Towards Functional Assignment of Plasmodium

Total Page:16

File Type:pdf, Size:1020Kb

Towards Functional Assignment of Plasmodium Towards functional assignment of Plasmodium membrane transport proteins: an experimental genetics study on four diverse proteins A thesis submitted for the degree of Doctor of Philosophy of The Australian National University and Humboldt University of Berlin by François Laurent Frederic Korbmacher Submitted July 2020 © Copyright by François Laurent Frederic Korbmacher, 2020 All Rights Reserved Declaration The research presented in this thesis, except where otherwise acknowledged, is my own original work. Research conducted in cooperation is noted. The study was performed at the Australian National University under supervision of Prof. Dr. Alex G. Maier and at the Humboldt University of Berlin under supervision of Prof. Dr. Kai Matuschewski within the frame of a Cotutelle-degree by the IRTG2290 graduate program. No portion of the work presented in this thesis has been submitted for another degree. The word count for this thesis excluding tables, figures, bibliographies and appendices is 43,156 words. François Laurent Frederic Korbmacher Berlin, July 2020 Towards functional assignment of Plasmodium membrane transport proteins: an experimental genetics study on four diverse proteins Dissertation Zur Erlangung des akademischen Grades Doctor of Philosophy (PhD) im Fach Biologie eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt- Universität zu Berlin und der Australian National University von François Laurent Frederic Korbmacher geb. am 20.06.1990 in Neustadt an der Weinstraße Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät Prof. Dr. Bernhard Grimm Gutachter: Vorsitz: Prof. Dr. Christian Schmitz-Linneweber 1. Prof. Dr. Kai Matuschewski 2. Prof. Dr. Alex Maier 3. Prof. Tania De Koning-Ward 4. Prof. Dr. Simone Reber 5. Dr. Jandeli Niemand Tag der mündlichen Prüfung: 10.12.2020 Summary Membrane transport proteins (MTPs) transfer nutrients, metabolic products and inorganic ions across membranes. Many MTPs are essential for Plasmodium blood infection and gain importance as candidate drug targets in malaria therapy, whereas the physiological functions of many MTPs still remain enigmatic. In this thesis, we applied experimental genetics to determine key characteristics of four selected Plasmodium MTPs, including spatio-temporal expression and phenotypical analysis of knockout mutants. We employed the murine malaria model parasite Plasmodium berghei and in vitro blood cultures of the human malaria parasite Plasmodium falciparum. For this study, we selected one conserved MTP called FT2, which was previously shown to transport folate, a P-type ATPase that is specific for P. falciparum as well as two essential MTPs, CRT and ATP4, with important roles in anti-malarial therapy. These targets exemplify the range of druggable candidates and illustrate the potential and limitations of reverse genetics to decipher their physiological roles for Plasmodium life cycle progression. A combination of transgenic and knockout strategies was applied to the P. berghei folate transporter 2 (FT2). We show that endogenously tagged FT2 localises to the apicoplast membranes, and is broadly expressed throughout the parasite’s life cycle. Strikingly, in two stages, schizonts and sporozoites, FT2 displays a dual localisation. Analysis of FT2-deficient parasites revealed a severe sporulation defect in the vector; the vast majority of ft2– oocysts form large intracellular vesicles which displace the cytoplasm. Accordingly, very few sporozoites are generated and these are non-infectious to the mammalian host, resulting in a complete arrest of Plasmodium transmission. A candidate aminophospholipid P-type ATPase, that is encoded by human malaria parasites, but not P. berghei and related Vinckeia parasites, was assessed by a CRISPR/Cas9-mediated gene disruption. Compared to many vital P-type ATPases this gene is dispensable for asexual blood replication. Two MTPs, ATP4 and CRT are prime targets for antimalarial therapies. A comprehensive spatio-temporal expression analysis of transgenic parasites expressing mCherry- tagged proteins revealed expression beyond blood infection, indicative of functions in additional parasite stages. Together, the findings of this study contribute towards a better understanding of the roles of the four MTPs based on localisation, expression and functional deletion. i Zusammenfassung Membran Transport Proteine (MTPs) transferieren Nährstoffe, metabolische Produkte und anorganische Ionen über Membranen. Da etliche MTPs in den Plasmodium Blutstadien essentiell sind, geraten sie zunehmend in den Fokus der Wirkstoffentwicklung. Die eigentlichen physiologischen Rollen der Transporter sind jedoch oft ungeklärt. In dieser Arbeit wurden mittels experimenteller Genetik funktionelle Charakteristika, wie zeitliche und räumliche Expressionsmuster sowie phänotypische Analysen von Mutanten untersucht. Am Maus Parasiten Plasmodium berghei und der Plasmodium falciparum Blutstadien-Kultur wurden vier MTPs ausgewählt: ein konservierter Folat Transporter (FT2), sowie eine P. falciparum- spezifisches P-Typ ATPase und zwei essentielle MTPs mit wichtigen Rollen in der Malaria-Therapie (CRT und ATP4). Diese Auswahl verkörpert ein breites Spektrum an MTP Kandidaten für Wirkstoffziele und reflektieren zudem das Potenzial und die Grenzen funktioneller Analysen von Plasmodium MTPs mittels reverser Genetik. Für den Folat Transporter 2 (FT2) wurde eine Kombination von transgenen Strategien auf P. berghei angewandt. Durch ein endogenes tag von FT2 wurde die Lokalisierung im Apicoplast, eine doppelte Lokalisierung in Schizonten und Sporozoiten, sowie dessen Expression über fast den kompletten Zyklus hinweg gezeigt. Nach der Deletion von FT2, wiesen die Parasiten einen Defekt während der Sporulation im Vektor auf: der Großteil der ft2– Oozyten formt große, intrazelluläre und Zytoplasma verdrängende Vesikel. Demzufolge bilden sich nur sehr wenige und nicht infektiöse Sporozoiten, was letztendlich zur Unterbrechung des Lebenszyklus der Parasiten führt. Eine vermeintliche Aminophospholipid P-Typ ATPase, für die kein kodierendes Gen in der P. berghei mit inbegriffenen Vinckeia Klade auftritt, wurde mittels CRISPR/Cas9 in P. falciparum genetisch deletiert und die Mutante analysiert. Im Gegensatz zu den meisten vitalen P-Typ ATPasen erweist sich das Gen in den asexuellen Blutstadien als entbehrlich. Des Weiteren bilden die MTPs ATP4 und CRT einen einflussreichen Faktor bei Malaria-Therapien. Eine umfassende Analyse von räumlichen und zeitlichen Expressionsmustern von transgenen Parasiten mit mCherry-getaggten Proteinen zeigt ein Expression der beiden MTPs über die Blutstadien hinaus, was auf zusätzliche Funktionen in den jeweiligen Stadien verweist. Diese Studie trägt, basierend auf Lokalisation, Expression und funktioneller Deletion, zur funktionellen Entschlüsselung der vier untersuchten MTPs bei. ii Table of contents 1 st Chapter: General Introduction ........................................................................... 1 1.1 Plasmodium and malaria ...................................................................................... 1 1.2 Life cycle of the Plasmodium parasite ................................................................ 1 1.3 Membrane Transport Proteins in Plasmodium ................................................... 4 1.4 Towards a functional classification of MTPs ...................................................... 6 1.5 Aims of the study .................................................................................................. 8 2 nd Chapter: Materials and Methods ....................................................................... 9 2.1 Materials ................................................................................................................ 9 2.1.1 Experimental organisms ............................................................................................................. 9 2.1.2 Plasmodium targeting vectors .................................................................................................... 9 2.1.3 Enzymes ...................................................................................................................................10 2.1.4 Antibodies ................................................................................................................................10 2.1.5 Media, buffers, stock and working solutions..............................................................................10 2.1.6 Laboratory equipment ..............................................................................................................11 2.1.7 Consumables ............................................................................................................................12 2.1.8 Commercial kits ........................................................................................................................13 2.1.9 Chemicals .................................................................................................................................13 2.1.10 Software and databases ............................................................................................................15 2.2 Methods ............................................................................................................... 15 2.2.1 Molecular- and microbiological methods for P. berghei and P. falciparum .................................15 2.2.1.1 Polymerase Chain Reaction (PCR).......................................................................................15
Recommended publications
  • Non-Invasive Surveillance for Plasmodium in Reservoir Macaque
    Siregar et al. Malar J (2015) 14:404 DOI 10.1186/s12936-015-0857-2 METHODOLOGY Open Access Non‑invasive surveillance for Plasmodium in reservoir macaque species Josephine E. Siregar1, Christina L. Faust2*, Lydia S. Murdiyarso1, Lis Rosmanah3, Uus Saepuloh3, Andrew P. Dobson2 and Diah Iskandriati3 Abstract Background: Primates are important reservoirs for human diseases, but their infection status and disease dynamics are difficult to track in the wild. Within the last decade, a macaque malaria, Plasmodium knowlesi, has caused disease in hundreds of humans in Southeast Asia. In order to track cases and understand zoonotic risk, it is imperative to be able to quantify infection status in reservoir macaque species. In this study, protocols for the collection of non-invasive samples and isolation of malaria parasites from naturally infected macaques are optimized. Methods: Paired faecal and blood samples from 60 Macaca fascicularis and four Macaca nemestrina were collected. All animals came from Sumatra or Java and were housed in semi-captive breeding colonies around West Java. DNA was extracted from samples using a modified protocol. Nested polymerase chain reactions (PCR) were run to detect Plasmodium using primers targeting mitochondrial DNA. Sensitivity of screening faecal samples for Plasmodium was compared to other studies using Kruskal Wallis tests and logistic regression models. Results: The best primer set was 96.7 % (95 % confidence intervals (CI): 83.3–99.4 %) sensitive for detecting Plasmo- dium in faecal samples of naturally infected macaques (n 30). This is the first study to produce definitive estimates of Plasmodium sensitivity and specificity in faecal samples= from naturally infected hosts.
    [Show full text]
  • Plasmodium Vivax in Vitro Continuous Culture: the Spoke in the Wheel
    Bermúdez et al. Malar J (2018) 17:301 https://doi.org/10.1186/s12936-018-2456-5 Malaria Journal REVIEW Open Access Plasmodium vivax in vitro continuous culture: the spoke in the wheel Maritza Bermúdez1, Darwin Andrés Moreno‑Pérez2,3, Gabriela Arévalo‑Pinzón1, Hernando Curtidor1,4 and Manuel Alfonso Patarroyo2,4* Abstract Understanding the life cycle of Plasmodium vivax is fundamental for developing strategies aimed at controlling and eliminating this parasitic species. Although advances in omic sciences and high-throughput techniques in recent years have enabled the identifcation and characterization of proteins which might be participating in P. vivax inva‑ sion of target cells, exclusive parasite tropism for invading reticulocytes has become the main obstacle in maintaining a continuous culture for this species. Such advance that would help in defning each parasite protein’s function in the complex process of P. vivax invasion, in addition to evaluating new therapeutic agents, is still a dream. Advances related to maintenance, culture medium supplements and the use of diferent sources of reticulocytes and parasites (strains and isolates) have been made regarding the development of an in vitro culture for P. vivax; however, only some cultures having few replication cycles have been obtained to date, meaning that this parasite’s maintenance goes beyond the technical components involved. Although it is still not yet clear which molecular mechanisms P. vivax prefers for invading young ­CD71+ reticulocytes [early maturation stages (I–II–III)], changes related to mem‑ brane proteins remodelling of such cells could form part of the explanation. The most relevant aspects regarding P. vivax in vitro culture and host cell characteristics have been analysed in this review to explain possible reasons why the species’ continuous in vitro culture is so difcult to standardize.
    [Show full text]
  • Plasmodium Falciparum Is Not As Lonely As Previously Considered
    AUTOPHAGIC PUNCTUM ARTICLE ADDENDUM Virulence 2:1, 71-76; January/February 2011; © 2011 Landes Bioscience Plasmodium falciparum is not as lonely as previously considered Franck Prugnolle,1,* Francisco Ayala,2 Benjamin Ollomo,3 Céline Arnathau,1 Patrick Durand1 and François Renaud1,* 1Laboratoire MIVEGEC; UM1-CNRS 5290-IRD 224, IRD Montpellier, France; 2Department of Ecology and Evolutionary Biology; University of California; Irvine, CA USA; 3Centre International de Recherches Médicales de Franceville; Franceville, Gabon ntil very recently, only one species The identification of Plasmodium spe- U(P. reichenowi) was known to be a cies circulating in great apes in Africa phylogenetic sister lineage of P. falciparum, was primarily done during the first half the main malignant agent of human of the twentieth century, on the basis of malaria. In 2009 and 2010, new studies morphological features.1 This approach have revealed the existence of several new has several limitations.4 First, phenotypic phylogenetic species related to this deadly plasticity can lead to incorrect identifica- parasite and infecting chimpanzees and tions. Second, morphological keys are gorillas in Africa. These discoveries invite often effective only for a particular life us to explore a whole set of new questions, stage which cannot always be observed which we briefly do in this article. or is difficult to be. Finally, and perhaps most important, this approach overlooks The Plasmodium species infecting morphologically cryptic taxa. These limi- humans and non-human primates cluster tations, together with the difficulty to into two distinct phylogenetic lineages collect and manipulate great apes, were (Fig. 1). One of these lineages (in yellow certainly, at least in part, responsible for in Fig.
    [Show full text]
  • Quantifying the Removal of Red Blood Cells in Macaca Mulatta During a Plasmodium Coatneyi Infection Luis L
    Fonseca et al. Malar J (2016) 15:410 DOI 10.1186/s12936-016-1465-5 Malaria Journal RESEARCH Open Access Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection Luis L. Fonseca1,4*, Harnel S. Alezi1, Alberto Moreno2,4, John W. Barnwell3,4, Mary R. Galinski2,4 and Eberhard O. Voit1,4 Abstract Background: Malaria is the most deadly parasitic disease in humans globally, and the long-time coexistence with malaria has left indelible marks in the human genome that are the causes of a variety of genetic disorders. Although anaemia is a common clinical complication of malaria, the root causes and mechanisms involved in the pathogenesis of malarial anaemia are unclear and difficult to study in humans. Non-human primate (NHP) model systems enable the mechanistic study and quantification of underlying causative factors of malarial anaemia, and particularly the onset of severe anaemia. Methods: Data were obtained in the course of Plasmodium coatneyi infections of malaria-naïve and semi-immune rhesus macaques (Macaca mulatta), whose red blood cells (RBCs) were labelled in situ with biotin at the time the infections were initiated. The data were used for a survival analysis that permitted, for the first time, an accurate esti- mation of the lifespan of erythrocytes in macaques. The data furthermore formed the basis for the development and parameterization of a recursive dynamic model of erythrocyte turnover, which was used for the quantification of RBC production and removal in each macaque. Results: The computational analysis demonstrated that the lifespan of erythrocytes in macaques is 98 21 days.
    [Show full text]
  • Legionella Genus Genome Provide Multiple, Independent Combinations for Replication in Human Cells
    Supplemental Material More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells Laura Gomez-Valero1,2, Christophe Rusniok1,2, Danielle Carson3, Sonia Mondino1,2, Ana Elena Pérez-Cobas1,2, Monica Rolando1,2, Shivani Pasricha4, Sandra Reuter5+, Jasmin Demirtas1,2, Johannes Crumbach1,2, Stephane Descorps-Declere6, Elizabeth L. Hartland4,7,8, Sophie Jarraud9, Gordon Dougan5, Gunnar N. Schroeder3,10, Gad Frankel3, and Carmen Buchrieser1,2,* Table S1: Legionella strains analyzed in the present study Table S2: Type IV secretion systems predicted in the genomes analyzed Table S3: Eukaryotic like domains identified in the Legionella proteins analyzed Table S4: Small GTPases domains detected in the genus Legionella as defined in the CDD ncbi domain database Table S5: Eukaryotic like proteins detected in the Legionella genomes analyzed in this study Table S6: Aminoacid identity of the Dot/Icm components in Legionella species with respect to orthologous proteins in L. pneumophila Paris Table S7: Distribution of seventeen highly conserved Dot/Icm secreted substrates Table S8: Comparison of the effector reperotoire among strains of the same Legionella species Table S9. Number of Dot/Icm secreted proteins predicted in each strain analyzed Table S10: Replication capacity of the different Legionella species analyzed in this study and collection of literature data on Legionella replication Table S11: Orthologous table for all genes of the 80 analyzed strains based on PanOCT. The orthologoss where defined with the program PanOCT using the parameters previously indicated in material and methods.) Figure S1: Distribution of the genes predicted to encode for the biosynthesis of flagella among all Legionella species.
    [Show full text]
  • Page 1 G16482.T1@[email protected]
    g16482.t1@[email protected] Page 1 of 1 0.2 100 Candidatus Thiomargarita nelsonii KHD07353 Bacillus thuringiensis Bt407 YP_006926419 Legionella pneumophila WP_014842957 88 Endozoicomonas montiporae WP_034879478 Acinetobacter baumannii WP_031968362 100 87 Vibrio nigripulchritudo WP_004402447 98 Psychrobacter sp. P11G3 WP_057760119 100 99 Xenorhabdus bovienii WP_038203911 100 Rouxiella chamberiensis WP_045046329 18 Dendroctonus ponderosae ERL83390 Serratia sp. M24T3 WP_009636677 98 56 100Lonsdalea quercina WP_026743324 Escherichia coli str. K-12 substr. MG1655 NP_415996 86 98 Chlorobi bacterium OLB5 KXK50071 CoptotermesTric_AAA92714 formosanus AGM32510 100 Histomonas meleagridis ACI16482 100Eucalyptus grandis XP_010033838 95 98 Ectocarpus siliculosus CBJ25596 Guillardia theta CCMP2712 XP_005838347 Phaeodactylum tricornutum CCAP 1055/1 XP_002180331 99 Aphanomyces astaci XP_009825348 95 100 Albugo laibachii Nc14 CCA15917 100 Phytophthora parasitica P1569 ETI54450 100 Phytophthora infestans T30-4 XP_002896607 100 Brugia malayi CDP93853 Bombus impatiens XP_003487345 Trichoplax adhaerens XP_002116081 95 Apteryx australis mantelli XP_013810665 100 100 Callorhinchus milii XP_007891153 Homo sapiens AAC50613 93 Callorhinchus milii XP_007900551 100 Clupea harengus XP_012674444 99 Chrysochloris asiatica XP_006865016 82 76 100 84Nannospalax galili XP_008842357 98 Cricetulus griseus XP_007626683 100 65Rousettus aegyptiacus XP_016015809 Condylura cristata XP_004683330 58Chinchilla lanigera XP_013367523 85 61Microcebus murinus XP_012594174
    [Show full text]
  • P. Falciparum, Replicates Within a Membrane-Bound Intraerythrocytic Parasitophorous Vacuole (PV)
    Homing in on getting out: Characterisation of SERA6, a putative malarial protease with a role in egress Andrea Ruecker March 2012 MRC National Institute for Medical Research Division of Parasitology Mill Hill, London NW7 1AA Division of Infection and Immunity University College London This thesis is submitted to University College London for the degree of Doctor of Philosophy 1 Declaration Declaration I, Andrea Ruecker, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Andrea Ruecker 2 Abstract Abstract The human malaria parasite, P. falciparum, replicates within a membrane-bound intraerythrocytic parasitophorous vacuole (PV). The resulting daughter merozoites actively escape from the host cell in a process called egress. There is convincing evidence that proteases are key players in this step. These proteases could serve as excellent targets for the development of new antimalarial drugs. P. falciparum Serine Repeat Antigens (SERAs) form a family of 9 proteins all containing a central papain- like domain that identifies them as putative cysteine proteases. They are highly conserved throughout all Plasmodium species, and there is strong genetic evidence that they may play a role in egress. P. falciparum SERA6 is one of the most highly- expressed SERAs in asexual erythrocyte stages. In this study biochemical fractionation and indirect immunofluorescence analysis were used to confirm localisation of SERA6 to the PV. It was shown that SERA6 is a substrate for PfSUB1, a subtilisin-like protease which is crucial for egress and which is released into the PV just prior to egress.
    [Show full text]
  • A MOLECULAR PHYLOGENY of MALARIAL PARASITES RECOVERED from CYTOCHROME B GENE SEQUENCES
    J. Parasitol., 88(5), 2002, pp. 972±978 q American Society of Parasitologists 2002 A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES Susan L. Perkins* and Jos. J. Schall Department of Biology, University of Vermont, Burlington, Vermont 05405. e-mail: [email protected] ABSTRACT: A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mito- chondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocy- tozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relation- ships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi,is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis.
    [Show full text]
  • Inferring Natural Selection Signals in Plasmodium Vivax-Encoded Proteins Having a Potential Role in Merozoite Invasion
    Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica. Diego Edison Garzón Ospina Tesis Doctoral presentada como requisito para optar al título de Doctor en Ciencias Biomédicas y Biológicas de la Universidad del Rosario Bogotá, 2018 1 Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica. Estudiante Diego Edison Garzón Ospina Biólogo, Universidad INCCA de Colombia Magister en Ciencias-Microbiología, Universidad Nacional de Colombia Director Manuel Alfonso Patarroyo Gutiérrez M.D., Dr.Sc. Jefe del Departamento de Biología Molecular e Inmunología Fundación Instituto de Inmunología de Colombia (FIDIC) Profesor Titular, Escuela de Medicina y Ciencias de la Salud Universidad del Rosario DOCTORADO EN CIENCIAS BIOMÉDICAS Y BIOLÓGICAS UNIVERSIDAD DEL ROSARIO Bogotá, 2018 2 AGRADECIMIENTOS Quiero dar mis agradecimientos y dedicar este trabajo a mi madre: Martha Ospina Vargas, y a mis hermanos: Yamile Garzón Ospina y Julián David Escobar Ospina, quienes me han acompañado y apoyado en todo momento. A Sindy Paola Buitrago Puentes por su acompañamiento y apoyo durante este tiempo. También agradecer al Dr. Manuel Alfonso Patarroyo Gutiérrez, por haberme acogido en su equipo de trabajo y por apoyarme a lo largo de todos estos años. Quiero agradecer y reconocer la labor de: Andrea Estefanía Ramos, Darwin Andrés Moreno Pérez, Elizabeth Gutiérrez Vásquez, Heidy Daniela Ortiz Suarez, Lady Johanna Forero Rodríguez, Laura Alejandra Ricaurte Contreras, Leidy Paola Reyes, Luis Alfredo Baquero, Paola Andrea Camargo Ayala, Sindy Paola Buitrago Puentes, Ricardo De León Montero y Yimara Grosso Paz, quienes aportaron su tiempo, dedicación y esfuerzo, permitiendo la culminación de este trabajo.
    [Show full text]
  • Debugging Parasite Genomes: Using Metabolic Modeling to Accelerate Antiparasitic Drug Development
    Debugging parasite genomes: Using metabolic modeling to accelerate antiparasitic drug development Maureen A. Carey Charlottesville, Virginia Bachelors of Science, Lafayette College 2014 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Microbiology, Immunology, and Cancer Biology University of Virginia September, 2018 i M. A. Carey ii Abstract: Eukaryotic parasites, like the casual agent of malaria, kill over one million people around the world annually. Developing novel antiparasitic drugs is a pressing need because there are few available therapeutics and the parasites have developed drug resistance. However, novel drug targets are challenging to identify due to poor genome annotation and experimental challenges associated with growing these parasites. Here, we focus on computational and experimental approaches that generate high-confidence hypotheses to accelerate labor-intensive experimental work and leverage existing experimental data to generate new drug targets. We generate genome-scale metabolic models for over 100 species to develop a parasite knowledgebase and apply these models to contextualize experimental data and to generate candidate drug targets. M. A. Carey iii Figure 0.1: Image from blog.wellcome.ac.uk/2010/06/15/of-parasitology-and-comics/. Preamble: Eukaryotic single-celled parasites cause diseases, such as malaria, African sleeping sickness, diarrheal disease, and leishmaniasis, with diverse clinical presenta- tions and large global impacts. These infections result in over one million preventable deaths annually and contribute to a significant reduction in disability-adjusted life years. This global health burden makes parasitic diseases a top priority of many economic development and health advocacy groups.
    [Show full text]
  • Plasmodium Asexual Growth and Sexual Development in the Haematopoietic Niche of the Host
    REVIEWS Plasmodium asexual growth and sexual development in the haematopoietic niche of the host Kannan Venugopal 1, Franziska Hentzschel1, Gediminas Valkiūnas2 and Matthias Marti 1* Abstract | Plasmodium spp. parasites are the causative agents of malaria in humans and animals, and they are exceptionally diverse in their morphology and life cycles. They grow and develop in a wide range of host environments, both within blood- feeding mosquitoes, their definitive hosts, and in vertebrates, which are intermediate hosts. This diversity is testament to their exceptional adaptability and poses a major challenge for developing effective strategies to reduce the disease burden and transmission. Following one asexual amplification cycle in the liver, parasites reach high burdens by rounds of asexual replication within red blood cells. A few of these blood- stage parasites make a developmental switch into the sexual stage (or gametocyte), which is essential for transmission. The bone marrow, in particular the haematopoietic niche (in rodents, also the spleen), is a major site of parasite growth and sexual development. This Review focuses on our current understanding of blood-stage parasite development and vascular and tissue sequestration, which is responsible for disease symptoms and complications, and when involving the bone marrow, provides a niche for asexual replication and gametocyte development. Understanding these processes provides an opportunity for novel therapies and interventions. Gametogenesis Malaria is one of the major life- threatening infectious Malaria parasites have a complex life cycle marked Maturation of male and female diseases in humans and is particularly prevalent in trop- by successive rounds of asexual replication across gametes. ical and subtropical low- income regions of the world.
    [Show full text]
  • Phylogenetic Analysis of Simian Plasmodium Spp. Infecting Anopheles Balabacensis Baisas in Sabah, Malaysia
    RESEARCH ARTICLE Phylogenetic analysis of simian Plasmodium spp. infecting Anopheles balabacensis Baisas in Sabah, Malaysia Tock H. Chua1*, Benny O. Manin1, Sylvia Daim1, Indra Vythilingam2, Chris Drakeley3 1 Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia, 2 Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 3 Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom a1111111111 a1111111111 * [email protected], [email protected] a1111111111 a1111111111 a1111111111 Abstract Background OPEN ACCESS Anopheles balabacensis of the Leucospyrus group has been confirmed as the primary Citation: Chua TH, Manin BO, Daim S, Vythilingam knowlesi malaria vector in Sabah, Malaysian Borneo for some time now. Presently, knowlesi I, Drakeley C (2017) Phylogenetic analysis of malaria is the only zoonotic simian malaria in Malaysia with a high prevalence recorded in simian Plasmodium spp. infecting Anopheles the states of Sabah and Sarawak. balabacensis Baisas in Sabah, Malaysia. PLoS Negl Trop Dis 11(10): e0005991. https://doi.org/ 10.1371/journal.pntd.0005991 Methodology/Principal findings Editor: Hans-Peter Fuehrer, Vienna, AUSTRIA Anopheles spp. were sampled using human landing catch (HLC) method at Paradason vil- lage in Kudat district of Sabah. The collected Anopheles were identified morphologically and Received: June 30, 2017 then subjected to total DNA extraction and polymerase chain reaction (PCR) to detect Plas- Accepted: September 24, 2017 modium parasites in the mosquitoes. Identification of Plasmodium spp. was confirmed by Published: October 2, 2017 sequencing the SSU rRNA gene with species specific primers.
    [Show full text]