A Morphological Array Image Processor Controller Chip Set

Total Page:16

File Type:pdf, Size:1020Kb

A Morphological Array Image Processor Controller Chip Set Rochester Institute of Technology RIT Scholar Works Theses 2-1-1997 A Morphological array image processor controller chip set Christopher Insalaco Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Insalaco, Christopher, "A Morphological array image processor controller chip set" (1997). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. A MORPHOLOGICAL ARRAY IMAGE PROCESSOR CONTROLLER CHIP SET by Christopher J. Insalaco A thesis submitted In partial fulfillment ofthe requirements for the degree of Master ofScience In Computer Engineering Approved by: Prof. _ George A. Brown, Thesis Advisor Prof. _ Robert E. Pearson Prof. _ Roy S. Czernikowski, Department Head Department of Computer Engineering College ofEngineering Rochester Institute ofTechnology Rochester, New York February, 1997 A MORPHOLOGICAL ARRAY IMAGE PROCESSOR CONTROLLER CHIP SET I Christopher J. Insalaco hereby grant permission to the Wallace Library of the Rochester Institute of Technology to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. Date Christopher J. Insalaco A Morphological Array Image Processor Controller Chip Set Christopher J. Insalaco 11 Rochester Institute of Technology Abstract A MORPHOLOGICAL ARRAY IMAGE PROCESSOR CONTROLLER CHIP SET by Christopher J. Insalaco The design, simulation and layout of a controller chip set for a morphological array image processor shall be discussed. These VLSI chips in conjunction with the Morphological Array Processor (MAP) and Arithmetic Logic Unit (ALU) chip sets perform the morphological image processing operations of erosion and dilation on 512x512 pixel, 8-bit gray scale images using a 7x7 windowing matrix in real time (60 frames per second). The controller chip set design allows for pipelining of successive MAP's as well as operation on 1024x1024 pixel, 8-bit gray scale images. To facilitate the design, additional scaleable CMOS standard library cells and corresponding parameterized schematic library components were designed and integrated with the RIT CMOS standard cell library designed by Computer Engineering graduate student Larry Rubin as part of his Masters thesis1. In particular, additional D flip-flops with both Q and Q bar outputs, and-or- inverts, or-and-inverts, CMUXes, and MOSIS 64 and 84 pin pad rings were created. The cells were designed to be fabricated using the Metal Oxide Semiconductor Implementation System (MOSIS) scaleable CMOS 2.0 pm N- well (SCN) process. A complete set of Cadence design rule verification tools were also integrated with the existing CAE tool set to perform design rule checking (DRC), electrical rule checking (ERC), layout versus schematic checking (LVS), and layout parameter extraction (LPE) for the MOSIS SCN 2.0 pm N-well dense rule set. To verify the CMOS standard cell designs, test A Morphological Array Image Processor Controller Chip Set Christopher J. Insalaco jii chips were designed and sent to MOSIS for fabrication. The layout and design rule verification of the final two test chips, test chips five and six, was performed by the author. Test chip four contains a variety of MUXes and D flip-flops, test chip five contains a variety of transfer gates and inverters. The controller chip set consists of a 64 pin control chip (Controller) and an 84 pin memory controller chip (Mem_Control). The controller chips provide the ability to selectively process 512x512 or 1024x1024 image sizes by modifying "size" the pullup or pulldown of a bit. A selectable delay was implemented, through the pullup or pulldown setup of three delay bits, in the Controller to allow the Controller to be used with the single chip VLSI MAP design, the seven chip VLSI MAP design, and the Actel gate array MAP. The controller chip set allows successive MAPs to be pipelined by connecting the next Controllers pipeline start pin to the previous stages pipeline start next pin. A Morphological Array Image Processor Controller Chip Set Christopher J. Insalaco iv TABLE OF CONTENTS ABSTRACT iii LIST OF FIGURES vii LIST OF TABLES ix L INTRODUCTION 1 EL HISTORICAL REVIEW 2 A. Design Before theLibrary 2 B. Test Chips 3 C. The Commission ofaMorphological Chip Set 5 DI. THEORY 7 A. Morphology 7 1. EUCLIDEANMORPHOLOGY 8 2. DIGITAL MORPHOLOGY. 12 3. GRAYSCALE MORPHOLOGY 14 B. Design Rule Checking 16 IV. MATERIALS AND APPARATUS 23 A. Mentorand Cadence Tools 23 B. TektrontxLogic Verifier 27 V. METHOD OF PROCEDURE 27 A. Cadence DraculaH Layout Verification Tools Setup 29 B. Additional Standard Cells 31 C Test Chips 5 and 6 37 D. MorphologicalArray Processor Controller Design 40 1. The Functional Design Architecture ofthe MAP Controller Chip 40 2. The Top Level Design ofthe MAP Controller Chip Set 66 3. The Logic Design ofthe Controller andMemjOontrol 75 4. The Logic Simulation ofthe Controller andMemControl. 91 5. The Circuit Design ofthe Controller andMemControl 93 6. The Circuit Simulation ofthe Controller andMemControl 93 7. The MorphologicalArray Processor Top Level Simulation 94 8. The Layout ofthe Controller andMemControl 95 9. Suggested Testing Methodologyfor the Controller andMemControl 98 VL RESULTS 98 VH. DISCUSSION 101 Image Processor Controller A Morphological Array Chip Set Christopher J. Insalaco v VHL CONCLUSIONS 102 A. Future Work 103 APPENDIX A 105 DRC.COM File 105 APPENDIX B 109 LVS.COM File 109 APPENDIX C Ill LPE.COMFile Ill APPENDIX D 114 Simulation Files 114 1. Start Blank Physical Simulation File 114 2. Start Blank Physical Simulation Results 117 3. Start Blank Logical Simulation File 118 4. StartBlank Logical Simulation Results 120 APPENDIX E 121 Layout Plots 121 REFERENCES 125 BD3LIOGRAPHY 127 Image Processor J. A Morphological Array Controller Chip Set Christopher Insalaco vi LIST OF FIGURES Number Page Figure 1 SpacingCheck 19 Figure 2 Enclosure Check. 19 Figure 3 Transistor Overlap Check 20 Figure 4 Transistor Spacing Check 20 Figure 5 CMUX4 Schematic 32 Figure6 DLAT Schematic 33 Figure 7 DLATAR Schematic 34 Figure 8 ND3_2 Schematic 35 Figure9 NR3_2 Schematic 36 Figure 10 Test_Chip_5 Schematic 38 Figure 11 Test_Chip_6 Schematic 39 Figure 12 Image and WindowMatrices 43 Figure 13 MorphologicalArrayProcessorArchitecture 44 Figure 14 Blanking Bits 48 Figure 15 Blankingpart 1 53 Figure 16 Blankingpart 2 54 Figure 17 Blankingpart 3 55 Figure 18 Blanking part 4 56 Figure 19 Blankingpart 5 57 Figure 20 Blankingpart 6 58 Figure21 Blankingpart 7 59 Figure 22 Blankingpart 8 60 Figure 23 Blankingpart 9 61 Figure24 Blankingpart 10 62 Figure 25 Blankingpart 11 63 Figure 26 Blankingpart 12 64 Figure 27 Image_Processor Schematic 67 Figure 28 Controller_Chtp Schematic 79 Figure 29 Controller Schematic 80 Figure 30 VarJDelay Schematic 81 Figure 3 1 Bus_Select Schematic 82 Figure 32 Mem_Select Schematic 83 Figure 33 StartBlank Schematic 84 Figure 34 BlankCounter Schematic 85 Figure 35 Mem_Control_Chip Schematic 86 Figure 36 Mem_Control2 Schematic 87 Figure 37 Mem_Control Schematic 88 Figure 38 Mem_Counter Schematic 89 Figure 39 MUX2xl0 Schematic 90 Figure 40 Control Timing Diagram 92 Figure41 PowerRouting Architecture 97 Figure 42 Start BlankPhysical Simulation Output 117 Processor ControEer Set A Morphological Array Image Chip Christopher J. Insalaco vii Figure43 Start_Blank Logical Simulation Output 120 Figure 44 SCCCB Layout 121 Figure 45 SCCCBA Layout 122 Figure 46 SCCCBNA Layout 123 Figure 47 SCCCBNO Layout 124 A Morphological Image Processor Controller Array Chip Set Christopher J. Insalaco viii LIST OF TABLES Number Page Table 1 Binary Plxel Values and Their Decimal Equivalents 41 Table 2 Blanking Control Values ForAll IndexValues 48 Table 3 Blanking Control Values 50 Table 4 Blanking Control Values (cont'd) 51 Table 5 Controller Inputs / Outputs 69 Table 6 MemControl Inputs / Outputs 73 Table 7 WriteEnable Truth Table 77 Table 8 RIT CMOS Standard Cell Library Components 99 A Morphological Array Image Processor Controller Chip Set Christopher J. Insalaco jx ACKNOWLEDGMENTS To Linda and Michelle, who make it all worthwhile. The author wishes to thankJeff Correll for his help with the cell library and the incorporation of the REMEDI design rule checker into the Chipgraph macros, Shishir Ghate for his help with the cell library and ALU design and the integration of the library with Cellstation, Jeff Hanzlik for his help with the logical definition of the MAP, Jens Rodenberg for the MAP Architecture section and the logical design of the Controller, and Larry Rubin for his work in designing the cell library, enhancing the design automation tools and the design of the MAP. A Morphological Array Image Processor Controller Chip Set Christopher J. Insalaco x LIST OF ABBREVIATIONS ALU Arithmetic Logic Unit CAD Computer Aided Design CIF Caltech Intermediate Form CPF Circuit Path Finder DRC Design Rule Checker ERC Electrical Rule Checker HDL Hardware Description Language IBM International Business Machines Inc. LPE Layout Parameter Extractor LVS Layout Versus Schematic LSI Large Scale Integration MAP Morphological Array Processor MOSIS Metal Oxide Semiconductor Implementation System MSI Medium Scale Integration NSA National Security Agency RIT Rochester Institute of Technology SSI Small Scale Integration VLSI Very Large Scale Integration Morphological Image Processor Controller A Array
Recommended publications
  • A 2000 Frames / S Programmable Binary Image Processor Chip for Real Time Machine Vision Applications
    A 2000 frames / s programmable binary image processor chip for real time machine vision applications A. Loos, D. Fey Institute of Computer Science, Friedrich-Schiller-University Jena Ernst-Abbe-Platz 2, D-07743 Jena, Germany {loos,fey}@cs.uni-jena.de Abstract the inflexible and fixed instruction set. To meet that we present a so called ASIP (application specific instruction Industrial manufacturing today requires both an efficient set processor) which combines the flexibility of a GPP production process and an appropriate quality standard of (General Purpose Processor) with the speed of an ASIC. each produced unit. The number of industrial vision appli- cations, where real time vision systems are utilized, is con- tinuously rising due to the increasing automation. Assem- Embedded Vision System bly lines, where component parts are manipulated by robot 1. real scene image sensing, AD- CMOS-Imager grippers, require a fast and fault tolerant visual detection conversion and read out of objects. Standard computation hardware like PC-based 2. grey scale image image segmentation platforms with frame grabber boards are often not appro- representation priate for such hard real time vision tasks in embedded sys- 3. raw binary image image enhancement, tems. This is because they meet their limits at frame rates of representation removal of disturbance a few hundreds images per second and show comparatively ASIP FPGA long latency times of a few milliseconds. This is the result 4. improved binary image calculation of of the largely serial working and time consuming process- projections ing chain of these systems. In contrast to that we designed 5.
    [Show full text]
  • United Health Group Capacity Analysis
    Advanced Technical Skills (ATS) North America zPCR Capacity Sizing Lab SHARE Sessions 7774 and 7785 August 4, 2010 John Burg Brad Snyder Materials created by John Fitch and Jim Shaw IBM 1 © 2010 IBM Corporation Advanced Technical Skills Trademarks The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. AlphaBlox* GDPS* RACF* Tivoli* APPN* HiperSockets Redbooks* Tivoli Storage Manager CICS* HyperSwap Resource Link TotalStorage* CICS/VSE* IBM* RETAIN* VSE/ESA Cool Blue IBM eServer REXX VTAM* DB2* IBM logo* RMF WebSphere* DFSMS IMS S/390* xSeries* DFSMShsm Language Environment* Scalable Architecture for Financial Reporting z9* DFSMSrmm Lotus* Sysplex Timer* z10 DirMaint Large System Performance Reference™ (LSPR™) Systems Director Active Energy Manager z10 BC DRDA* Multiprise* System/370 z10 EC DS6000 MVS System p* z/Architecture* DS8000 OMEGAMON* System Storage zEnterprise ECKD Parallel Sysplex* System x* z/OS* ESCON* Performance Toolkit for VM System z z/VM* FICON* PowerPC* System z9* z/VSE FlashCopy* PR/SM System z10 zSeries* * Registered trademarks of IBM Corporation Processor Resource/Systems Manager The following are trademarks or registered trademarks of other companies. Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom. Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both. Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
    [Show full text]
  • Design and Architectures for Signal and Image Processing
    EURASIP Journal on Embedded Systems Design and Architectures for Signal and Image Processing Guest Editors: Markus Rupp, Dragomir Milojevic, and Guy Gogniat Design and Architectures for Signal and Image Processing EURASIP Journal on Embedded Systems Design and Architectures for Signal and Image Processing Guest Editors: Markus Rupp, Dragomir Milojevic, and Guy Gogniat Copyright © 2008 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in volume 2008 of “EURASIP Journal on Embedded Systems.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editor-in-Chief Zoran Salcic, University of Auckland, New Zealand Associate Editors Sandro Bartolini, Italy Thomas Kaiser, Germany S. Ramesh, India Neil Bergmann, Australia Bart Kienhuis, The Netherlands Partha S. Roop, New Zealand Shuvra Bhattacharyya, USA Chong-Min Kyung, Korea Markus Rupp, Austria Ed Brinksma, The Netherlands Miriam Leeser, USA Asim Smailagic, USA Paul Caspi, France John McAllister, UK Leonel Sousa, Portugal Liang-Gee Chen, Taiwan Koji Nakano, Japan Jarmo Henrik Takala, Finland Dietmar Dietrich, Austria Antonio Nunez, Spain Jean-Pierre Talpin, France Stephen A. Edwards, USA Sri Parameswaran, Australia Jurgen¨ Teich, Germany Alain Girault, France Zebo Peng, Sweden Dongsheng Wang, China Rajesh K. Gupta, USA Marco Platzner, Germany Susumu Horiguchi, Japan Marc Pouzet, France Contents
    [Show full text]
  • A SIMD Microprocessor for Image Processing
    A SIMD microprocessor for image processing Author: Zhiqiang Qiu Student ID: 20716003 Email: [email protected] Supervisor: Prof. Dr. Thomas Bräunl Computational Intelligence - Information Processing Systems (CIIPS) School of Electrical, Electronic and Computer Engineering The University of Western Australia 1 November 2013 A SIMD microprocessor for image processing Abstract The aim of this project is to design a Single Instruction Multiple Data (SIMD) microprocessor for image processing. Image processing is an important topic in computer science. There are many interesting applications based on image processing, such as stereo matching, 3D object reconstruction and edge detection. The core of image processing is matrix manipulations on the digital image. A digital image captured by a modern digital camera is made up of millions of pixels. The common challenge for most of image processing applications is the amount of data needs to be processed. It will be very slow if each pixel is processed in a sequential order. In addition, general-purpose microprocessors are highly inefficient for image processing due to their complicated internal circuit and large instruction set. One particular solution is to process all pixels simultaneously. A SIMD microprocessor with a simple instruction set can significantly increase the overall processing speed. This project focuses on the development of a SIMD image processor using software simulation. It takes a three step approach. The first step is to improve and further develop our circuit simulation software, Retro. Retro is a powerful circuit design tool with build-in real time graphical simulation. A number of improvements have been made to Retro to fulfil our design requirements.
    [Show full text]
  • Traffic Management Using Image Processing and Arm Processor
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 05 | May 2020 www.irjet.net p-ISSN: 2395-0072 TRAFFIC MANAGEMENT USING IMAGE PROCESSING AND ARM PROCESSOR Bhaskar MS1, Nandana CH1, Navya S1, Pooja P1 1Department of ECE, Sai Vidya Institute of Technology, India-560064. ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - In this paper, we aim to establish a smart and 2. With the advancement in computer technology, this system efficient traffic surveillance system which monitors the has an advantage of instantaneity, reliability and security. enormous movement of vehicles that cause traffic congestion. 3. It has easy maintenance. Here, we hope to develop a vision-based vehicle detection module that identifies the presence of vehicles and counts The rest of the paper is organized as follows: them. We achieve it with the help of Mali-C52, which is an ARM Section II: System overview based video processor which captures the real time video of Section III: System design and prototype the area of interest (AOI). This video is processed in various stages and is later interfaced with an ARM microcontroller Section IV: Conclusion which controls the traffic. II: SYSTEM OVERVIEW Key Words: Traffic congestion, Vehicle detection, MALI C52, Area of Interest (AOI) In the very first step, we obtain the real time video which is read and converted into images and then frames. This frame I: INTRODUCTION can be processed in a series of steps which are listed below: The rapid growth in the number of vehicles is a key feature of A. VEHICLE DETECTION BY BACKGROUND good economic development.
    [Show full text]
  • Suchitra Sathyanarayana +1-858-717-2399 [email protected]
    Suchitra Sathyanarayana +1-858-717-2399 [email protected] EDUCATION Doctor of Philosophy Nanyang Technological University, Singapore (Thesis submitted) M.Eng. (by research) Computer Eng., Nanyang Technological University, Singapore [2004-2006] B.Eng. (with Honors) Computer Eng., Nanyang Technological University, Singapore [1999-2003] RESEARCH EXPERIENCE Image Processing Architectures: Responsible for innovating high speed image processing cores by exploiting underlying parallelisms and image symmetries - (i) line feature extractor based on Hough Transform, which gives 1000x speedup; (ii) a novel parallel image rotation engine that achieves order of magnitude speedups especially for high-resolution images; (iii) low-cost pattern recognition system that achieves on-the-fly image rotation using line buffers and recognition using a simplified MLP neural network; (iv) a parallel EZW Wavelet encoding architecture that can be deployed for Haar based image compression systems. Hardware efficient techniques for Vision based Advanced Driver Assistance: As part of my PhD thesis, I developed computationally efficient techniques that detects and classifies various kinds of road markings, including lane markings, arrow markings of different types, zigzag markings, pedestrian markings etc. The proposed techniques are scale-invariant, hardware efficient and robust to complexities in road scenes such as shadows, lighting and weather changes. Vision-based Medical Applications: As part of my M.Eng (by research) thesis, I developed real-time techniques to assess the movements of camera during medical endoscopy. This included methods to infer camera rotations and longitudinal movements using image unrolling and corresponding matching of features. I am also currently involved with another PhD project on vision-based patient monitoring system, using multiple cues such as breathing and movements to infer abnormal patient behavior.
    [Show full text]
  • Image Processor May Be Copied by Individuals and Not - for - Profit
    DISTRIBUTION RELIGION THE IMAGE PROCESSOR MAY BE COPIED BY INDIVIDUALS AND NOT - FOR - PROFIT INSTITUTIONS WITHOUT CHARGE FOR - PROFIT INSTITUTIONS WILL HAVE TO NEGOTIATE FOR PERMISSION TO COPY I VIEW MY RESPONSIBILITY TO THE EVOLUTION OF NEW CONSCIOUSNESS HIGHER THAN MY RESPONSIBILITY TO MAKE PROFIT ; I THINK CULTURE HAS TO LEARN TO USE HIGH-TEK MACHINES FOR PERSONAL AESTHETIC, .RELIGIOUS, INTUITIVE, COMPREHENSIVE, EXPLORATORY GROWTH THE DEVELOPMENT OF MACHINES LIKE THE IMAGE PROCESSOR IS PART OF THIS EVOLUTION I AM PAID BY THE STATE, AT LEAST IN PART, TO DO AND DISEMINATE THIS INFORMATION ; SO I DOI As I am sure you (who are you) understand a work like developing and expanding the Image Processor requires much money and time . The 'U' does not have much money for evolutionary work and getting of grants are almost as much work as holding down a job . Therefore, I have the feeling that if considerable monies were to be made with a copy of the Image Processor, I would like some of it . So, I am asking (not telling) that if considerable money were made, by an individual with a copy of. the Image Processor, or if a copy of the Image Processor were sold (to an individual or not-for-profit institution), I would like 20% gross profit . I Things like $100 .00 honorariums should be ignored . Of course enforcing such a request is too difficult to be bothered with . But let it be known that I consider it to be morally binding Much Love . Daniel J . Sandin Department of Art University of Illinois at Chicago Circle Box 4348 Chicago, Illinois 60680 Office phone : 312-996-8689 Lab phone: 312-996-2312 Messages : 312-996-3337 (Department of Art) NOTES ON THE AESTHETICS OF 'copying-an-Ima ge Processor' : Being a 'copier' of many things, in this case the first copier of an Image Processor, .1 trust the following notes to find meaning to .
    [Show full text]
  • A SIMD Programmable Vision Chip with High Speed Focal Plane Image Processing Dominique Ginhac, Jérôme Dubois, Michel Paindavoine, Barthélémy Heyrman
    A SIMD Programmable Vision Chip with High Speed Focal Plane Image Processing Dominique Ginhac, Jérôme Dubois, Michel Paindavoine, Barthélémy Heyrman To cite this version: Dominique Ginhac, Jérôme Dubois, Michel Paindavoine, Barthélémy Heyrman. A SIMD Pro- grammable Vision Chip with High Speed Focal Plane Image Processing. EURASIP Journal on Em- bedded Systems, SpringerOpen, 2009, pp.13. 10.1155/2008/961315. hal-00517911 HAL Id: hal-00517911 https://hal.archives-ouvertes.fr/hal-00517911 Submitted on 15 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACCEPTED TO EURASIP - JOURNAL OF EMBEDDED SYSTEMS 1 A SIMD Programmable Vision Chip with High Speed Focal Plane Image Processing Dominique Ginhac, Jer´ omeˆ Dubois, Michel Paindavoine, and Barthel´ emy´ Heyrman Abstract— A high speed analog VLSI image acquisition and and column-level [9]–[12]. Indeed, pixel-level processing is low-level image processing system is presented. The architecture generally dismissed because pixel sizes are often too large of the chip is based on a dynamically reconfigurable SIMD to be of practical use. However, as CMOS scales, integrating processor array. The chip features a massively parallel archi- tecture enabling the computation of programmable mask-based a processing element at each pixel or group of neighboring image processing in each pixel.
    [Show full text]
  • Sony's Emotionally Charged Chip
    VOLUME 13, NUMBER 5 APRIL 19, 1999 MICROPROCESSOR REPORT THE INSIDERS’ GUIDE TO MICROPROCESSOR HARDWARE Sony’s Emotionally Charged Chip Killer Floating-Point “Emotion Engine” To Power PlayStation 2000 by Keith Diefendorff rate of two million units per month, making it the most suc- cessful single product (in units) Sony has ever built. While Intel and the PC industry stumble around in Although SCE has cornered more than 60% of the search of some need for the processing power they already $6 billion game-console market, it was beginning to feel the have, Sony has been busy trying to figure out how to get more heat from Sega’s Dreamcast (see MPR 6/1/98, p. 8), which has of it—lots more. The company has apparently succeeded: at sold over a million units since its debut last November. With the recent International Solid-State Circuits Conference (see a 200-MHz Hitachi SH-4 and NEC’s PowerVR graphics chip, MPR 4/19/99, p. 20), Sony Computer Entertainment (SCE) Dreamcast delivers 3 to 10 times as many 3D polygons as and Toshiba described a multimedia processor that will be the PlayStation’s 34-MHz MIPS processor (see MPR 7/11/94, heart of the next-generation PlayStation, which—lacking an p. 9). To maintain king-of-the-mountain status, SCE had to official name—we refer to as PlayStation 2000, or PSX2. do something spectacular. And it has: the PSX2 will deliver Called the Emotion Engine (EE), the new chip upsets more than 10 times the polygon throughput of Dreamcast, the traditional notion of a game processor.
    [Show full text]
  • A 4K@15,000 Lps High-Accuracy CMOS Linear Sensor Chip With
    A 4k@15,000 LPs High-Accuracy CMOS Linear Sensor Chip with Programmable Gain and Offset and Embedded Digital Correction Francisco Jiménez-Garrido 1, Rafael Domínguez-Castro 1,2, Fernando Medeiro 1,2, Alberto García, Cayetana Utrera, Rafael Romay and Angel Rodríguez-Vázquez 1 AnaFocus (Innovaciones Microelectrónicas S.L.) 2 IMSE-CNM/CSIC and Universidad de Sevilla Avda Isaac Newton, Pabellón de Italia, Ático Parque Tecnológico Isla de la Cartuja, 41092-Sevilla (SPAIN) [email protected] Introduction Machine Vision (MV) applications require high quality images and hence dedicated CMOS technologies (CIS) and optimized pixels such as for instance those based on pin photodiodes. High-performance CMOS MV sensors with image moving capture, exposure control, anti- blooming, high-speed readout, etc have been devised elsewhere using these CIS technologies [1]. However, most of them require off-chip digital processors for correction of the raw sensor data, which has an impact on power, reliability and compactness. This paper reports a CMOS tri-linear image sensor with and on-chip embedded digital processor for MV. This single chip smart sensor is conceived to reach performance levels similar to those of multi-chip CCD digital camera systems [2]. Table 1 summarizes data of available linear sensors, including a CCD one to the purpose of performance comparison. The last column corresponds to the device reported in this paper, called AFLS4k. The AFLS4k performs similar to the CCD one and has better accuracy specs than its CMOS counterparts.
    [Show full text]
  • Transchip TC5747 Preliminary Product Brief
    TC5747 CMOS Imager Product Brief CoderCam™ TC5747 VGA CMOS camera module with on-chip image processor, motion JPEG and display graphics Description Features TC5747 is a high performance, low power • VGA format sensor with 1/4.5” optics miniature camera module that incorporates • Embedded micro-controller a VGA CMOS sensor, image processing, a • Supports wide dynamic range and a motion JPEG codec, and display graphics variety of illumination conditions on a single chip. • Motion JPEG codec TC5747 imager is specifically designed to • 64 KB memory for JPEG frames meet the requirements of small mobile devices, in terms of automatic adjustments, • Standard host interface of 8/16 bits low power and small size. Its direct • Direct interface of 8/9/16/18 bits to LCD interface to the LCD as well as the host • Low power design, sleep modes data bus enables easy and fast integration • On chip PLL supports wide clock range into mobile devices. Bypass mode of the camera operation provides direct streaming • 2x and 4x electronic zoom from the host processor to the LCD. • Downsize to fit target display size Parallel host interface enables real motion • Vertical and horizontal inversion JPEG operation. • Auto flicker detection and correction TC5747 performs the graphic functions • Anti shading correction required for the display, lightening the load • on the baseband and reducing the solution On screen display cost and size. • Digital effects and fun frame overlay • TC5747 implements sophisticated digital Thumbnails and portrait images image processing algorithms using • Vertical and horizontal inversion dedicated hardware and a programmable • Supports up to two displays microcontroller.
    [Show full text]
  • RIP Architecture L Technical Information
    L Technical Information RIP Architecture A raster image processor (RIP) is a computer with a very specific task to perform. It translates a series of computer commands into something that an output device can print. For an imagesetter, this means the instructions that instruct the laser to expose certain areas on the film. Acronyms ASIC Application Specific Integrated Circuit RIP architecture refers to the CISC Complex Instruction Set Computer 1An excellent source of design of the RIP, particularly CPU Central Processing Unit information on computer EPROM Erasable Programmable Read-Only technology is The Computer the hardware and software Memory Glossary by Alan Freedman. that make the RIP work. It is I/O Input/Output It is available from The impossible to discuss RIP MHz Megahertz Computer Language architecture without MIPS Million Instructions Per Second Company, (215) 297-5999. mentioning a number of 1 (also the name of a company that computer buzz words , many manufactures CPUs) of which are acronyms (see PROM Programmable Read-Only Memory list to right). And so to begin, RIP Raster Image Processor we’ll start with a review of RISC Reduced Instruction Set Computer computer basics, and see how SPARC Scalable Performance ARChitecture those principles apply to RIPs. TAXI Transparent Asynchronous Xmitter receiver Interface XMO eXtended Memory Option Computer basics The CPU of a computer is where the bulk of the computing gets done. Microprocessor designations The CPU may also be called the Intel Corporation microprocessor if the CPU is built on a • 8080, 8088 single miniaturized electronic circuit (i.e. • 8086, 80286, 80386, 80486 chip).
    [Show full text]