Paleogeography, Diagenesis, and Paleohydrology of a Trinity Cretaceous Carbonate Beach Sequence, Central Texas

Total Page:16

File Type:pdf, Size:1020Kb

Paleogeography, Diagenesis, and Paleohydrology of a Trinity Cretaceous Carbonate Beach Sequence, Central Texas Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1972 Paleogeography, Diagenesis, and Paleohydrology of a Trinity Cretaceous Carbonate Beach Sequence, Central Texas. Richard Francis Inden Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Inden, Richard Francis, "Paleogeography, Diagenesis, and Paleohydrology of a Trinity Cretaceous Carbonate Beach Sequence, Central Texas." (1972). LSU Historical Dissertations and Theses. 2220. https://digitalcommons.lsu.edu/gradschool_disstheses/2220 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS Thi dissertation was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced. University Microfilms 300 North Zaeb Road Aon Arbor, Michigan AS 106 A Xerox Education Company $: ■■i 7 2 -2 8 ,355 INDEN, Richard Francis, 1943- PALEOGEOGRAPHY, DIAGENESIS, AND PALEOHYDROLOGY OF A TRINITY CRETACEOUS CARBONATE BEACH SEQUENCE, CENTRAL TEXAS. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1972 Geology University Microfilms, A XEROXCompany, Ann Arbor, Michigan © 1972 RICHARD FRANCIS INDEN ALL RIGHTS RESERVED THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED PALEOGEOGRAPHY, DIAGENESIS, AND PALEOHYDROLOGY OF A TRINITY CRETACEOUS CARBONATE BEACH SEQUENCE, CENTRAL TEXAS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College 1n partial fulfillment of the requirements for the degree of Doctor of Philosophy 1 n The Department of Geology by Richard Francis Inden B.S., University of Wisconsin, 1965 M.S., University of Illinois, 1968 May, 1972 PLEASE NOTE: Some pages may have i nd i st i net print. Filmed as received. University Microfilms, A Xerox Education Company ACKNOWLEDGMENTS Dr. C. H. Moore suggested this prob'em and served as my committee chairman throughout Its endurance. I am in­ debted to him and to Dr. Jeffrey Hanor, Dr. D. R. Lowe, Dr. G. F. Hart, Dr. Bob F. Perkins, Dr. Ray E. Ferrell, and Paul L. Stelneck for critically reviewing the manu­ script and making many useful comments. The author gra­ ciously acknowledges the guidance of Dr. P. E. Schilling, without whom the statistical analyses could not have been done; Mr. Mac Jervey and Alice Blenvenu assisted 1n the coding and keypunching of data for the computer analysis. Thanks are due to Frank Lozo and Fred Stricklin of Shell Oil Company for their help during the early stages of field work. The Texas Bureau of Economic Geology allowed the author to sample two donated Shell Oil cores. Sue Mouledoux and Tom LeFebvre aided 1n the preparation of samples. Gratitudes also go out to John Robinson, who did much of the photographic work; C liff Duplechln, for draft­ ing of the final plates; and Bunny Thlbodaux for typing. Special thanks are due James Kennedy for preparing the final plates. Financial support was provided by the Geology De­ partment, Louisiana State University, throughout the author's residency, and by a Sigma X1 Grants-1n-A1d of Research Award. 11 TABLE OF CONTENTS Page ACKNOWLEDGMENTS ......................................................................................... 1i LIST OF TABLES......................................................................................... v LIST OF FIGURES......................................................................................... vi ABSTRACT...........................................................................................................vH I INTRODUCTION .............................................................................................. 1 Purpose ........................................................................................................ 1 Study A r e a .............................................................................................. 3 Procedures ............................................................................................. 3 Regional Geological Setting ................................................... 5 MIDDLE TRINITY LITHOFACIES ........................................................... 7 Stratigraphy ......................................................................................... 7 Llthofades Analysis..................................................................... 12 Sycamore Conglomerate ................................................................ 12 Middle and Upper Hammett Shale ........................................ 18 Cow Creek Limestone ............................................ ..... 24 Hensel Sandstone .......................................................................... 44 Summary and PaleogeographlcReconstruction .... 51 CARBONATE DIAGENESIS .......................................................................... 57 G eneral ....................................................................................................... 57 Statistical Analysis ..................................................................... 59 Hammett Shale D1agenes1s ........................................................... 61 Clay Mineralogy, Diagenesis, Dolomite Injection . 61 Cow Creek Limestone D1agenes1s ............................................. 71 Grain D1agenes1s .......................................................................... 71 Intergranular D1agenes1s ................................................... 96 "Marine" Fung-Algal Caliche ................................................. 124 Summary ..............................................................................................................134 Hammett Shale .................................................................................... 134 Grain D1agenes1s ................................................................................135 Intergranular Diagenesis ............................................................ 137 Comparison with Other Beaches ............................................. 139 111 Page GENERAL DIAGENETIC-PALEOHYDROLOGIC CONCEPTUAL MODEL FOR MIDDLE TRINITY T I M E .............................................................142 General Paleohydrology and D1agenet1c Environments 142 Subsea Diagenesis .......................................................................... 143 Subaerial D1agenes1s ................................................................ 144 Cow Creek Strandllne Phase ...................................................... 147 Post-Cow Creek Strandllne Phase ............................................. 152 CONCLUSIONS AND IMPLICATIONS ...................................................... 160 REFERENCES.........................................................................................................168 APPENDIX A. Procedures ....................................................................... 183 APPENDIX B. Discussion of Significant Variations 1n the Outcrop and Outcrop by facies Interaction Analyses . ! ! . 190 APPENDIX C. Clay Mineralogy of the Hammett Shales and Carbonates . ! ! 1 ^ ^ 7~. 202 APPENDIX D, Other Dlagenetic Aspects of the Cow Creek Limestone .. I ! I ! I ! . 207 D1. Early L1th1fIcation of the Nodules and Nodular B e d s ........................................................207 D2. Grain Dolom1t1zat1on (RjE) .......................... 213 D3. The Irregular, Medial Crystal Juncture L i n e .....................................................................................217
Recommended publications
  • GSA Poster 2013 Long
    Hydrological and Geochemical Characteristics in the Edwards and Trinity Hydrostratigraphic Units Using Multiport Monitor Wells in the Balcones Fault Zone, Hays County, Central Texas Alan Andrews, Brian Hunt, Brian Smith Purpose Rising-falling K Slug-in K Slug-out K Zone Zone (ft/day) (ft/day) (ft/day) Thickness (ft) Trans ft2/day Stratigraphy 21 0.3 -- -- 35 10 Stratigraphy General Hydrologic ID To better understand the hydrogeological properties of and 20 53 -- -- 70 3700 Eagle Ford/ Hydrostratigraphy Function thickness in feet Lithology Porosity/Permeability Sources Rising-falling K Slug K Zone Transmissivity Qal? confining Zone (ft/day) (ft/day) Thickness (ft) (ft2/day) 19 5 8 6 30 140 40-50 Dense limestone Buda unit (CU) Low 18 3 3 -- 25 84 relationships between the geologic units that make up the Confining Units 14 -- -- 136 -- CU Blue-green to 17 38 -- 44 105 4000 Upper Del Rio 50-60 Upper Confining Unit 13 65 -- 72 13000 137.9’ Fract oyster wakestone yellow-brown clay 16 29 80 19 70 2000 12 2 -- 34 460 145.7’ stylolites and fract I Edwards, Upper and Middle Trinity Aquifers and to compare Georgetown Fm. CU Marly limestone; grnst Low 15 29 105 161 75 2100 40-60 11 4 -- 159 8300 Crystalline limestone; mdst to wkst 14 8 10 3 45 370 Leached and 199.6’ fossil (toucasid) vug Aquifer (AQ) III to milliolid grnst; chert; collapse High 10 0.09 -- 197 50 13 4 2 6 40 160 observed hydrologic properties of formations to generally accept- Collapsed mbrs 230’ solutioned bedding plane 30-80 breccia 9 0.005 -- 97 4 12 0.2 -- -- 85 -- 200 feet Reg.
    [Show full text]
  • Carbonate Factory Response and Recovery After Ocean Anoxic Event 1A, Pearsall Formation, Central Texas
    Copyright by Esben Skjold Pedersen 2020 The Thesis Committee for Esben Skjold Pedersen Certifies that this is the approved version of the following Thesis: Carbonate Factory Response and Recovery after Ocean Anoxic Event 1a, Pearsall Formation, Central Texas APPROVED BY SUPERVISING COMMITTEE: Charles Kerans, Supervisor Toti E. Larson, Co-Supervisor Daniel O. Breecker Carbonate Factory Response and Recovery after Ocean Anoxic Event 1a, Pearsall Formation, Central Texas by Esben Skjold Pedersen Thesis Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Science in Geological Sciences The University of Texas at Austin August 2020 Dedication To my parents for their endless support. To my sister, aunt, and uncle for opening my eyes to the world of the geological sciences. Acknowledgements Firstly, I would like to thank my co-supervisors, Charlie Kerans and Toti Larson, for the opportunity to continue my education as a graduate student at the University of Texas at Austin, and their wisdom both within and outside of the realm of geoscience. I would also like to thank Dan Breecker for serving on my committee, and for his advice during my time at UT. I am grateful to Equinor for investing in my research and education in the geological sciences while as a graduate student. I would like to thank Rob Forkner in particular, for his guidance and direction. I would like to thank the Staff at the Bureau of Economic Geology, including Nathan Ivicic, Brandon Williamson, and Rudy Lucero for their help and problem solving in the core warehouse, especially during COVID-19 restrictions, and to Evan Sivil for his help with pXRF dataset acquisition and guidance.
    [Show full text]
  • GEOLOGIC QUADRANGLE MAP NO. 49 Geology of the Pedernales Falls Quadrangle, Blanco County, Texas
    BUREAU OF ECONOMIC GEOLOGY THE UNIVERSITY OF TEXAS AT AUSTIN AUSTIN, TEXAS 78712 W. L. FISHER, Director GEOLOGIC QUADRANGLE MAP NO. 49 Geology of the Pedernales Falls Quadrangle, Blanco County, Texas By VIRGIL E. BARNES November 1982 THE UNIVERSITY OF TEXAS AT AUSTIN TO ACCOMPANY MAP-GEOLOGIC BUREAU OF ECONOMIC GEOLOGY QUADRANGLE MAP NO. 49 GEOLOGY OF THE PEDERNALES FALLS QUADRANGLE, BLANCO COUNTY, TEXAS Virgil E. Barnes 1982 CONTENTS General setting .. .. .. ............... 2 Cretaceous System (Lower Cretaceous) . 10 Geologic formations ......... .. ... 2 Trinity Group . 10 Paleozoic rocks ........... .. .. 2 Travis Peak Formation . 10 Cambrian System (Upper Cambrian) . 2 Sycamore Sand . 10 Moore Hollow Group ....... 2 Hammett Shale and Cow Creek Wilberns Formation . ........ 2 Limestone . 10 San Saba Member . .. .... 2 Shingle Hills Formation . 10 Ordovician System (Lower Ordovician) .. 3 Hensen Sand Member . 10 Ellenburger Group . ... .. .... 3 Glen Rose Limestone Member . 10 Tanyard Formation .. ... .... 3 Cenozoic rocks . 11 Threadgill Member ..... ... 3 Quaternary System . 11 Staendebach Member ....... 3 Pleistocene Series . 11 Gorman Formation ...... 4 Terrace deposits . 11 Honeycut Formation ......... 5 Recent Series . 11 Devonian system . .. .... .... 7 Alluvium . 11 Stribling Formation .... .. .. 7 Subsurface geology . 11 Devonian-Mississippian rocks . ...... 8 Mineral resources . 12 Joint fillings ...... ... ... 8 Construction materials . 12 Houy Formation ....... .. .. 8 Building stone . 12 Mississippian System ......... ...
    [Show full text]
  • Plate Stratigraphic & Structure Cross Sections11 E
    West East EXPLANATION M E E’ M Line intersection w/ B-B’ S M Upper Pan Glen Rose M 11-1 STRATIGRAPHIC CROSS SECTION E-E’ Geophysical Log & Samples (Kgru) S M Blanco River Dip Cross Section # # # Alex S. Broun, P.G., Douglas A. Wierman, P.G. # # and Wesley Schumacher M S F Wyn M Line intersection Geophysical Log Lower w/ C-C’ BLANCO CO. HAYS CO. Glen Rose M (Kgrl) S M M S G F Hensel (Khe) BLANCO RIVER Ap SB PR2 Upper Glen Rose: M Upper Trinity G G Upper Trinity Cow Creek ft LasM3 Upper Glen Rose (Kcc) 400 Limited Aquifer Geophysical Log & Samples Hammett Wall1 BLANCO (Kha) Ap SB PR1 Cie Sey Stl Nar Nel Arr Samples S G RIVER S M Geophysical Log Geophysical Log Geophysical Log Shell Core Geophysical Log Geophysical Log Sligo (Ksl) BLANCO RIVER 300 Lithology from Lederman Well S M Upper Aptian - Lower Albian Aptian - Lower Upper Stratotype Surface Sec. Offline one mile NW # Upper Glen Rose # Lower-Upper Sycamore/ “CA” Regional Marker Upper Glen Rose Glen Rose (1) Hosston Contact (Ksy/Kho) M 200 S F S KarstKarst Dinosaur tracks Little Blanco S F M measured section S F B. Hunt & S Lower Glen Rose BLANCO RIVER Burnet Ranch #1 S. Musick Shell core S Explanation M S Limestone (micr) Figure modified from Stricklin & S S F Lozo, 1971 and R.W. Scott, 2007 100 Limestone (skel) Lower Glen Rose Stratigraphic notes: Lower Glen Rose S Lower Glen Rose: Middle Trinity Aquifer LOWER CRETACEOUS Limestone (reef) 1- Edwards Group, Kainer Fm, as defined by Rose (1972).
    [Show full text]
  • Groundwater Flow Systems in Multiple Karst Aquifers of Central Texas
    GROUNDWATER FLOW SYSTEMS IN MULTIPLE KARST AQUIFERS OF CENTRAL TEXAS Brian A. Smith Barton Springs/Edwards Aquifer Conservation District, 1124 Regal Row, Austin, Texas, 78748, USA, [email protected] Brian B. Hunt Barton Springs/Edwards Aquifer Conservation District, 1124 Regal Row, Austin, Texas, 78748, USA, [email protected] Douglas A. Wierman Blue Creek Consulting, LLC, 400 Blue Creek Drive, Dripping Springs, Texas, 78620, USA, [email protected] Marcus O. Gary Edwards Aquifer Authority, 1615 N. St. Mary’s Street, San Antonio, Texas, 78215, USA, [email protected] Abstract hydrogeologic and resource evaluations and modeling of Increased demand for groundwater in central Hays the Middle Trinity Aquifer. County is prompting studies to evaluate the availability of groundwater in the Trinity Aquifers of central Texas. Introduction These aquifers, consisting mostly of limestone, dolomite, With limited surface water, central Texas is fortunate to and marl, exhibit varying degrees of karstification. Near have the Edwards and Middle Trinity karst aquifer systems the surface, karst features such as caves and sinkholes are that provide a variety of groundwater resources. The karstic evident, but are widely scattered. Even at depths greater Edwards Aquifer has been recognized for decades as a vital than 400 m (1,300 ft), units that are mostly limestone show groundwater resource, and thus many studies have been some degree of karstification where dissolution along published from Hill and Vaugh (1898) to recent (Hauwert fractures has caused development of conduits. Studies are and Sharp, 2014) that characterize the nature of the aquifer being conducted to better understand the horizontal and and its groundwater flow system.
    [Show full text]
  • U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017
    A Product of the Water Availability and Use Science Program Prepared in cooperation with the Department of Geological Sciences at the University of Texas at San Antonio and hosted by the Student Geological Society and student chapters of the Association of Petroleum Geologists and the Association of Engineering Geologists U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017 Edited By Eve L. Kuniansky and Lawrence E. Spangler Scientific Investigations Report 2017–5023 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN ZINKE, Secretary U.S. Geological Survey William Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Kuniansky, E.L., and Spangler, L.E., eds., 2017, U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017: U.S. Geological Survey Scientific Investigations Report 2017–5023, 245 p., https://doi.org/10.3133/sir20175023.
    [Show full text]
  • Carbonate Sedimentology and Facies Correlation of the Mason Mountain Wildlife Management Area: Mason, TX
    CARBONATE SEDIMENTOLOGY AND FACIES CORRELATION OF THE MASON MOUNTAIN WILDLIFE MANAGEMENT AREA MASON, TX An Undergraduate Research Scholars Thesis by JOHN CAMPBELL CRAIG Submitted to the Undergraduate Research Scholars program Texas A&M University in partial fulfillment of the requirements for the designation as an UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Advisor: Dr. Juan Carlos Laya May 2016 Major: Geology TABLE OF CONTENTS Page ABSTRACT .................................................................................................................................. 1 DEDICATION .............................................................................................................................. 3 ACKNOWLEDGEMENTS .......................................................................................................... 4 NOMENCLATURE ..................................................................................................................... 5 CHAPTER I INTRODUCTION ................................................................................................ 6 Geologic setting of study ...................................................................................... 7 Carbonate formation ........................................................................................... 10 Carbonate classification ...................................................................................... 11 II METHODS ........................................................................................................
    [Show full text]
  • Supporting Information
    Supporting Information Darrah et al. 10.1073/pnas.1322107111 SI Text mational brines away from the hinterland and into the foreland Geological Background. Northeastern Pennsylvania (Marcellus). The (i.e., Appalachian Plateau) (18, 19). Appalachian Basin is an archetypal energy-producing foreland Rifting of the Atlantic Ocean that began in the Mesozoic (e.g., basin (Fig. S1) located in the northeastern United States. In the Triassic basalts of Connecticut and New Jersey), accompanied by eastern part (northeastern Pennsylvania and southern New York) recent cycles of glacial advance and retreat, led to rapid exhu- of the northern Appalachian Basin (NAB), oil and gas production mation/unloading, erosion, and neotectonic jointing (i.e., often occurs within various lithologies throughout the northern termed J3) in at least the top 0.5 km of the crust (20). The major Appalachian Plateau region, but is largely confined to two genetic Triassic rift basins in the Appalachian Basin occur in the Gettys- – groups: (i) migrated gases sourced from Ordovician (∼485–443 burg Newark lowland and offshore. Because these rift basins are Ma) shales and hosted in Ordovician/Silurian (∼443–419 Ma) on the opposite side of the Appalachian Structural Front, it is tight sands and carbonates of the Trenton/Black River and (ii) highly unlikely that these Triassic rifts made significant mantle Middle Devonian (∼384–377 Ma) source/reservoir tight gas contributions to the gas chemistry of the plateau region, specifi- > black shales of the Marcellus Group (1). More complete de- cally in our study area (i.e., 150 km away from rift basins). Note that all of our samples have purely crustal helium isotope ra- scriptions of relevant Appalachian geology and hydrocarbon po- 3 4 20 22 – tios ( He/ He) and atmospheric neon isotope ratios ( Ne/ Ne tential in this area are available elsewhere (1 4).
    [Show full text]
  • Guidebook to the Geology of Travis County.Pdf (4.815Mb)
    Page | 1 Guidebook to the Geology of Travis County: Preface Geology of the Austin Area, Travis County, Texas Keith Young When Robert T. Hill first came to Austin, Texas, as the first professor of geology, he described Austin and its surrounding area as an ideal site for a school of geology because it offered such varied outcrops representing rocks of many ages and varieties. Although Hill resigned his position about 85 years ago, the opportunities of the local geology have not changed. Hill (Hill, 1889) implies the intent of writing a series of papers to describe the geology of the local area for all who might be interested. The authors of this volume hope that they have fulfilled in large measure Hill's original intent. No product can ever be all things to all users, but we have presented here common geological phenomenon for many, including the description of an ancient volcano, the description of faulting that occurred in the Austin area in the past, a geologic history of the Austin area, a description of the local rocks, including their classification, field trips for interested observers of the geologic scene, collecting localities for the lovers of fossils, and resource places and agencies. We cannot emphasize enough that many unique geological phenomena are on private property. Please do not trespass, obtain permission. And if permission is not granted, observe from a distance. There are sufficient areas of geologic interest in the Austin area to please all without antagonizing landowners and making it even more difficult for the next person. Page | 2 Guidebook to the Geology of Travis County: Author's Note A useful guide to the geology of the Austin area has long been a goal.
    [Show full text]
  • Ground-Water Availability of the Lower Cretaceous Formations in the Hill
    Report 273 GROUND- WA TER AVAILABILITY OF THE LOWER CRETACEOUS FORMATIONS IN THE HILL COUNTRY OF SOUTH- CENTRAL TEXAS TEXAS DEPARTMENT OF WATER RESOURCES January 1983 “‘._ __ __.. TEXAS DEPARTMENT OF WATER RESOURCES REPORT 273 GROUND-WATER AVAILABILITY OF THE LOWER CRETACEOUS FORMATIONS IN THE HILL COUNTRY OF SOUTH-CENTRAL TEXAS John B. Ashworth, Geologist January 1983 TEXAS DEPARTMENT OF WATER RESOURCES Charles E. Nemir, Executive Director TEXAS WATER DEVELOPMENT BOARD Louis A. Beecherl Jr., Chairman George W. McCleskey, Vice Chairman Glen E. Roney Lonnie A. “Bo” Pilgrim W. 0. Bankston Louie Welch TEXAS WATER COMMISSION Lee B. M. Biggart, Chairman Felix McDonald, Commissioner John D. Stover, Commissioner Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted The Department would appreciate acknowledgement. Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711 TABLE OF CONTENTS Page CONCLUSIONS . INTRODUCTION Purpose and Scope Location and Extent 2 Geography. 2 Topography and Drainage. 2 Population. 2 Economy and Land Use 3 Vegetation . 3 Climate. 3 Previous Investigations . 3 Acknowledgements. 3 Well-Numbering System 7 Definition of Terms . 8 Metric Conversions . 9 GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER. 9 Depositional History 9 Stratigraphy 9 Structure . 10 STRATIGRAPHY OF THE WATER-BEARING UNITS. 19 Pre-Cretaceous Rocks 19 Trinity Group. 19 Lower Trinity Aquifer 19 iii TABLE OF CONTENTS-Continued Page Middle Trinity Aquifer . 19 Upper Trinity Aquifer 33 Fredericksburg Group 33 Quaternary Alluvium 33 CHEMICAL QUALITY OF GROUND WATER AS RELATED TO USE 33 General Chemical Quality of Ground Water 33 Public Supply.
    [Show full text]
  • IN MEMORY of ROBERT LOUIS FOLK 30 September 1925 – 4 June 2018
    IN MEMORY OF ROBERT LOUIS FOLK 30 September 1925 – 4 June 2018 Robert Folk in a marble quarry in Lipari, Italy. IN MEMORY OF ROBERT LOUIS FOLK Compiled by Murray Felsher, Miles Hayes, Lynton Land, Earle McBride, and Kitty Milliken Produced by Joe Holmes, Research Planning, Inc. Murray Felsher, Ph.D. 1971 FOLKLORE – FIRST CONTACT Having never met him, I knew Robert L. Folk only by reputation. I had left Amherst MA and the University of Massachusetts, where I had undertaken my M.S. work. It was August 1961, and I was married two months earlier. I had spent the summer as a Carnegie College Teaching Intern teaching an Introductory Geology class at CCNY, where I had earned my B.S. As a native New Yorker, I rarely traveled west of the Hudson, and had never been west of the Mississippi. Gathering meager funds and overloading our VW Beetle with all our belongings, we were to be strangers in a strange land, wherein lived strange people who spoke a strangely attractive version of English. I had earlier applied to only two schools for my Ph.D. --- the Massachusetts Institute of Technology and the University of Texas at Austin, and was accepted by both. When I approached H.T.U. Smith --- chairman of the UMass Geology Department, for whom I served as a Graduate Teaching Assistant during my years there --- for his advice on where I should pursue my doctorate, he unhesitatingly said “Texas. Bob Folk is there. Without question, Texas.” But I did have a question or two, and H.T.U.
    [Show full text]
  • Faults Identified Using the Aerial Photo Analysis Were Ground Truthed, Then
    new study area fault map. Schumacher and Saller (2008) measured strike and dip on over 230 structural features in the area. Refernece Appendix 3. A rose diagram of the faults and fractures in the Cypress Creek watershed is included as Figure 23. The measured faults and fractures trend 45–60° (the major strike of the BFZ) or are conjugate features offset by 60°(105–120°). A study was performed by to delineate critical karst regions within Hays County as part of the Hays County Habitat Conservation Plan (www.hayscountyhcp.com). Figure 24 shows all geologic outcrops that may contain caves and karst features and also delineates areas with known caves and karst features. A number of the mapped karst features occur within the Cypress Creek/Jacob‘s Well study area (Figure 24). 8.0 Occurrence and Flow of Groundwater Figure 23. Structure Measurements—Rose Diagram 8.1 Precipitation The amount of annual precipitation has varied greatly since the USGS gauging station was installed in Jacob‘s Well in April 2005. Since then, there have been two drought periods, April 2005–February 2007 and September 2007–June 2008. As measured by NOAA in Wimberley (Table 3), the average monthly rainfall during the two drought events was 2.1‖ and 1.4‖, respectively. The period March 2007 through August 2007 was significantly wetter, with average monthly rain fall exceeding 7.3‖. Over the entire period of record as measured in Austin, TX since 1856, average annual rainfall is 33.57‖, or an average of 2.8‖ per month. 8.2 Hydrostratigraphy of the Cypress Creek Area Within the Cypress Creek area the principal Figure 24.
    [Show full text]