name et al. Fig. S5. Neighbor-joining analysis of the LSU sequences labeled as “Bjerkandera”, along with highly similar sequences in GenBank identified using BLAST. Numbers at nodes indicate support values from the bootstrap analysis. J. Microbiol. Biotechnol. Title 7 Fig. S6. Neighbor-joining tree identifying Bjerkandera adusta sequences in GenBank incorrectly labeled as Thanatephorous cucumeris or anamorphic name Rhizoctonia solani. Select ITS sequences of T. cucumeris and Bjerkandera were compared. Bootstrap values higher than 85 are displayed. Names in red font are B. adusta incorrectly labeled as T. cucumeris or R. solani in GenBank. September 2013 ⎪ Vol. 23⎪ No. 9.
Recommended publications
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • Gymnosperms) of New York State
    QK 129 . C667 1992 Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUCATION DEPARTMENT Albany, New York 12230 V A ThL U: ESTHER T. SVIERTZ LIBRARY THI-: ?‘HW YORK BOTANICAL GARDEN THE LuESTHER T. MERTZ LIBRARY THE NEW YORK BOTANICAL GARDEN Pinophyta (Gymnosperms) of New York State Edward A. Cope The L. H. Bailey Hortorium Cornell University Contributions to a Flora of New York State IX Richard S. Mitchell, Editor 1992 Bulletin No. 483 New York State Museum The University of the State of New York THE STATE EDUC ATION DEPARTMENT Albany, New York 12230 THE UNIVERSITY OF THE STATE OF NEW YORK Regents of The University Martin C. Barell, Chancellor, B.A., I.A., LL.B. Muttontown R. Carlos Carballada, Vice Chancellor, B.S. Rochester Willard A. Genrich, LL.B. Buffalo Emlyn I. Griffith. A.B.. J.D. Rome Jorge L. Batista, B.A.. J.D. Bronx Laura Bradley Chodos, B.A., M.A. Vischer Ferry Louise P. Matteoni, B.A., M.A., Ph.D. Bayside J. Edward Meyer, B.A., LL.B. Chappaqua FloydS. Linton, A.B., M.A., M.P.A. Miller Place Mimi Levin Lif.ber, B.A., M.A. Manhattan Shirley C. Brown, B.A., M.A., Ph.D. Albany Norma Gluck, B.A., M.S.W. Manhattan Adelaide L. Sanford, B.A., M.A., P.D.
    [Show full text]
  • Supplement of Ice Nucleation by Fungal Spores from the Classes Agaricomycetes, Ustilagi- Nomycetes, and Eurotiomycetes, And
    Supplement of Atmos. Chem. Phys., 14, 8611–8630, 2014 http://www.atmos-chem-phys.net/14/8611/2014/ doi:10.5194/acp-14-8611-2014-supplement © Author(s) 2014. CC Attribution 3.0 License. Supplement of Ice nucleation by fungal spores from the classes Agaricomycetes, Ustilagi- nomycetes, and Eurotiomycetes, and the effect on the atmospheric trans- port of these spores D. I. Haga et al. Correspondence to: A. K. Bertram ([email protected]) and S. M. Burrows ([email protected]) 15 Table S1. List of the fungal spores studied here and previous studies that have identified these spores in the atmosphere.1 Species studied Studies that have identified this species in the Studies that have identified this genus in the atmosphere atmosphere Agaricus bisporus Morales et al. (2006) Calderon et al. (1995); De Antoni Zoppas et al. (2006); Mallo et al. (2011); Oliveira et al. (2009) Amanita muscaria Li (2005) Magyar et al. (2009) Boletus zelleri - Calderon et al. (1995); Magyar et al. (2009) Lepista nuda - - Trichaptum abietinum - - Ustilago nuda Calderon et al. (1995); Magyar et al. (2009) De Antoni Zoppas et al. (2006); Herrero et al. Ustilago nigra - (2006); Hirst (1953); Morales et al. (2006); Ustilago avenae Gregory (1952) Oliveira et al. (2005); Pady and Kelly (1954); Sabariego et al. (2000); Waisel et al. (2008); Garcia et al. (2012) Aspergillus brasiliensis - Abu-Dieyeh et al. (2010); Adhikari et al. Aspergillus niger Abu-Dieyeh et al. (2010); Grishkan et al. (2012); Li (2004); Chakraborty et al. (2003); Crawford (2005); Mishra and Srivastava (1971, 1972); Nayar et al. (2009); De Antoni Zoppas et al.
    [Show full text]
  • The Use of Algae and Fungi for Removal of Pharmaceuticals by Bioremediation and Biosorption Processes: a Review
    Review The Use of Algae and Fungi for Removal of Pharmaceuticals by Bioremediation and Biosorption Processes: A Review Andreia Silva, Cristina Delerue-Matos, Sónia A. Figueiredo and Olga M. Freitas * REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal * Correspondence: [email protected] Received: 3 July 2019; Accepted: 25 July 2019; Published: 27 July 2019 Abstract: The occurrence and fate of pharmaceuticals in the aquatic environment is recognized as one of the emerging issues in environmental chemistry. Conventional wastewater treatment plants (WWTPs) are not designed to remove pharmaceuticals (and their metabolites) from domestic wastewaters. The treatability of pharmaceutical compounds in WWTPs varies considerably depending on the type of compound since their biodegradability can differ significantly. As a consequence, they may reach the aquatic environment, directly or by leaching of the sludge produced by these facilities. Currently, the technologies under research for the removal of pharmaceuticals, namely membrane technologies and advanced oxidation processes, have high operation costs related to energy and chemical consumption. When chemical reactions are involved, other aspects to consider include the formation of harmful reaction by-products and the management of the toxic sludge produced. Research is needed in order to develop economic and sustainable treatment processes, such as bioremediation and biosorption. The use of low-cost materials, such as biological matrices (e.g., algae and fungi), has advantages such as low capital investment, easy operation, low operation costs, and the non-formation of degradation by-products. An extensive review of existing research on this subject is presented.
    [Show full text]
  • Oxalic Acid Degradation by a Novel Fungal Oxalate Oxidase from Abortiporus Biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1
    Vol. 63, No 3/2016 595–600 http://dx.doi.org/10.18388/abp.2016_1282 Regular paper Oxalic acid degradation by a novel fungal oxalate oxidase from Abortiporus biennis Marcin Grąz1*, Kamila Rachwał2, Radosław Zan2 and Anna Jarosz-Wilkołazka1 1Department of Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland; 2Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Lublin, Poland Oxalate oxidase was identified in mycelial extracts of a to formic acid and carbon dioxide (Mäkelä et al., 2002). basidiomycete Abortiporus biennis strain. Intracellular The degradation of oxalate via action of oxalate oxidase enzyme activity was detected only after prior lowering (EC 1.2.3.4), described in our study, is atypical for fun- of the pH value of the fungal cultures by using oxalic or gi and was found predominantly in higher plants. The hydrochloric acids. This enzyme was purified using size best characterised oxalate oxidase originates from cereal exclusion chromatography (Sephadex G-25) and ion-ex- plants (Dunwell, 2000). Currently, only three oxalate oxi- change chromatography (DEAE-Sepharose). This enzyme dases of basidiomycete fungi have been described - an exhibited optimum activity at pH 2 when incubated at enzyme from Tilletia contraversa (Vaisey et al., 1961), the 40°C, and the optimum temperature was established at best characterised so far enzyme from Ceriporiopsis subver- 60°C. Among the tested organic acids, this enzyme ex- mispora (Aguilar et al., 1999), and an enzyme produced by hibited specificity only towards oxalic acid. Molecular Abortiporus biennis (Grąz et al., 2009). The enzyme from mass was calculated as 58 kDa. The values of Km for oxa- C.
    [Show full text]
  • Wood Decay by Inonotus Rickii and Bjerkandera Adusta: a Micro- and Ultra-Structural Approach
    IAWARobles Journal et al.35 – (1), Wood 2014: decay 51–60 51 WOOD DECAY BY INONOTUS RICKII AND BJERKANDERA ADUSTA: A MICRO- AND ULTRA-STRUCTURAL APPROACH Carolina Analía Robles1,*, María Agueda Castro2 and Silvia Edith Lopez1 1PROPLAME-PRHIDEB-CONICET & 2Laboratorio de Anatomía Vegetal Aplicada, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, PB II, 4to piso, CP 1428EHA Ciudad Autónoma de Buenos Aires, Argentina *Corresponding author; e-mail: [email protected] ABSTRACT Bjerkandera adusta (Willd.) P. Karst. and Inonotus rickii (Pat.) D.A. Reid. are important xylophagous fungi affecting street trees in Buenos Aires City, Ar- gentina. The objective of this paper is to describe the decay patterns produced by these species in London plane wood (Platanus acerifolia (Ait.) Willd.), which is one of the most abundant tree species in the city, through light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A better knowledge of the decay patterns of these fungi at early stages would provide useful information for optimizing tree management programs. Microscopic observations showed that B. adusta, having caused an important loss of dry weight, showed more extensive degradation of wood after three months than I. rickii, affecting mainly fiber walls with potential consequences in tree strength and stiffness. Inonotus rickii, on the other hand, selectively af- fected vessel walls and middle lamellae between fibers. Rays remained virtually unaltered in all decayed wood. Keywords: Wood-rotting fungi, white rot, delignification, Platanus acerifolia. INTRODUCTION White-rot fungi remove lignin, cellulose and hemicelluloses from wood.
    [Show full text]
  • Hori Et Al 2013.Pdf
    Mycologia, 105(6), 2013, pp. 1412–1427. DOI: 10.3852/13-072 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay Chiaki Hori cellulases belonging to families GH6, GH7, GH9 Department of Biomaterials Sciences, Graduate School of and carbohydrate-binding module family CBM1 are Agricultural and Life Sciences, University of Tokyo, l-l-l, lacking in genomes of brown-rot polyporales. In Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, and Institute for Microbial and Biochemical Technology, addition, the presence of CDH and the expansion Forest Products Laboratory, 1 Gifford Pinchot Drive, of LPMO were observed only in white-rot genomes. Madison, Wisconsin 53726 Indeed, GH6, GH7, CDH and LPMO peptides were identified only in white-rot polypores. Genes encod- Jill Gaskell ing aldose 1-epimerase (ALE), previously detected Institute for Microbial and Biochemical Technology, Forest Products Laboratory, 1 Gifford Pinchot Drive, with CDH and cellulases in the culture filtrates, also Madison, Wisconsin 53726 were identified in white-rot genomes, suggesting a physiological connection between ALE, CDH, cellu- Kiyohiko Igarashi lase and possibly LPMO. For hemicellulose degrada- Masahiro Samejima tion, genes and peptides corresponding to GH74 Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, l-l-l, xyloglucanase, GH10 endo-xylanase, GH79 b-glucu- Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan ronidase, CE1 acetyl xylan esterase and CE15 glucur- onoyl methylesterase were significantly increased in David Hibbett white-rot genomes compared to brown-rot genomes.
    [Show full text]
  • New Data on the Occurence of an Element Both
    Analele UniversităĠii din Oradea, Fascicula Biologie Tom. XVI / 2, 2009, pp. 53-59 CONTRIBUTIONS TO THE KNOWLEDGE DIVERSITY OF LIGNICOLOUS MACROMYCETES (BASIDIOMYCETES) FROM CĂ3ĂğÂNII MOUNTAINS Ioana CIORTAN* *,,Alexandru. Buia” Botanical Garden, Craiova, Romania Corresponding author: Ioana Ciortan, ,,Alexandru Buia” Botanical Garden, 26 Constantin Lecca Str., zip code: 200217,Craiova, Romania, tel.: 0040251413820, e-mail: [email protected] Abstract. This paper presents partial results of research conducted between 2005 and 2009 in different forests (beech forests, mixed forests of beech with spruce, pure spruce) in CăSăĠânii Mountains (Romania). 123 species of wood inhabiting Basidiomycetes are reported from the CăSăĠânii Mountains, both saprotrophs and parasites, as identified by various species of trees. Keywords: diversity, macromycetes, Basidiomycetes, ecology, substrate, saprotroph, parasite, lignicolous INTRODUCTION MATERIALS AND METHODS The data presented are part of an extensive study, The research was conducted using transects and which will complete the PhD thesis. The CăSăĠânii setting fixed locations in some vegetable formations, Mountains are a mountain group of the ùureanu- which were visited several times a year beginning with Parâng-Lotru Mountains, belonging to the mountain the months April-May until October-November. chain of the Southern Carpathians. They are situated in Fungi were identified on the basis of both the SE parth of the Parâng Mountain, between OlteĠ morphological and anatomical properties of fruiting River in the west, Olt River in the east, Lotru and bodies and according to specific chemical reactions LaroriĠa Rivers in the north. Our area is 900 Km2 large using the bibliography [1-8, 10-13]. Special (Fig. 1). The vegetation presents typical levers: major presentation was made in phylogenetic order, the associations characteristic of each lever are present in system of classification used was that adopted by Kirk this massif.
    [Show full text]
  • Identification and Tracking Activity of Fungus from the Antarctic Pole on Antagonistic of Aquatic Pathogenic Bacteria
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 19F–079/2019/22–6–1311–1319 DOI: 10.17957/IJAB/15.1203 http://www.fspublishers.org Full Length Article Identification and Tracking Activity of Fungus from the Antarctic Pole on Antagonistic of Aquatic Pathogenic Bacteria Chuner Cai1,2,3, Haobing Yu1, Huibin Zhao2, Xiaoyu Liu1*, Binghua Jiao1 and Bo Chen4 1Department of Biochemistry and Molecular Biology, College of Basic Medicine, Naval Medical University, Shanghai, 200433, China 2College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China 3Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang, Jiangsu, 222005, China 4Polar Research Institute of China, Shanghai, 200136, China *For correspondence: [email protected] Abstract To seek the lead compound with the activity of antagonistic aquatic pathogenic bacteria in Antarctica fungi, the work identified species of a previously collected fungus with high sensitivity to Aeromonas hydrophila ATCC7966 and Streptococcus agalactiae. Potential active compounds were separated from fermentation broth by activity tracking and identified in structure by spectrum. The results showed that this fungus had common characteristics as Basidiomycota in morphology. According to 18S rDNA and internal transcribed space (ITS) DNA sequencing, this fungus was identified as Bjerkandera adusta in family Meruliaceae. Two active compounds viz., veratric acid and erythro-1-(3, 5-dichlone-4- methoxyphenyl)-1, 2-propylene glycol were identified by nuclear magnetic resonance spectrum and mass spectrum. Veratric acid was separated for the first time from any fungus, while erythro-1-(3, 5-dichlone-4-methoxyphenyl)-1, 2-propylene glycol was once reported in Bjerkandera.
    [Show full text]
  • Basidiomycetes Inhabiting the Ornamental Tree Catalpa (Bignoniaceae)
    ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Österr. Z. Pilzk. 19(2010) Basidiomycetes inhabiting the ornamental tree Catalpa (Bignoniaceae) JURAJ PACLT Nam Benku, Martina 24/4083 81107 Bratislava 1, Slovakia Accepted 11. 1.2010 Key words: Basidiomycetes. - Fungus-host associations, Catalpa. Abstract: Attention is paid to all basidiomycetous species hitherto known to occur on Catalpa as host plant. During 1955-1997 more than 20 new fungus-host associations from diverse species of Catalpa grown in Europe could be found by the author. Zusammenfassung: Basidiomyzeten, die bisher von Catalpa als Wirtspflanze bekannt sind, werden aufgeführt. Dem Autor gelang es, 1955-1997 mehr als zwanzig neue Pilz-Wirt-Assoziationen von ver- schiedenen in Europa angepflanzten Catalpa-Artcn zu finden. Catalpa SCOP. (Bignoniaceae), called cigar-tree in the USA, a genus native to the United States of America [Southern Catalpa = C. hignonioides WALTER, Hardy Ca- talpa = C. speciosa (WARDER ex BARNEY) ENGELM.], West Indies and/or China. Common species of the genus are favoured as ornamental trees due to their showy panicles of flowers and long cigar-like pendent capsular fruits as well. In Europe, spe- cies of Catalpa are often cultivated as park- and street-trees. OUDEMANS (1923) mentioned only four species of Basidiomycetes for Catalpa, i.e., Polyponts distortus (= Abortipoms biennis). Pistil/aha mucedina. Pistil/aria mucoroides, and Polyponis distinctus (nomen dubium). Six further basidiomycetous species collected on Catalpa were listed in the next host index by SEYMOUR (1929): Exidia saccharina, Polyponis adustus (= Bjerkandera adusta), Schizophyllum commune, Stereum albobadium (= Dendrophora alhobadia), Stereum versicolor, and Trametes sepium (= Antrodia al- bida).
    [Show full text]
  • New Records of Polypores from Iran, with a Checklist of Polypores for Gilan Province
    CZECH MYCOLOGY 68(2): 139–148, SEPTEMBER 27, 2016 (ONLINE VERSION, ISSN 1805-1421) New records of polypores from Iran, with a checklist of polypores for Gilan Province 1 2 MOHAMMAD AMOOPOUR ,MASOOMEH GHOBAD-NEJHAD *, 1 SEYED AKBAR KHODAPARAST 1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Gilan, P.O. Box 41635-1314, Rasht 4188958643, Iran. 2 Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 3353136846, Iran; [email protected] *corresponding author Amoopour M., Ghobad-Nejhad M., Khodaparast S.A. (2016): New records of polypores from Iran, with a checklist of polypores for Gilan Province. – Czech Mycol. 68(2): 139–148. As a result of a survey of poroid basidiomycetes in Gilan Province, Antrodiella fragrans, Ceriporia aurantiocarnescens, Oligoporus tephroleucus, Polyporus udus,andTyromyces kmetii are newly reported from Iran, and the following seven species are reported as new to this province: Coriolopsis gallica, Fomitiporia punctata, Hapalopilus nidulans, Inonotus cuticularis, Oligo- porus hibernicus, Phylloporia ribis,andPolyporus tuberaster. An updated checklist of polypores for Gilan Province is provided. Altogether, 66 polypores are known from Gilan up to now. Key words: fungi, hyrcanian forests, poroid basidiomycetes. Article history: received 28 July 2016, revised 13 September 2016, accepted 14 September 2016, published online 27 September 2016. Amoopour M., Ghobad-Nejhad M., Khodaparast S.A. (2016): Nové nálezy chorošů pro Írán a checklist chorošů provincie Gilan. – Czech Mycol. 68(2): 139–148. Jako výsledek systematického výzkumu chorošotvarých hub v provincii Gilan jsou publikovány nové druhy pro Írán: Antrodiella fragrans, Ceriporia aurantiocarnescens, Oligoporus tephroleu- cus, Polyporus udus a Tyromyces kmetii.
    [Show full text]
  • Polypore Diversity in North America with an Annotated Checklist
    Mycol Progress (2016) 15:771–790 DOI 10.1007/s11557-016-1207-7 ORIGINAL ARTICLE Polypore diversity in North America with an annotated checklist Li-Wei Zhou1 & Karen K. Nakasone2 & Harold H. Burdsall Jr.2 & James Ginns3 & Josef Vlasák4 & Otto Miettinen5 & Viacheslav Spirin5 & Tuomo Niemelä 5 & Hai-Sheng Yuan1 & Shuang-Hui He6 & Bao-Kai Cui6 & Jia-Hui Xing6 & Yu-Cheng Dai6 Received: 20 May 2016 /Accepted: 9 June 2016 /Published online: 30 June 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Profound changes to the taxonomy and classifica- 11 orders, while six other species from three genera have tion of polypores have occurred since the advent of molecular uncertain taxonomic position at the order level. Three orders, phylogenetics in the 1990s. The last major monograph of viz. Polyporales, Hymenochaetales and Russulales, accom- North American polypores was published by Gilbertson and modate most of polypore species (93.7 %) and genera Ryvarden in 1986–1987. In the intervening 30 years, new (88.8 %). We hope that this updated checklist will inspire species, new combinations, and new records of polypores future studies in the polypore mycota of North America and were reported from North America. As a result, an updated contribute to the diversity and systematics of polypores checklist of North American polypores is needed to reflect the worldwide. polypore diversity in there. We recognize 492 species of polypores from 146 genera in North America. Of these, 232 Keywords Basidiomycota . Phylogeny . Taxonomy . species are unchanged from Gilbertson and Ryvarden’smono- Wood-decaying fungus graph, and 175 species required name or authority changes.
    [Show full text]