Phd Thesis Fish Assemblages Dynamic in the Tropical Flood-Pulse
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. -
The Utilization of Bioresources by Local Communities at Giam Siak Kecil-Bukit Batu Biosphere Reserve, Riau Province, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 17, Number 2, October 2016 E-ISSN: 2085-4722 Pages: 873-886 DOI: 10.13057/biodiv/d170265 The utilization of bioresources by local communities at Giam Siak Kecil-Bukit Batu Biosphere Reserve, Riau Province, Indonesia PRIMA WAHYU TITISARI1,2,♥, TATI SURYATI SYAMSUDIN2, ACHMAD SJARMIDI2 1,2 Department of Biologi, Faculty of Teacher Trainning and Education, Universitas Islam Riau. Jl. Kaharuddin Nasution No. 113, Marpoyan, Pekanbaru 28284, Riau, Indonesia. Tel.: +62-762-674674, ♥email: [email protected] 2School of Life Sciences and Technology, Institut Teknologi Bandung. Jl. Ganesha No. 10, Bandung 40132, West Jawa, Indonesia Manuscript received: 20 April 2016. Revision accepted: 21 October 2016. Abstract. Titisari PW, Syamsudin TS, Sjarmidi A. 2016. The utilization of bioresources by local communities at Giam Siak Kecil-Bukit Batu Biosphere Reserve, Riau Province, Indonesia. Biodiversitas 17: 873-886. This study aims to assess the use of bioresources of Giam Siak Kecil Bukit Batu Biosphere Reserve by the local community. The use of bioresources was characterized by the level of utilization of bioresources in the household economy. It classified into five groups; (i) subsistence group (SG), (ii) supplementary group (SpG), (iii) integrated group (IG), (iv) specialized extraction group (SEG), and (v) specialized cultivation group (SCG). The results showed that the local community used bioresources as main source of livelihood at the core zone and buffer zone. There are 36 species of fish, 17 species of non-timber, and 28 species of timber used by local community. Core area and buffer zone are dominated by SEG and SCG. In the core area, the relationship between SEG non-timber and timber is very significant. -
Family-Bagridae-Overview-PDF.Pdf
FAMILY Bagridae Bleeker, 1858 - naked catfishes, bagrid catfishes [=Bagri, Bagrichthyoidei, Ritae, Bagrichthyes, Porcinae, Mystidae, Mystini, Bagroidinae, Pelteobagrini, Batasinae] GENUS Bagrichthys Bleeker, 1857 - bagrid catfishes [=Pseudobagrichthys] Species Bagrichthys hypselopterus (Bleeker, 1852) - blacklancer catfish Species Bagrichthys macracanthus (Bleeker, 1854) - Lamatang blacklancer catfish Species Bagrichthys macropterus (Bleeker, 1854) - false blacklancer Species Bagrichthys majusculus Ng, 2002 - Mun blacklancer Species Bagrichthys micranodus Roberts, 1989 - Kapuas blacklancer Species Bagrichthys obscurus Ng, 1999 - obscure blacklancer Species Bagrichthys vaillantii (Popta, 1906) - Vaillant's blacklancer [=macropterus] GENUS Bagroides Bleeker, 1851 - bagrid catfishes Species Bagroides melapterus Bleeker, 1851 - Bornean bagroides [=melanopterus] GENUS Bagrus Bosc, 1816 - bagrid catfishes Species Bagrus bajad (Forsskal, 1775) - bayad [=macropterus] Species Bagrus caeruleus Roberts & Stewart, 1976 - Lower Congo bagrus Species Bagrus degeni Boulenger, 1906 - Victoria bagrus Species Bagrus docmak (Forsskal, 1775) - semutundu [=koenigi, niger] Species Bagrus filamentosus Pellegrin, 1924 - Niger bagrus Species Bagrus lubosicus Lonnberg, 1924 - Lubosi bagrus Species Bagrus meridionalis Gunther, 1894 - kampango, kampoyo Species Bagrus orientalis Boulenger, 1902 - Pangani bagrus Species Bagrus tucumanus Burmeister, 1861- Tucuman bagrus Species Bagrus ubangensis Boulenger, 1902 - Ubangi bagrus Species Bagrus urostigma Vinciguerra, 1895 -
Epalzeorhynchos Munense ERSS
Epalzeorhynchos munense (a fish, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, June 2012 Revised, November 2018 Web Version, 2/1/2019 Photo: W. J. Rainboth/FAO. Licensed under Creative Commons BY-NC 3.0 Unported. Available: http://www.fishbase.org/photos/PicturesSummary.php?StartRow=0&ID=27163&what=species& TotRec=2. (November 9, 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018a): “Asia: Mekong [Cambodia, Thailand, Laos] and Chao Phraya [Thailand] basins [Kottelat 2001] and Maeklong basin [Thailand] [Vidthayanon et al. 1997].” “[In Laos:] Known from the middle Xe Bangfai, a tributary of the Mekong basin [Kottelat 1998].” 1 Status in the United States No records of Epalzeorhynchos munense in the wild or in trade in the United States were found. Means of Introductions in the United States No records of Epalzeorhynchos munense in the wild in the United States were found. Remarks Information searches were conducted using the valid name Epalzeorhynchos munense and the synonym Labeo munensis. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Fricke et al. (2018), Epalzeorhynchos munense is the valid name for this species. It was originally described as Labeo munensis. From Froese and Pauly (2018b): “Animalia (Kingdom) > Chordata (Phylum) > Vertebrata (Subphylum) > Gnathostomata (Superclass) > […] Actinopterygii (Class) > Cypriniformes (Order) > Cyprinidae (Family) > Epalzeorhynchos munense (Species)” Size, Weight, and Age Range From Froese and Pauly (2018a): “Max length : 9.3 cm SL male/unsexed; [Kottelat 1998]” Environment From Froese and Pauly (2018a): “Freshwater; benthopelagic.” Climate/Range From Froese and Pauly (2018a): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018a): “Asia: Mekong [Cambodia, Thailand, Laos] and Chao Phraya [Thailand] basins [Kottelat 2001] and Maeklong basin [Thailand] [Vidthayanon et al. -
Measuring Productivity of Australian Tropical Estuaries Using Standing Stock Analysis
ResearchOnline@JCU This file is part of the following work: Fries, Jakob (2019) Measuring productivity of Australian tropical estuaries using standing stock analysis. Masters (Research) Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/km1r%2D5n34 Copyright © 2019 Jakob Fries. The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] Measuring productivity of Australian tropical estuaries using standing stock analysis Thesis submitted by Jakob Fries December 2019 For the degree of Master of Philosophy College of Science and Engineering School of Marine Biology and Aquaculture James Cook University Abstract Increasingly, anthropogenic use of ecosystems is resulting in cumulative degradation of ecosystem functions and the values held by these systems. Threats from nutrient pollution, catchment scale modifications to land use and water flows are increasing. This is concerning for estuarine and coastal fisheries as estuarine producers are inextricably linked to land-derived nutrients and freshwater flows. In tropical estuarine ecosystems the complexity and variability of environmental, biological, and ecological factors culminate in a matrix of largely unknown causal relationships. Because of this, our knowledge of land use impacts on fisheries is limited. Additionally, the disjunction of current measurement scales and impact scales has reduced our ability to measure the resultant impacts on estuarine ecosystems. Therefore, to fully understand anthropogenic impacts on estuarine ecosystems, integrative measures of ecosystem health, functioning, and productive output are required. -
Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 28 November 2013 Hotel Quality, Shah Alam SELANGOR D
Prosiding Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 28 November 2013 Hotel Quality, Shah Alam SELANGOR D. E. Seminar Ekspedisi Saintifik Biodiversiti Hutan Paya Gambut Selangor Utara 2013 Dianjurkan oleh Jabatan Perhutanan Semenanjung Malaysia Jabatan Perhutanan Negeri Selangor Malaysian Nature Society Ditaja oleh ASEAN Peatland Forest Programme (APFP) Dengan Kerjasama Kementerian Sumber Asli and Alam Sekitar (NRE) Jabatan Perlindungan Hidupan Liar dan Taman Negara (PERHILITAN) Semenanjung Malaysia PROSIDING 1 SEMINAR EKSPEDISI SAINTIFIK BIODIVERSITI HUTAN PAYA GAMBUT SELANGOR UTARA 2013 ISI KANDUNGAN PENGENALAN North Selangor Peat Swamp Forest .................................................................................................. 2 North Selangor Peat Swamp Forest Scientific Biodiversity Expedition 2013...................................... 3 ATURCARA SEMINAR ........................................................................................................................... 5 KERTAS PERBENTANGAN The Socio-Economic Survey on Importance of Peat Swamp Forest Ecosystem to Local Communities Adjacent to Raja Musa Forest Reserve ........................................................................................ 9 Assessment of North Selangor Peat Swamp Forest for Forest Tourism ........................................... 34 Developing a Preliminary Checklist of Birds at NSPSF ..................................................................... 41 The Southern Pied Hornbill of Sungai Panjang, Sabak -
Sample Text Template
FLOODPLAIN RIVER FOOD WEBS IN THE LOWER MEKONG BASIN A Dissertation by CHOULY OU Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Kirk O. Winemiller Committee Members, Masami Fujiwara Thomas D. Olszewski Daniel L. Roelke Head of Department, Michael Masser December 2013 Major Subject: Wildlife and Fisheries Sciences Copyright 2013 Chouly Ou ABSTRACT The Mekong River is one of the world’s most important rivers in terms of its size, economic importance, cultural significance, productivity, and biodiversity. The Mekong River’s fisheries and biodiversity are threatened by major hydropower development and over-exploitation. Knowledge of river food web ecology is essential for management of the impacts created by anthropogenic activities on plant and animal populations and ecosystems. In the present study, I surveyed four tropical rivers in Cambodia within the Mekong River Basin. I examined the basal production sources supporting fish biomass in the four rivers during the dry and wet seasons and explored the relationship between trophic position and body size of fish at various taxonomic levels, among local species assemblages, and across trophic guilds. I used stable isotopes of carbon and nitrogen to estimate fish trophic levels and the principal primary production sources supporting fishes. My study provides evidence that food web dynamics in tropical rivers undergo significant seasonal shifts and emphasizes that river food webs are altered by dams and flow regulation. Seston and benthic algae were the most important production sources supporting fish biomass during the dry season, and riparian macrophytes appeared to be the most important production source supporting fishes during the wet season. -
Characterization of the G Protein-Coupled Receptor Family
www.nature.com/scientificreports OPEN Characterization of the G protein‑coupled receptor family SREB across fsh evolution Timothy S. Breton1*, William G. B. Sampson1, Benjamin Cliford2, Anyssa M. Phaneuf1, Ilze Smidt3, Tamera True1, Andrew R. Wilcox1, Taylor Lipscomb4,5, Casey Murray4 & Matthew A. DiMaggio4 The SREB (Super‑conserved Receptors Expressed in Brain) family of G protein‑coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identifed, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non‑mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fsh, using comparative genomics and gonadal expression analyses in fve diverse ray‑fnned (Actinopterygii) species across evolution. Several unique characteristics were identifed in fsh, including: (1) a novel, fourth euteleost‑specifc gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression diferences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may refect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in pufer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. -
Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night. -
NHBSS 051 1G Baird Rhythm
NAT. NAT. HIST. BULL. SIAM Soc. 51 (1): 5-36 ,2003 RHYTHMS OF THE RIVER: LUNAR PHASES AND MIGRATIONS OF SMALL CARPS (CYPRINIDAE) IN THE MEKONG RIVER Ian ιBa かI1 'd 1ヘMark S. Flahe 同'1, and Bounpheng Phylavanh 1 ABSTRA Cf τ'hro ughout history ,many differ 耳目 tcultures have associa 胞d lunar cycles with changes in variety a variety of human and animal behaviors. In the southem-most part of La os ,血血 .e area known 鼠“Siphandone" or 血.e 4,0∞islands ,rur 百 1 fishers living on islands 泊 the middle of the mains 悦 am Mekong River are especially conscious of the influence of lunar cycles on aquatic life. life. They associate upriver migrations of large quantities of small cyprinid fishes from Cambodia Cambodia to La os at the beginning of each year with lunar ph 舗 es. 百 is article examines the fishery fishery for small cyprinids in 血e Kh one Falls area ,Kh ong District , Champasak Pr ovince , southem southem La o PDR ,飢da five-year time series of catch -e ffort fisheries da 旬 for a single fence- fJl ter 釘ap are presented. 百lese da 筒 are then compared with catch da 組合om the bag-net fishery fishery in the Tonle Sap River 泊 C 釘 nbodia. It is shown 白紙 the migrations of small cyprinids , particul 釘'i y Henicorhynchus lobatus and Paralaubuca 砂'P us ,眠 highly correlated with new moon periods at 血e Kh one Falls. Many small cyprinids migrate hundr 哲也 of km up the Mekong River River to Kh one Falls 台。 m 血eTo 叫巴 Sap River and probably 血.e Great Lak e in Cam bodia. -
2009 Board of Governors Report
American Society of Ichthyologists and Herpetologists Board of Governors Meeting Hilton Portland & Executive Tower Portland, Oregon 23 July 2009 Maureen A. Donnelly Secretary Florida International University College of Arts & Sciences 11200 SW 8th St. - ECS 450 Miami, FL 33199 [email protected] 305.348.1235 23 June 2009 The ASIH Board of Governor's is scheduled to meet on Wednesday, 22 July 2008 from 1700- 1900 h in Pavillion East in the Hilton Portland and Executive Tower. President Lundberg plans to move blanket acceptance of all reports included in this book which covers society business from 2008 and 2009. The book includes the ballot information for the 2009 elections (Board of Govenors and Annual Business Meeting). Governors can ask to have items exempted from blanket approval. These exempted items will will be acted upon individually. We will also act individually on items exempted by the Executive Committee. Please remember to bring this booklet with you to the meeting. I will bring a few extra copies to Portland. Please contact me directly (email is best - [email protected]) with any questions you may have. Please notify me if you will not be able to attend the meeting so I can share your regrets with the Governors. I will leave for Portland (via Davis, CA)on 18 July 2008 so try to contact me before that date if possible. I will arrive in Portland late on the afternoon of 20 July 2008. The Annual Business Meeting will be held on Sunday 26 July 2009 from 1800-2000 h in Galleria North. -
Environmental Assessment & Management Plan
Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized E1050 v3 rev m Theun 2 Hydroelectric Project Na & Management Plan Environmental Assessment March 2005 annexes List of Annexes List of Annexes Annex A: References ........................................................................................A1-6 Annex B: Contributors to the EAMP ....................................................................B1-2 Annex C: Project Key Technical Data ..................................................................C1-4 Annex D: Technical Drawings of Project Infrastructure ......................................D1-18 Annex E: Hydrological Data ............................................................................. E1-10 Annex F: Simulated Dam Operations ................................................................ F1-10 Annex G: Water Quality Modelling Assumptions and Results ................................G1-4 Annex H: Forest & Vegetation Types ..................................................................H1-4 Annex I: Mammal & Bird Species of the NNT Area .............................................I1-20 Annex J: Fish Species & Migration ..................................................................... J1-8 Annex K: Head Construction Contractor’s Environmental Requirements .............. K1-18 Annex L: Pest Management Plan ..................................................................... L1-18 Annex M: Public Consultation and Disclosure Events .........................................