Genomic Basis and Tradeoffs of Gigantism in the Capybara

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Basis and Tradeoffs of Gigantism in the Capybara bioRxiv preprint doi: https://doi.org/10.1101/424606; this version posted September 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 How to make a rodent giant: Genomic basis and tradeoffs of 2 gigantism in the capybara, the world’s largest rodent 3 4 Authors: 5 Santiago Herrera-Álvarez*1, Elinor Karlsson2, Oliver A. Ryder3, Kerstin Lindblad-Toh2,4, & 6 Andrew J. Crawford1 7 8 Affiliations: 9 1 Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia 10 2 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 11 3 San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, 92027, USA 12 4 Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 13 752 36 Uppsala, Sweden. 14 15 *Corresponding author: 16 Address: Universidad de los Andes 17 Calle 19 No. 1-60, Bogotá, código postal 111711, Colombia, South America. 18 Email: [email protected] 19 Phone: +1(312) 536-1206 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/424606; this version posted September 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 Gigantism is the result of one lineage within a clade evolving extremely large body size 24 relative to its small-bodied ancestors, a phenomenon observed numerous times in 25 animals. Theory predicts that the evolution of giants should be constrained by two 26 tradeoffs. First, because body size is negatively correlated with population size, purifying 27 selection is expected to be less efficient in species of large body size, leading to a 28 genome-wide elevation of the ratio of non-synonymous to synonymous substitution rates 29 (dN/dS) or mutation load. Second, gigantism is achieved through higher number of cells 30 and higher rates of cell proliferation, thus increasing the likelihood of cancer. However, 31 the incidence of cancer in gigantic animals is lower than the theoretical expectation, a 32 phenomenon referred to as Peto’s Paradox. To explore the genetic basis of gigantism in 33 rodents and uncover genomic signatures of gigantism-related tradeoffs, we sequenced the 34 genome of the capybara, the world’s largest living rodent. We found that dN/dS is 35 elevated genome wide in the capybara, relative to other rodents, implying a higher 36 mutation load. Conversely, a genome-wide scan for adaptive protein evolution in the 37 capybara highlighted several genes involved in growth regulation by the insulin/insulin- 38 like growth factor signaling (IIS) pathway. Capybara-specific gene-family expansions 39 included a putative novel anticancer adaptation that involves T cell-mediated tumor 40 suppression, offering a potential resolution to Peto’s Paradox in this lineage. Gene 41 interaction network analyses also revealed that size regulators function simultaneously as 42 growth factors and oncogenes, creating an evolutionary conflict. Based on our findings, 43 we hypothesize that gigantism in the capybara likely involved three evolutionary steps: 1) 44 Increase in body size by cell proliferation through the ISS pathway, 2) coupled evolution 45 of growth-regulatory and cancer-suppression mechanisms, possibly driven by 46 intragenomic conflict, and 3) establishment of the T cell-mediated tumor suppression 47 pathway as an anticancer adaptation. Interestingly, increased mutation load appears to be 48 an inevitable outcome of an increase in body size. 49 2 bioRxiv preprint doi: https://doi.org/10.1101/424606; this version posted September 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 50 Author Summary 51 The existence of gigantic animals presents an evolutionary puzzle. Larger animals have 52 more cells and undergo exponentially more cell divisions, thus, they should have 53 enormous rates of cancer. Moreover, large animals also have smaller populations making 54 them vulnerable to extinction. So, how do gigantic animals such as elephants and blue 55 whales protect themselves from cancer, and what are the consequences of evolving a 56 large size on the ‘genetic health’ of a species? To address these questions we sequenced 57 the genome of the capybara, the world’s largest rodent, and performed comparative 58 genomic analyses to identify the genes and pathways involved in growth regulation and 59 cancer suppression. We found that the insulin-signaling pathway was involved in the 60 evolution of gigantism in the capybara. We also found a putative novel anticancer 61 mechanism mediated by the detection of tumors by T-cells, offering a potential solution 62 to how capybaras mitigated the tradeoff imposed by cancer. Furthermore, we show that 63 capybara genome harbors a higher proportion of slightly deleterious mutations relative to 64 all other rodent genomes. Overall, this study provides insights at the genomic level into 65 the evolution of a complex and extreme phenotype, and offers a detailed picture of how 66 the evolution of a giant body size in the capybara has shaped its genome. 3 bioRxiv preprint doi: https://doi.org/10.1101/424606; this version posted September 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 67 Introduction 68 Body size is arguably the most apparent characteristic when studying multicellular life, 69 and understanding how and why body size evolves has been a major question in biology 70 [1]. Body size is a canonical complex trait, and, consequently, ontogenetic changes 71 underlying body size evolution affect other life-history traits, such as fecundity and 72 longevity [2,3]. Yet, how size is developmentally controlled to generate species-specific 73 differences remains elusive. Although increase in body size has several selective 74 advantages [4], maximum body size in tetrapods appears to be determined mostly by 75 intrinsic biological constraints [5–7]. Two major tradeoffs in the evolution of large bodies 76 are the reduction in population size and the increased risk of developing growth- 77 associated diseases, such as cancer [8,9]. 78 79 Larger species have lower population densities [8], slower metabolic rates, longer 80 generation times, and a lower reproductive output [3]. Together these traits lead to an 81 overall reduction in the genetic effective population size (Ne) relative to small-bodied 82 species [10]. In a finite population, the interplay between selection and genetic drift 83 determines the fate of newly arisen mutations, and the strength of drift relative to 84 selection will largely depend on Ne [11]. In smaller populations, slightly deleterious 85 mutations are expected to accumulate at a higher rate than in larger populations, due to 86 stronger genetic drift relative to purifying selection, thus increasing the mutation load in 87 the population, which may increase the risk of extinction [12]. Furthermore, animals have 88 positive allometric scaling of number of cells in the body with overall body size [13]. 89 Thus, if every cell has an equal probability, however low, of becoming cancerous and 90 related species have equivalent cancer suppression mechanisms, the risk of developing 91 cancer should increase as a function of number of cells. Therefore, large species should 92 face a higher lifetime risk of cancer simply because large bodies contain more cells 93 [9,14]. Moreover, giant body sizes are achieved mainly by an accelerated post-natal 94 growth rate [15], which represents an increment in the rate of cell proliferation [16]. For a 95 given mutation rate, an elevated rate of cell proliferation accelerates the rate of 96 accumulation of mutations and, thus, increases the chances for a cell population of 97 becoming cancerous [17]. 98 4 bioRxiv preprint doi: https://doi.org/10.1101/424606; this version posted September 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 99 The continued existence of enormous animals, such as whales and elephants, implies, 100 however, that the evolution of gigantism must be coupled with the evolution of cancer 101 suppression mechanisms. In fact, the lack of correlation between size and cancer 102 incidence, known as Peto’s Paradox, suggests that large-sized species have mitigated the 103 inherent increase in cancer risk associated with the evolution of large bodies [9,14]. For 104 instance, genomes of the Asian and African elephants (Elephas maximus; Loxodonta 105 africana) and the bowhead whale (Balaena mysticetus), three of the largest living 106 mammals, revealed lineage-specific expansion of genes associated with tumor 107 suppression via enhanced DNA-damage response [18,19] and cell cycle control [20], 108 respectively. Thus, cancer selection, i.e., selection to prevent or postpone deaths due to 109 cancer at least until after attainment of reproductive maturity, is especially important as 110 animals evolve larger bodies and might account for the relative lower incidence of cancer 111 in large animals and the evolution of anticancer mechanisms [21].
Recommended publications
  • Characterization of the Estrous Cycle in Galea Spixii (Wagler, 1831)1
    Pesq. Vet. Bras. 35(1):89-94, janeiro 2015 DOI: 10.1590/S0100-736X2015000100017 Characterization of the estrous cycle in Galea spixii (Wagler, 1831)1 Amilton C. Santos2, Diego C. Viana2, Bruno M. Bertassoli3, Gleidson B. Oliveira4, Daniela M. Oliveira2, Ferdinando V.F. Bezerra4, Moacir F. Oliveira4 and Antônio C. Assis-Neto2* ABSTRACT.- Santos A.C., Viana D.C., Bertassoli B.M., Oliveira G.B., Oliveira D.M., Bezerra F.V.F., Oliveira M.F. & Assis-Neto A.C. 2015. Characterization of the estrous cycle in Galea spixii (Wagler, 1831). Pesquisa Veterinária Brasileira 35(1):89-94. Setor de Anatomia dos Animais Domésticos e Silvestres, Faculdade de Medicina Veterinária e Zootecnia, Univer- sidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, São Paulo, SP 05508-030, Brazil. E-mail: [email protected] The Galea spixii inhabits semiarid vegetation of Caatinga in the Brazilian Northeast. They are bred in captivity for the development of researches on the biology of reproduction. The- refore, the aim of this study is characterize the estrous cycle of G. spixii, in order to provide information to a better knowledge of captive breeding of the species. The estrous cycle was monitored by vaginal exfoliative cytology in 12 adult females. After the detection of two complete cycles in each animal, the same were euthanized. Then, histological study of the vaginal epithelium, with three females in each phase of the estrous cycle was performed; three other were used to monitor the formation and rupture of vaginal closure membrane. five were paired with males for performing the control group for estrous cycle phases, and- te cells in proestrus, intermediate and parabasal cells, with neutrophils, in diestrus and me- testrusBy vaginal respectively exfoliative was cytology, found.
    [Show full text]
  • Redalyc.Mountain Vizcacha (Lagidium Cf. Peruanum) in Ecuador
    Mastozoología Neotropical ISSN: 0327-9383 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Werner, Florian A.; Ledesma, Karim J.; Hidalgo B., Rodrigo Mountain vizcacha (Lagidium cf. peruanum) in Ecuador - First record of chinchillidae from the northern Andes Mastozoología Neotropical, vol. 13, núm. 2, julio-diciembre, 2006, pp. 271-274 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Available in: http://www.redalyc.org/articulo.oa?id=45713213 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mastozoología Neotropical, 13(2):271-274, Mendoza, 2006 ISSN 0327-9383 ©SAREM, 2006 Versión on-line ISSN 1666-0536 www.cricyt.edu.ar/mn.htm MOUNTAIN VIZCACHA (LAGIDIUM CF. PERUANUM) IN ECUADOR – FIRST RECORD OF CHINCHILLIDAE FROM THE NORTHERN ANDES Florian A. Werner¹, Karim J. Ledesma2, and Rodrigo Hidalgo B.3 1 Albrecht-von-Haller-Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany; <[email protected]>. 2 Department of Biological Sciences, Florida Atlantic University, Boca Raton, U.S.A; <[email protected]>. 3 Colegio Nacional Eloy Alfaro, Gonzales Suarez y Sucre, Cariamanga, Ecuador; <[email protected]>. Key words. Biogeography. Caviomorpha. Distribution. Hystricomorpha. Viscacha. Chinchillidae is a family of hystricomorph Cerro Ahuaca is a granite inselberg 2 km rodents distributed in the Andes of Peru, from the town of Cariamanga (1950 m), Loja Bolivia, Chile and Argentina, and in lowland province (4°18’29.4’’ S, 79°32’47.2’’ W).
    [Show full text]
  • Chinchilla-Complete1
    Chinchilla lanigera Chinchilla Class: Mammalia. Order: Rodentia. Family: Chinchillidae. Other names: Physical Description: A small mammal with extremely dense, velvet-like, blue-gray fur with black tinted markings. It has large, rounded ears, big eyes, a bushy tail, and long whiskers. The front paws have only four well-developed digits; the fifth toe is vestigial. The hind legs are longer than the forelimbs with three large toes and one tiny one. It is quite agile and capable of leaping both horizontally and vertically, reaching heights up to 6ft vertically. Weight is reported to range from18-35 oz. The head and body is 9-15”, averaging 12”; the tail averages 3-6”. Females (does) are larger and heavier than males (bucks). Crying, barking, chattering, chirping, and a crackling vocalization if angry are all normal sounds for a chinchilla. Domestic chinchillas have been selectively bred to rear other colors beside the wild blue-gray including beige, silver, cream and white. Diet in the Wild: Bark, grasses, herbs, seeds, flowers, leaves. Diet at the Zoo: Timothy hay, chinchilla diet, apples, grapes, raisins, banana chips, almonds, peanuts, sunflower seeds, romaine. Habitat & Range: High Andes of Bolivia, Chile, and Peru, but today colonies in the wild remain only in Chile, live within rocky crevices and caverns. Life Span: Up to 15-20 years in captivity; avg. 8-10 in the wild. Perils in the wild: Birds of prey, skunks, felines, snakes, canines, and humans. Physical Adaptations: If threatened, chinchillas depend upon their running, jumping, and climbing skills. If provoked, they are capable of inflicting a sharp bite.
    [Show full text]
  • Genetic Diversity and Population Structure of the Guinea Pig (Cavia Porcellus, Rodentia, Caviidae) in Colombia
    Genetics and Molecular Biology, 34, 4, 711-718 (2011) Copyright © 2011, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, Caviidae) in Colombia William Burgos-Paz1, Mario Cerón-Muñoz1 and Carlos Solarte-Portilla2 1Grupo de Investigación en Genética, Mejoramiento y Modelación Animal, Facultad Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia. 2Grupo de Investigación en Producción y Sanidad Animal, Universidad de Nariño, Pasto, Colombia. Abstract The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven produc- tion zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and ob- served heterozygosity (Ho) from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically signifi- cant (p < 0.05), genetic differentiation between population pairs was found to be low. Genetic distance, as well as clustering of guinea-pig lines and populations, coincided with the historical and geographical distribution of the popu- lations. Likewise, high genetic identity between improved and native lines was established. An analysis of group probabilistic assignment revealed that each line should not be considered as a genetically homogeneous group. The findings corroborate the absorption of native genetic material into the improved line introduced into Colombia from Peru. It is necessary to establish conservation programs for native-line individuals in Nariño, and control genealogi- cal and production records in order to reduce the inbreeding values in the populations.
    [Show full text]
  • Chinchillas History the Chinchilla Is a Rodent Which Is Closely Related To
    Chinchillas History The chinchilla is a rodent which is closely related to the guinea pig and porcupine. The pet chinchilla’s wild counterpart inhabits the Andes Mountain areas of Peru, Bolivia, Chile, and Argentina. In the wild state, they live at high altitudes in rocky, barren mountainous regions. They have been bred in captivity since 1923 primarily for their pelts. Some chinchillas that were fortunate enough to have substandard furs were sold as pets or research animals. Today chinchillas are raised for both pets and pelts. Chinchilla laniger is the main species bred today. They tend to be fairly clean, odorless, and friendly pets but usually are shy and easily frightened. They do not make very good pets for young children, since they tend to be high-strung and hyperactive (both children and chinchillas). The fur is extremely soft and beautiful bluish grey in color thus leading to their popularity in the pelt industry. Current color mutations include white, silver, beige, and black. Diet Commercial chinchilla pellets are available, but they are not available through all pet shops and feed stores. When the chinchilla variety is not in stock, a standard rabbit or guinea pig pellet can be fed in its place. Chinchillas tend to eat with their hands and often throw out a lot of pellets thus cause wastage. A pelleted formulation should constitute the majority of the animal’s diet. “Timothy”, or other grass hay, can be fed in addition to their pellets. Alfalfa hay is not recommended due to its high calcium content relative to phosphorus. Hay is a beneficial supplement to the diet for nutritional and psychological reasons.
    [Show full text]
  • Morphological Development of the Testicles and Spermatogenesis in Guinea Pigs (Cavia Porcellus Linnaeus, 1758)
    Original article http://dx.doi.org/10.4322/jms.107816 Morphological development of the testicles and spermatogenesis in guinea pigs (Cavia porcellus Linnaeus, 1758) NUNES, A. K. R.1, SANTOS, J. M.1, GOUVEIA, B. B.1, MENEZES, V. G.1, MATOS, M. H. T.2, FARIA, M. D.3 and GRADELA, A.3* 1Projeto de Irrigação Senador Nilo Coelho, Universidade Federal do Vale de São Francisco – UNIVASF, Rod. BR 407, sn, Km 12, Lote 543, C1, CEP 56300-990, Petrolina, PE, Brazil 2Projeto de Irrigação Senador Nilo Coelho, Medicina Veterinária, Núcleo de Biotecnologia Aplicada ao Desenvolvimento Folicular Ovariano, Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco – UNIVASF, Rod. BR 407, sn, Km 12, Lote 543, C1, CEP 56300-990, Petrolina, PE, Brazil 3Projeto de Irrigação Senador Nilo Coelho, Laboratório de Anatomia dos Animais Domésticos e Silvestres, Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco – UNIVASF, Rod. BR 407, sn, Km 12, Lote 543, C1, CEP 56300-990, Petrolina, PE, Brazil *E-mail: [email protected] Abstract Introduction: Understanding the dynamics of spermatogenesis is crucial to clinical andrology and to understanding the processes which define the ability to produce sperm. However, the entire process cannot be modeled in vitro and guinea pig may be an alternative as animal model for studying human reproduction. Objective: In order to establish morphological patterns of the testicular development and spermatogenesis in guinea pigs, we examined testis to assess changes in the testis architecture, transition time from spermatocytes to elongated spermatids and stablishment of puberty. Materials and methods: We used macroscopic analysis, microstructural analysis and absolute measures of seminiferous tubules by light microscopy in fifty-five guinea pigs from one to eleven weeks of age.
    [Show full text]
  • Richness of Plants, Birds and Mammals Under the Canopy of Ramorinoa Girolae, an Endemic and Vulnerable Desert Tree Species
    BOSQUE 38(2): 307-316, 2017 DOI: 10.4067/S0717-92002017000200008 Richness of plants, birds and mammals under the canopy of Ramorinoa girolae, an endemic and vulnerable desert tree species Riqueza de plantas, aves y mamíferos bajo el dosel de Ramorinoa girolae, una especie arbórea endémica y vulnerable del desierto Valeria E Campos a,b*, Viviana Fernández Maldonado a,b*, Patricia Balmaceda a, Stella Giannoni a,b,c a Interacciones Biológicas del Desierto (INTERBIODES), Av. I. de la Roza 590 (O), J5402DCS Rivadavia, San Juan, Argentina. *Corresponding author: b CIGEOBIO, UNSJ CONICET, Universidad Nacional de San Juan- CUIM, Av. I. de la Roza 590 (O), J5402DCS Rivadavia, San Juan, Argentina, phone 0054-0264-4260353 int. 402, [email protected], [email protected] c IMCN, FCEFN, Universidad Nacional de San Juan- España 400 (N), 5400 Capital, San Juan, Argentina. SUMMARY Dominant woody vegetation in arid ecosystems supports different species of plants and animals largely dependent on the existence of these habitats for their survival. The chica (Ramorinoa girolae) is a woody leguminous tree endemic to central-western Argentina and categorized as vulnerable. We evaluated 1) richness of plants, birds and mammals associated with the habitat under its canopy, 2) whether richness is related to the morphological attributes and to the features of the habitat under its canopy, and 3) behavior displayed by birds and mammals. We recorded presence/absence of plants under the canopy of 19 trees in Ischigualasto Provincial Park. Moreover, we recorded abundance of birds and mammals and signs of mammal activity using camera traps.
    [Show full text]
  • Dolichotis Patagonum (CAVIOMORPHA; CAVIIDAE; DOLICHOTINAE) Mastozoología Neotropical, Vol
    Mastozoología Neotropical ISSN: 0327-9383 ISSN: 1666-0536 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Silva Climaco das Chagas, Karine; Vassallo, Aldo I; Becerra, Federico; Echeverría, Alejandra; Fiuza de Castro Loguercio, Mariana; Rocha-Barbosa, Oscar LOCOMOTION IN THE FASTEST RODENT, THE MARA Dolichotis patagonum (CAVIOMORPHA; CAVIIDAE; DOLICHOTINAE) Mastozoología Neotropical, vol. 26, no. 1, 2019, -June, pp. 65-79 Sociedad Argentina para el Estudio de los Mamíferos Argentina Available in: https://www.redalyc.org/articulo.oa?id=45762554005 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Mastozoología Neotropical, 26(1):65-79, Mendoza, 2019 Copyright ©SAREM, 2019 Versión on-line ISSN 1666-0536 http://www.sarem.org.ar https://doi.org/10.31687/saremMN.19.26.1.0.06 http://www.sbmz.com.br Artículo LOCOMOTION IN THE FASTEST RODENT, THE MARA Dolichotis patagonum (CAVIOMORPHA; CAVIIDAE; DOLICHOTINAE) Karine Silva Climaco das Chagas1, 2, Aldo I. Vassallo3, Federico Becerra3, Alejandra Echeverría3, Mariana Fiuza de Castro Loguercio1 and Oscar Rocha-Barbosa1, 2 1 Laboratório de Zoologia de Vertebrados - Tetrapoda (LAZOVERTE), Departamento de Zoologia, IBRAG, Universidade do Estado do Rio de Janeiro, Maracanã, Rio de Janeiro, Brasil. 2 Programa de Pós-Graduação em Ecologia e Evolução do Instituto de Biologia/Uerj. 3 Laboratorio de Morfología Funcional y Comportamiento. Departamento de Biología; Instituto de Investigaciones Marinas y Costeras (CONICET); Universidad Nacional de Mar del Plata.
    [Show full text]
  • Uso De Hábitat De La Mara (Dolichotis Patagonum) En El Área Natural Protegida Paso Córdoba (General Roca, Río Negro)
    2018 Uso de hábitat de la mara (Dolichotis patagonum) en el Área Natural Protegida Paso Córdoba (General Roca, Río Negro) Tesis para optar por el título de Licenciado en Saneamiento y Protección Ambiental Estudiante: Romina Semper Número de legajo: 119.272 Directora: Dra. Alonso Roldán, Virginia Co-directora: Lic. Bernardis, Adela M. Fecha de aprobación del plan de tesis: 23 de junio de 2016 Fecha de finalización de la tesis: 25 de abril de 2018 UNIVERSIDAD NACIONAL DEL COMAHUE FACULTAD DE CIENCIAS DEL AMBIENTE Y LA SALUD Estudiante: Semper, Romina Número de legajo: 119.272 Director: Dra. Alonso Roldán, Virginia Co-directora: Lic. Bernardis, Adela M. Fecha de aprobación del plan de tesis: 23 de junio de 2016 Fecha de finalización de tesis: 25 de abril de 2018 1 UNIVERSIDAD NACIONAL DEL COMAHUE FACULTAD DE CIENCIAS DEL AMBIENTE Y LA SALUD AGRADECIMIENTOS A mi directora, Virginia, por compartir su experiencia y saberes, por guiarme, por haberme cedido su tiempo, restándoselo a otras actividades. A mi co-directora, Adela, por caminar cada cuadrata, por su predisposición, ayuda, comprensión y enseñanza. A Cecilia Navarro, Guillermo Sabino y Andrea Lavalle, por su colaboración en sus respectivas áreas. A mis compañeras: Noe, Pame, Pil y Maira, por haber colaborado en el muestreo. A mi familia, por todo el amor que me brindaron: mis papás, que me motivaron a estudiar, me apoyaron, me bancaron y alentaron en cada decisión, gracias infinitas. Y a Belén y Diego, que además de hermanos son mis primeros amigos, siempre presentes, acompañándome y apoyándome en todo. A Martín, mi compañero de vida, por todo el apoyo, amor y compañía, pero sobre todo por esta hermosa familia que formamos.
    [Show full text]
  • Overkill, Glacial History, and the Extinction of North America's Ice Age Megafauna
    PERSPECTIVE Overkill, glacial history, and the extinction of North America’s Ice Age megafauna PERSPECTIVE David J. Meltzera,1 Edited by Richard G. Klein, Stanford University, Stanford, CA, and approved September 23, 2020 (received for review July 21, 2020) The end of the Pleistocene in North America saw the extinction of 38 genera of mostly large mammals. As their disappearance seemingly coincided with the arrival of people in the Americas, their extinction is often attributed to human overkill, notwithstanding a dearth of archaeological evidence of human predation. Moreover, this period saw the extinction of other species, along with significant changes in many surviving taxa, suggesting a broader cause, notably, the ecological upheaval that occurred as Earth shifted from a glacial to an interglacial climate. But, overkill advocates ask, if extinctions were due to climate changes, why did these large mammals survive previous glacial−interglacial transitions, only to vanish at the one when human hunters were present? This question rests on two assumptions: that pre- vious glacial−interglacial transitions were similar to the end of the Pleistocene, and that the large mammal genera survived unchanged over multiple such cycles. Neither is demonstrably correct. Resolving the cause of large mammal extinctions requires greater knowledge of individual species’ histories and their adaptive tolerances, a fuller understanding of how past climatic and ecological changes impacted those animals and their biotic communities, and what changes occurred at the Pleistocene−Holocene boundary that might have led to those genera going extinct at that time. Then we will be able to ascertain whether the sole ecologically significant difference between previous glacial−interglacial transitions and the very last one was a human presence.
    [Show full text]
  • Handraising Exotic Animals Western Plains
    HANDRAISING EXOTIC ANIMALS WESTERN PLAINS ZOO GENERAL DIRECTIVES: * All neonates (newborn) to be given colostrum for the first 24 - 36 hours where possible. Bovids, cervids, camelids, hippos etc. (order: Artiodactyla) to receive bovine colostrum. Equids, tapir, rhinos etc. (order: Perissodactyla) to receive equine colostrum. * All milk formulas to be gradually increased to 100% strength concentrations as recommended. i.e. Commence at 25% - 50% concentrations supplemented with vytrate, staged up by 25% at 24 hour intervals until 100% is reached. Use pre-boilded water to make up formulas. * Young to be fed 12 - 20% of their bodyweight in milk formula each day, divided equally between feeds. If innadequate volumes of formula are suckled then the neonate is to be tube fed until intake is adequate from the bottle. * Number of feeds per day is determined by species. * Weigh initially and weight gain/loss to be monitored at least weekly. * Routine is extremely important. Feeding times must be set and adhered to. It is usually better for one person to initiate feeding and to introduce other feeders as soon as possible to avoid neonates imprinting on one person. * All young need to be stimulated to urinate and defaecate after each feed by gentle patting - never rub. Ensure they are left clean afterwards. * Hygiene is of great importance. Bottles and teats need to be washed thoroughly and soaked in sterilising solution (Halasept). Utensils are to be rinsed with pre-boiled water before use. Face wipes are not shared with anus wipes etc. Cloths to be washed daily. All young to be left with a clean mouth after the feed (includes chin, lips etc.) * Milk temperature is to be fed at body temperature.
    [Show full text]
  • Cougar 1 Cougar
    Cougar 1 Cougar Cougar[1] Temporal range: Middle Pleistocene to recent Conservation status [2] Least Concern (IUCN 3.1) Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Felidae Genus: Puma Species: Puma concolor Binomial name Puma concolor (Linnaeus, 1771) Cougar 2 Cougar range The cougar (Puma concolor), also known as puma, mountain lion, mountain cat, catamount or panther, depending on the region, is a mammal of the family Felidae, native to the Americas. This large, solitary cat has the greatest range of any large wild terrestrial mammal in the Western Hemisphere,[3] extending from Yukon in Canada to the southern Andes of South America. An adaptable, generalist species, the cougar is found in every major American habitat type. It is the second heaviest cat in the Western Hemisphere, after the jaguar. Although large, the cougar is most closely related to smaller felines and is closer genetically to the domestic cat than to true lions. A capable stalk-and-ambush predator, the cougar pursues a wide variety of prey. Primary food sources include ungulates such as deer, elk, moose, and bighorn sheep, as well as domestic cattle, horses and sheep, particularly in the northern part of its range. It will also hunt species as small as insects and rodents. This cat prefers habitats with dense underbrush and rocky areas for stalking, but it can also live in open areas. The cougar is territorial and persists at low population densities. Individual territory sizes depend on terrain, vegetation, and abundance of prey. While it is a large predator, it is not always the dominant species in its range, as when it competes for prey with other predators such as the jaguar, grey wolf, American Black Bear, and the grizzly bear.
    [Show full text]