Volltext (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Volltext (PDF) Faculty of Environmental Sciences Institute of Forest Botany and Forest Zoology Chair of Forest Zoology How to manage an uncommon alien rodent on a protected island? A study of the population structure, dynamics, and management of the rock cavy in Fernando de Noronha, Brazil Dissertation for obtaining the academic degree Doctor rerum naturalium (Dr. rer. nat.) presented by Tatiane Micheletti Ribeiro Silva, M.Sc. born on September 5th, 1983 in São Paulo, Brazil Supervisors: Prof. Dr. rer. nat. Mechthild Roth Prof. Dr. rer. nat. Uta Berger Prof. Dr. James Russell Day of Defense: 09th October 2017 Declaration of conformity I hereby confirm that this copy is identical with the original dissertation entitled: How to manage an uncommon alien rodent on a protected island? A study of the population structure, dynamics, and management of the rock cavy in Fernando de Noronha, Brazil Tharandt, 8th June 2017 __________________________________________ MSc. Tatiane Micheletti Ribeiro Silva To the loves of my life. “Look deep into nature, and then you will understand everything better.” Albert Einstein II Acknowledgement I would like to thank CPNq for funding my PhD in Germany (Process No. 246171/2012- 0), as well as Rufford Foundation, PVE/CAPES, the Graduate Academy of TU Dresden and the Friends of TU Dresden for the funding of field trips for data collection and presentations related to the project. I would like to sincerely thank my supervisors Prof. Dr. Mechthild Roth and Prof. Dr. Uta Berger for all the excellent inputs, long-lasting patience in the process of improving this monograph, and their invaluable support during the last years. In the same way, I deeply thank Prof. Dr. James Russell, Prof. Dr. Ricardo Dias and Dr. Paulo Mangini for all guidance and company in the field and during the elaboration of this thesis. We not only shared good laughs, but I am positive I have improved my scientific abilities in the last years because of you. My deepest gratitude to my dear Renata C. F. Santos and my reptile friends Vinicius Gasparotto and Carlos Abrahão not only for the help in the field, but mainly for the true friendship in the last years. The present work would also not have been possible without the vital support of the team of the National Marine Park of Fernando de Noronha, particularly M.Sc. Thayná J. Mello and M.Sc. Eduardo C. de Macedo. They are not only great scientists, but are an example that excellency in the management of Conservation Units can be achieved in Brazil. The same I can say about my colleagues from TRÍADE, especially Prof. Dr. Jean Carlos Ramos Silva, the coordinator of the project that encompasses the current research. The present project would also not have been possible without the support with accommodation in the island provided by the Brazilian Navy (CPPE and 3º Distrito Naval), as well by PARNAMAR/ICMBio. I would also like to acknowledge all the support the local community and administration of Fernando de Noronha gave to the whole project. Fundamental changes for protecting nature are not made without the support of the local inhabitants. My deepest appreciation to all my beloved friends from Germany and Brazil for your moral support, thesis reviews, abstract translation, beers, pizzas, and laughs. I would not have made it without you. Even far away, I would also like to thank my family, from the bottom of my heart, for all the support and incentives in the last years. You made me understand that it is necessary much more than physical distance to keep a family apart. At last, I wanted to thank the loves of my life François Jost and Sophie Nicole for their unmeasurable patience, love, and support, especially in the last months. You kept me sane and made me feel loved. I will never be able to express how much you two mean to me. III Abstract It appears to be unanimous that alien species in island environments tend to cause considerably more negative than positive impacts. To assess the potential level of threat aliens may pose to the native environment, understanding a species’ population structure and dynamics is of ultimate importance. Assessing both impacts and consequences of management interventions to alien species is likewise only possible through the comprehension of its population structure and dynamics. This can be achieved by estimating the number of individuals in the study site, as well as other population parameters through time, applying population models such as capture-recapture to the collected datasets. Nonetheless, alien species that have low capture rates, such as small mammals, might present a considerable obstacle for conservation, as available capture- recapture models need a relatively large dataset to precisely and accurately estimate population parameters. To improve accuracy and precision of estimates that use sparse datasets, the present study developed an integrated concurrent marking-observation capture-recapture model (C-MOM). The model proposed here, contrary to the commonly available mark-recapture and mark-resight models, allows for two different datasets (i.e. a capture-recapture and a population count) to be integrated, as well as for marking and observation (recapture) data to be collected simultaneously. While few models can integrate different datasets, no model is known to allow for concomitant capture-mark- observation activities. To assess the performance of the C-MOM when estimating population parameters for sparse datasets, a virtual ecology study was carried out. The population dynamics of a small rodent, the rock cavy (Kerodon rupestris), as well as capture-recapture and population count datasets, were simulated under different scenarios. The sampled datasets were then analyzed by the C-MOM, and by two other established statistical models: a classical mark recapture (CMR) (based on the Jolly-Seber model), and a zero-truncated Poisson log-normal mixed effects (ZPNE), the only integrated mark-resight model that allows for recapture sampling with replacement. Estimates of population parameters provided by the three models were then compared in terms of bias, precision and accuracy. C-MOM and ZPNE models were afterwards applied to real data collected on a rock cavy colony in the island of Fernando de Noronha. The estimated parameters were used to extrapolate the number of individuals in the rock IV cavy colony to the whole population in the island. Subsequently, these results were used to develop a risk assessment for the species by modelling historical and management scenarios, simulating both the establishment of the species in the island, and the consequences of different management interventions applied to it. The virtual ecology study showed that, in comparison to the CMR and the ZPNE, the C-MOM presented improved accuracy without overestimating the precision of population parameter’s estimates. The last also presented reduced amplitude of the calculated credible interval at 95% when applied to real data in comparison to the ZPNE. While the extrapolation of C-MOM estimates suggests that the rock cavy population in Fernando de Noronha is 6,652 ± 1,587, ZPNE estimates are of 5,854 ± 3,269 individuals. In the risk assessment, historical simulation models demonstrated that even though different combinations of uncertainty in reproductive parameters of the rock cavy might be possible for the species, these did not interfere significantly in either establishment or spread of the rock cavy population in the island. Moreover, historical yearly mortality has most likely been under 30%. Regarding the species’ management simulations, the most effective management interventions to achieve population extinction were spaying and neutering of both sexes, although harvest effort presented the highest influence on this populations’ extirpation. Nonetheless, the relative influence of female and both sexes’ based interventions did not differ significantly regarding the frequency of extinction of stochastic replicates’. Moreover, none of the management interventions guaranteed the population extinction within the time span and harvest effort proposed for the management program. Neutering of both sexes was most inversely influential on time to extinction of this population, followed by removal of both sexes. Briefly, the C-MOM has proven to be a resourceful and precise model to estimate population parameters when low capture rates result in sparse datasets. Moreover, the rock cavy is well established in the island and likely at carrying capacity. In general, the risk assessment showed that the management interventions in the time span and harvest effort simulated in the present study were ineffective to extinguish the rock cavy population in Fernando de Noronha. Considering this, as well as the importance of investigating other vital factors to decide in favour of or contrary to the management of this species, it is recommended that both an impact assessment of the rock cavy and a cost-effectiveness analysis of the management interventions should be performed to complement the current study. V Zusammenfassung Es besteht weitgehend Konsens, dass gebietsfremde Arten Inselökosysteme tendenziell erheblich mehr negativ als positiv beeinflussen. Um das potenzielle Bedrohungsrisiko zu beurteilen, welches fremde Arten für einheimische Lebensräume darstellen, ist es von entscheidender Bedeutung, die Populationsstrukturen und –dynamiken dieser Arten zu verstehen. Die Bewertung von Auswirkungen und Managementmaßnahmen sowie deren Konsequenzen auf fremde Arten ist ebenfalls nur
Recommended publications
  • Ecologia De Kerodon Acrobata (Rodentia: Caviidae) Em Fragmentos De Mata Seca Associados a Afloramentos Calcários No Cerrado Do Brasil Central
    1 Universidade de Brasília - UnB Instituto de Ciências Biológicas Programa de Pós-Graduação em Ecologia Ecologia de Kerodon acrobata (Rodentia: Caviidae) em fragmentos de mata seca associados a afloramentos calcários no Cerrado do Brasil Central Alexandre de Souza Portella Prof. Dr. Emerson Monteiro Vieira Tese apresentada ao Programa de Pós-Graduação em Ecologia, como requisito parcial para a obtenção do título de Doutor em Ecologia. Brasília, setembro de 2015. 2 3 Sumário Sumário ............................................................................................................................. 3 Agradecimentos ................................................................................................................. 5 Sumário de figuras ............................................................................................................ 7 Sumário de tabelas .......................................................................................................... 10 Sumário de anexos .......................................................................................................... 11 Resumo ............................................................................................................................ 12 Abstract ........................................................................................................................... 14 Introdução geral ............................................................................................................... 16 Referências bibliográficas
    [Show full text]
  • Deciduous Forest
    Biomes and Species List: Deciduous Forest, Desert and Grassland DECIDUOUS FOREST Aardvark DECIDUOUS FOREST African civet DECIDUOUS FOREST American bison DECIDUOUS FOREST American black bear DECIDUOUS FOREST American least shrew DECIDUOUS FOREST American pika DECIDUOUS FOREST American water shrew DECIDUOUS FOREST Ashy chinchilla rat DECIDUOUS FOREST Asian elephant DECIDUOUS FOREST Aye-aye DECIDUOUS FOREST Bobcat DECIDUOUS FOREST Bornean orangutan DECIDUOUS FOREST Bridled nail-tailed wallaby DECIDUOUS FOREST Brush-tailed phascogale DECIDUOUS FOREST Brush-tailed rock wallaby DECIDUOUS FOREST Capybara DECIDUOUS FOREST Central American agouti DECIDUOUS FOREST Chimpanzee DECIDUOUS FOREST Collared peccary DECIDUOUS FOREST Common bentwing bat DECIDUOUS FOREST Common brush-tailed possum DECIDUOUS FOREST Common genet DECIDUOUS FOREST Common ringtail DECIDUOUS FOREST Common tenrec DECIDUOUS FOREST Common wombat DECIDUOUS FOREST Cotton-top tamarin DECIDUOUS FOREST Coypu DECIDUOUS FOREST Crowned lemur DECIDUOUS FOREST Degu DECIDUOUS FOREST Working Together to Live Together Activity—Biomes and Species List 1 Desert cottontail DECIDUOUS FOREST Eastern chipmunk DECIDUOUS FOREST Eastern gray kangaroo DECIDUOUS FOREST Eastern mole DECIDUOUS FOREST Eastern pygmy possum DECIDUOUS FOREST Edible dormouse DECIDUOUS FOREST Ermine DECIDUOUS FOREST Eurasian wild pig DECIDUOUS FOREST European badger DECIDUOUS FOREST Forest elephant DECIDUOUS FOREST Forest hog DECIDUOUS FOREST Funnel-eared bat DECIDUOUS FOREST Gambian rat DECIDUOUS FOREST Geoffroy's spider monkey
    [Show full text]
  • Development of the Central Nervous System in Guinea Pig (Cavia Porcellus, Rodentia, Caviidae)1
    Pesq. Vet. Bras. 36(8):753-760, agosto 2016 Development of the central nervous system in guinea pig (Cavia porcellus, Rodentia, Caviidae)1 Fernanda Menezes de Oliveira e Silva2*, Dayane Alcantara2, Rafael Cardoso Carvalho2,3, Phelipe Oliveira Favaron2, Amilton Cesar dos Santos2, Diego Carvalho Viana2 and Maria Angelica Miglino2 ABSTRACT.- Silva F.M.O., Alcantara D., Carvalho R.C., Favaron P.O., Santos A.C., Viana D.C. & Miglino M.A. 2016. Development of the central nervous system in guinea pig (Cavia porcellus, Rodentia, Caviidae). Pesquisa Veterinária Brasileira 36(8):753-760. Departa- mento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, SP 05508- 270, Brazil. E-mail: [email protected] This study describes the development of the central nervous system in guinea pigs from 12th day post conception (dpc) until birth. Totally, 41 embryos and fetuses were analyzed macroscopically and by means of light and electron microscopy. The neural tube closure was observed at day 14 and the development of the spinal cord and differentiation of the primitive central nervous system vesicles was on 20th dpc. Histologically, undifferentiated brain tissue was observed as a mass of mesenchymal tissue between 18th and 20th dpc, and at 25th dpc the tissue within the medullary canal had higher density. On day 30 the - nal canal, period from which it was possible to observe cerebral and cerebellar stratums. Atbrain day tissue 45 intumescences was differentiated were visualizedon day 30 andand cerebralthe spinal hemispheres cord filling were throughout divided, the with spi a clear division between white and gray matter in brain and cerebellum.
    [Show full text]
  • Between Species: Choreographing Human And
    BETWEEN SPECIES: CHOREOGRAPHING HUMAN AND NONHUMAN BODIES JONATHAN OSBORN A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN DANCE STUDIES YORK UNIVERSITY TORONTO, ONTARIO MAY, 2019 ã Jonathan Osborn, 2019 Abstract BETWEEN SPECIES: CHOREOGRAPHING HUMAN AND NONHUMAN BODIES is a dissertation project informed by practice-led and practice-based modes of engagement, which approaches the space of the zoo as a multispecies, choreographic, affective assemblage. Drawing from critical scholarship in dance literature, zoo studies, human-animal studies, posthuman philosophy, and experiential/somatic field studies, this work utilizes choreographic engagement, with the topography and inhabitants of the Toronto Zoo and the Berlin Zoologischer Garten, to investigate the potential for kinaesthetic exchanges between human and nonhuman subjects. In tracing these exchanges, BETWEEN SPECIES documents the creation of the zoomorphic choreographic works ARK and ARCHE and creatively mediates on: more-than-human choreography; the curatorial paradigms, embodied practices, and forms of zoological gardens; the staging of human and nonhuman bodies and bodies of knowledge; the resonances and dissonances between ethological research and dance ethnography; and, the anthropocentric constitution of the field of dance studies. ii Dedication Dedicated to the glowing memory of my nana, Patricia Maltby, who, through her relentless love and fervent belief in my potential, elegantly willed me into another phase of life, while she passed, with dignity and calm, into another realm of existence. iii Acknowledgements I would like to thank my phenomenal supervisor Dr. Barbara Sellers-Young and my amazing committee members Dr.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]
  • The Capybara, Its Biology and Management - J
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. X - The Capybara, Its Biology and Management - J. Ojasti THE CAPYBARA, ITS BIOLOGY AND MANAGEMENT J. Ojasti Instituto de Zoología Tropical, Facultad de Ciencias, UCV, Venezuela. Keywords: Breeding, capybara, ecology, foraging, Hydrochoerus, management, meat production, population dynamics, savanna ecosystems, social behavior, South America, wetlands. Contents 1. Introduction 2. Origin and Classification 3. General Characters 4. Distribution 5. Biological Aspects 5.1. Semi-aquatic habits 5.2. Foraging and diet 5.3. Digestion 5.4. Reproduction 5.5. Growth and Age 5.6. Behavior 6. Population Dynamics 6.1. Estimation of abundance 6.2. Population densities 6.3. Birth, mortality and production rates 7. Capybara in the Savanna Ecosystems 8. Management for Sustainable Use 8.1. Hunting and Products 8.2 Management of the Harvest 8.3. Habitat Management 8.4. Captive Breeding Glossary Bibliography BiographicalUNESCO Sketch – EOLSS Summary The capybara isSAMPLE the largest living rodent and CHAPTERS last remnant of a stock of giant rodents which evolved in South America during the last 10 million years. It is also the dominant native large herbivore and an essential component in the function of grassland ecosystems, especially floodplain savannas. Adult capybaras (Hydrochoerus hydrochaeris) of South American lowlands measure about 120 cm in length, 55 cm in height and weigh from 40 to 70 kg. The lesser capybara (Hydrochoerus isthmius) of Panama and the northwestern corner of South America is usually less than 100 cm in length and 30 kg in weight. Capybaras live in stable and sedentary groups of a dominant male, several females, their young, and some subordinate males.
    [Show full text]
  • Major Radiations in the Evolution of Caviid Rodents: Reconciling Fossils, Ghost Lineages, and Relaxed Molecular Clocks
    Major Radiations in the Evolution of Caviid Rodents: Reconciling Fossils, Ghost Lineages, and Relaxed Molecular Clocks Marı´a Encarnacio´ nPe´rez*, Diego Pol* CONICET, Museo Paleontolo´gico Egidio Feruglio, Trelew, Chubut Province, Argentina Abstract Background: Caviidae is a diverse group of caviomorph rodents that is broadly distributed in South America and is divided into three highly divergent extant lineages: Caviinae (cavies), Dolichotinae (maras), and Hydrochoerinae (capybaras). The fossil record of Caviidae is only abundant and diverse since the late Miocene. Caviids belongs to Cavioidea sensu stricto (Cavioidea s.s.) that also includes a diverse assemblage of extinct taxa recorded from the late Oligocene to the middle Miocene of South America (‘‘eocardiids’’). Results: A phylogenetic analysis combining morphological and molecular data is presented here, evaluating the time of diversification of selected nodes based on the calibration of phylogenetic trees with fossil taxa and the use of relaxed molecular clocks. This analysis reveals three major phases of diversification in the evolutionary history of Cavioidea s.s. The first two phases involve two successive radiations of extinct lineages that occurred during the late Oligocene and the early Miocene. The third phase consists of the diversification of Caviidae. The initial split of caviids is dated as middle Miocene by the fossil record. This date falls within the 95% higher probability distribution estimated by the relaxed Bayesian molecular clock, although the mean age estimate ages are 3.5 to 7 Myr older. The initial split of caviids is followed by an obscure period of poor fossil record (refered here as the Mayoan gap) and then by the appearance of highly differentiated modern lineages of caviids, which evidentially occurred at the late Miocene as indicated by both the fossil record and molecular clock estimates.
    [Show full text]
  • Macroecology and Sociobiology of Humans and Other Mammals Joseph Robert Burger
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 7-1-2015 Macroecology and Sociobiology of Humans and other Mammals Joseph Robert Burger Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Burger, Joseph Robert. "Macroecology and Sociobiology of Humans and other Mammals." (2015). https://digitalrepository.unm.edu/biol_etds/11 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Joseph Robert Burger Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: James H. Brown, Ph.D., Chairperson Felisa A. Smith Ph.D., Co-Chairperson Melanie E. Moses, Ph.D. Bruce T. Milne, Ph.D. MACROECOLOGY AND SOCIOBIOLOGY OF HUMANS AND OTHER MAMMALS By Joseph R Burger B.A. Economics and International Studies, Francis Marion University 2006 M.S. Biology, University of Louisiana at Monroe 2010 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2015 DEDICATION To my family: Mom, Dad, Ryan, Lily Ann, and Rachel. For always supporting me in all of my adventures in life, big and small. iii ACKNOWLEDGEMENTS I am tremendously grateful for the mentorship of my Ph.D. advisor, James H. Brown, for his thoughtful comments, criticisms, and inspiring discussions. My interactions with Jim have fundamentally changed how I approach science.
    [Show full text]
  • Journal of Zoology (2019)
    Journal of Zoology. Print ISSN 0952-8369 Feline predator–prey relationships in a semi-arid biome in Brazil D. M. Dias1 , R. L. Massara2,3 , C. B. de Campos4 & F. H. G. Rodrigues1 1 Programa de Pos-Graduac ßao~ em Ecologia, Conservacßao~ e Manejo da Vida Silvestre, Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil 2 Laboratorio de Ecologia e Conservacßao,~ Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil 3 Instituto SerraDiCal de Pesquisa e Conservacßao,~ Belo Horizonte, Brazil 4 Instituto para a Conservacßao~ dos Carnıvoros Neotropicais – Pro-Carn ıvoros, Atibaia, Brazil Keywords Abstract neotropics; mesocarnivores; species interactions; spatiotemporal distribution; spatial segregation; The spatiotemporal distribution of a predator within an environment tends to be temporal segregation. synchronized with that of its prey, to maximize the efficiency of its hunting behav- ior. However, small predators may also be obliged to avoid potentially agonistic Correspondence encounters with larger predators due to interspecific competition and intraguild pre- Douglas de Matos Dias, Programa de dation. We used occupancy models and indices of temporal overlap to evaluate Pos-Graduac ßao~ em Ecologia, Conservacßao~ e whether the occurrence of prey species, ocelots and top predators (puma and Manejo da Vida Silvestre, Departamento de jaguar) influenced the habitat use and activity patterns of the northern tiger cat and Biologia Geral, Universidade Federal de Minas jaguarundi in a region of the semi-arid Caatinga biome in Bahia, northeastern Bra- Gerais, Avenida Antonio^ Carlos, 6627, Pampulha, zil. The occurrence of prey had a positive influence on the use of habitat by the Belo Horizonte, MG 3127-901, Brazil.
    [Show full text]
  • Use of Mammals in a Semi-Arid Region of Brazil
    Silva Santos et al. Journal of Ethnobiology and Ethnomedicine (2019) 15:33 https://doi.org/10.1186/s13002-019-0313-4 RESEARCH Open Access Use of mammals in a semi-arid region of Brazil: an approach to the use value and data analysis for conservation Suellen da Silva Santos1,2,3*, Reinaldo Farias Paiva de Lucena4 , Hyago Keslley de Lucena Soares1,2,3, Vanessa Moura dos Santos Soares1,2, Natalice Santos Sales2,5 and Lívia Emanuelle Tavares Mendonça1,2,6 Abstract Background: This study aimed to survey the knowledge and use of mammals by the residents of the rural community of Capivara in the municipality of Solânea (Paraíba State, Northeast Brazil) and to propose a new method of using the use value as a tool for data analysis in ethnozoological surveys. Methods: The uses attributed to mammals were recorded through semi-structured interviews conducted with the breadwinners (men and women) living in the community. The species were identified through guided tours, by descriptions made by the interviewees, and using specimens donated by them, as well as by comparison with the pertinent scientific literature (morphological and ecological). Through the use value differentiated analysis, it was possible to distinguish the current use value of the species (effective use) from their potential use value (knowledge, but no effective use) to determine their real importance related to the uses cited by the studied group. Results: Nineteen species were cited; however, only 17 of them were identified and then distributed in 13 families. The other species were identified at the genus level Leopardus sp. and order Rodentia.
    [Show full text]
  • Parasite Remains Preserved in Various Materials and Techniques in Microscopy and Molecular Diagnosis 16
    Part II - Parasite Remains Preserved in Various Materials and Techniques in Microscopy and Molecular Diagnosis 16. Coprolite diagnosis, or who made the coprolite? Marcia Chame Luciana Sianto SciELO Books / SciELO Livros / SciELO Libros CHAME, M., and SIANTO, L. Coprolite diagnosis, or who made the coprolite?. In: FERREIRA, L.F., REINHARD, K.J., and ARAÚJO, A., ed. Foundations of Paleoparasitology [online]. Rio de Janeiro: Editora FIOCRUZ, 2014, pp. 255-272. ISBN: 978-85-7541-598-6. Available from: doi: 10.7476/9788575415986.0018. Also available in ePUB from: http://books.scielo.org/id/zngnn/epub/ferreira-9788575415986.epub. All the contents of this work, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 International license. Todo o conteúdo deste trabalho, exceto quando houver ressalva, é publicado sob a licença Creative Commons Atribição 4.0. Todo el contenido de esta obra, excepto donde se indique lo contrario, está bajo licencia de la licencia Creative Commons Reconocimento 4.0. Coprolite diagnosis, or who made the coprolite? 16 Coprolite diagnosis, or who made the coprolite? Marcia Chame • Luciana Sianto hen we find a lost pen drive, open it, and read some of the files, we can definitely speculate on the owner’s Wpersonality. The data saved on it often suggest the person’s profession, interests, places they have visited, family relations, and even a guess at their sex. The same is true for biological remains found in nature, which are veritable data storage units. With focus, skill, and adequate techniques, we can learn and reconstruct a great deal from some samples.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]