Dissertation „Methodological Approaches for Assessing the Environmental Performance of Perennial Crop- Based Value Chains”
Total Page:16
File Type:pdf, Size:1020Kb
Institute of Crop Science (340) Department of Biobased Products and Energy Crops (340b) D-70599 Stuttgart-Hohenheim, Germany Supervisor: Prof. Dr. Iris Lewandowski Dissertation „Methodological approaches for assessing the environmental performance of perennial crop- based value chains” Submitted to the Faculty of Agricultural Science, in fulfilment of the regulations to acquire the degree: Doctor scientiarum agriculturae (Dr. sc. agr.) Date of the acceptance of the dissertation: 02.10.2017 Date of oral exam: 29.11.2017 Submitted by Moritz Wagner Dean Faculty of Agricultural Science Prof. Dr. Ralf T. Vögele Thesis Committee Supervisor Prof. Dr. Iris Lewandowski University of Hohenheim, Germany Co-Supervisors Prof. Dr.-Ing. Martin Kaltschmitt Hamburg University of Technology, Germany Prof. Dr. Christian Lippert University of Hohenheim, Germany Content List of Figures ............................................................................................................................ ii List of Acronyms ....................................................................................................................... iii Abstract ...................................................................................................................................... 1 Zusammenfassung ...................................................................................................................... 3 1. General Introduction .................................................................................................... 6 1.1. Driving forces of change towards a bioeconomy ....................................................... 6 1.2. Biomass for a developing bioeconomy ...................................................................... 7 1.3. Perennial crops: A sustainable biomass resource? ..................................................... 8 1.4. Miscanthus – A promising bioeconomy crop for Europe......................................... 10 1.5. Assessing the environmental sustainability of perennial crop-based value chains .. 12 1.6. Aim of the study ....................................................................................................... 14 1.7. Publications .............................................................................................................. 15 1.8. References ................................................................................................................ 17 2. Evaluating key parameters for holistically assessing the environmental performance of perennial crop-based value chains ................................................. 24 2.1. Optimizing GHG emission and energy-saving performance of miscanthus-based value chains .............................................................................................................. 24 2.2. Relevance of environmental impact categories for perennial biomass production .. 25 3. Environmental impacts and benefits of perennial crop-based value chains .......... 40 3.1. Novel miscanthus germplasm-based value chains: A Life-Cycle Assessment ........ 40 3.2. Environmental performance of miscanthus, switchgrass and maize: Can C4 perennials increase the sustainability of biogas production? .................................... 59 4. General Discussion ...................................................................................................... 80 4.1. The influence of data used on the LCIA results and the importance of high data quality ....................................................................................................................... 81 4.2. Normalisation – An appropriate approach to assess the relevance of impact categories? ................................................................................................................ 84 4.3. Missing impact categories for the holistic assessment of bio-based value chains ... 88 4.4. Carbon sequestration – A twofold mitigation strategy through storage of CO2 in the soil and in the product .............................................................................................. 91 i 4.5. Assessing the environmental performance of perennial crop cultivation on marginal land ........................................................................................................................... 93 4.6. Conclusion ................................................................................................................ 95 4.7. References ................................................................................................................ 97 5. Acknowledgements .................................................................................................... 104 6. Curriculum vitae ....................................................................................................... 105 List of Figures Figure 4.1: Geographic scale at which the selected impact categories should be applied ....... 86 ii List of Acronyms a annum (lat. year) ADP abiotic depletion potential ALO agricultural land occupation AP acidification potential C carbon CAN calcium ammonium nitrate CC climate change Cd cadmium CH4 methane CHP combined heat and power unit Cl chlorine CO2 carbon dioxide Cr chromium Cu copper DM dry matter DTT distance-to-target EEG Renewable Energy Act EMI European Miscanthus Improvement EoL End-of-Life EP eutrophication potential EU European Union FAETP freshwater aquatic ecotoxicity potential FE freshwater eutrophication FET freshwater ecotoxicity FFD fossil fuel depletion FU functional unit GHG greenhouse gas GW gigawatt GWP global warming potential iii ha hectare HCL hydrogen chloride HHV higher heating value HT human toxicity ILCD International Reference Life Cycle Data System iLUC indirect land-use change IPCC Intergovernmental Panel on Climate Change IR ionizing radiation IRENA International Renewable Energy Agency ISO International Organization for Standardization K potassium K2O potassium oxide KTBL Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. kWhel kilowatt hour of electricity LCA Life-Cycle Assessment LCI Life-Cycle Inventory LCIA Life-Cycle Impact Assessment LSF Life Support Function LUC land-use change ME marine eutrophication MET marine ecotoxicity Mg megagram MRD mineral resource depletion N nitrogen NF normalisation factor NH3 ammonia NLT natural land transformation N2O nitrous oxide NO nitric oxide NO3 nitrate OD ozone depletion ODP ozone depletion potential iv OECD Organisation for Economic Co-operation and Development OPTIMISC Optimizing Miscanthus Biomass Production ORC organic Rankine cycle P phosphor Pb lead P2O5 phosphorus pentoxide POCP photochemical ozone creation potential POF photochemical oxidant formation PMF particulate matter formation ppm parts per million S sulphur SO2 sulphur dioxide SOC soil organic carbon SOM soil organic matter SPML species-poor marginal land SRML species-rich marginal land TA terrestrial acidification TET terrestrial ecotoxicity TSP triple superphosphate ULO urban land occupation VDI Verein Deutscher Ingenieure VDLUFA Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten yr year WD water depletion v Abstract Abstract In a developing bioeconomy, the demand for biomass for industrial purposes is expected to increase significantly. This demand needs to be met in a sustainable way and without compromising food security. With this goal in mind, resource-efficient lignocellulosic crops, such as perennial energy grasses, are often cited as a biomass source with low negative impacts on the environment. Under European conditions, miscanthus is the leading perennial energy grass because of its high biomass and energy yield potential. It is a C4 plant, which achieves dry matter biomass yields of up to 20 Mg ha−1 yr−1 when harvested in later winter, and up to 30 Mg ha−1 yr−1 when harvested green in October. Currently the main utilization route of miscanthus is direct combustion for heat generation, but the biomass can also be used for various other applications, such as biofuels and insulation material. Several studies have analysed the environmental performance of perennial crop-based value chains, but most of these only assessed the Global Warming Potential (GWP). However, the GWP alone is not an adequate indicator for the holistic assessment of the environmental performance of such value chains. In addition, these studies often used generic data and applied varying assumptions, which makes a comparison of different value chains difficult. The main goal of this thesis is to draw up recommendations for future assessments of the environmental performance of perennial crop-based value chains. For this purpose, five research objectives were formulated: 1) to identify the key parameters influencing the environmental performance of perennial crop-based value chains; 2) to analyse which impact categories are most relevant when assessing the environmental performance; 3) to assess the differences between various perennial-crop based value chains; 4) to assess the environmental performance of the utilization of marginal land to grow perennial crops for industrial purposes; and 5) to analyse and compare the environmental performance of annual and perennial crops in the example value chain ‘biogas production’. To achieve these research objectives, the environmental performance of several perennial crop- based value chains was analysed in various impact categories applying the same underlying assumptions and using field data obtained