Edición 2018-V12 = Rev. 01
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Robust Gas Turbine and Airframe System Design in Light of Uncertain
Robust Gas Turbine and Airframe System Design in Light of Uncertain Fuel and CO2 Prices Stephan Langmaak1, James Scanlan2, and András Sóbester3 University of Southampton, Southampton, SO16 7QF, United Kingdom This paper presents a study that numerically investigated which cruise speed the next generation of short-haul aircraft with 150 seats should y at and whether a con- ventional two- or three-shaft turbofan, a geared turbofan, a turboprop, or an open rotor should be employed in order to make the aircraft's direct operating cost robust to uncertain fuel and carbon (CO2) prices in the Year 2030, taking the aircraft pro- ductivity, the passenger value of time, and the modal shift into account. To answer this question, an optimization loop was set up in MATLAB consisting of nine modules covering gas turbine and airframe design and performance, ight and aircraft eet sim- ulation, operating cost, and optimization. If the passenger value of time is included, the most robust aircraft design is powered by geared turbofan engines and cruises at Mach 0.80. If the value of time is ignored, however, then a turboprop aircraft ying at Mach 0.70 is the optimum solution. This demonstrates that the most fuel-ecient option, the open rotor, is not automatically the most cost-ecient solution because of the relatively high engine and airframe costs. 1 Research Engineer, Computational Engineering and Design 2 Professor of Aerospace Design, Computational Engineering and Design, AIAA member 3 Associate Professor in Aircraft Engineering, Computational Engineering and Design, AIAA member 1 I. Introduction A. Background IT takes around 5 years to develop a gas turbine engine, which then usually remains in pro- duction for more than two decades [1, 2]. -
Aerospace Engine Data
AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16 -
Flight International – July 2021.Pdf
FlightGlobal.com July 2021 RISE of the open rotor Airbus, Boeing cool subsidies feud p12 Home US Air Force studies advantage resupply rockets p28 MC-21 leads Russian renaissance p44 9 770015 371327 £4.99 Sonic gloom Ton up Investors A400M gets pull plug a lift with on Aerion 100th delivery 07 p30 p26 Comment All together now Green shoots Irina Lavrishcheva/Shutterstock While CFM International has set out its plan to deliver a 20% fuel saving from its next engine, only the entire aviation ecosystem working in concert can speed up decarbonisation ohn Slattery, the GE Aviation restrictions, the RISE launch event governments have a key role to chief executive, has many un- was the first time that Slattery and play here through incentivising the doubted skills, but perhaps his Safran counterpart, Olivier An- production and use of SAF; avia- the least heralded is his abil- dries, had met face to face since tion must influence policy, he said. Jity to speak in soundbites while they took up their new positions. It He also noted that the engine simultaneously sounding natural. was also just a week before what manufacturers cannot do it alone: It is a talent that politicians yearn would have been the first day of airframers must also drive through for, but which few can master; the Paris air show – the likely launch aerodynamic and efficiency im- frequently the individual simply venue for the RISE programme. provements for their next-genera- sounds stilted, as though they were However, out of the havoc tion products. reading from an autocue. -
Comparison of Helicopter Turboshaft Engines
Comparison of Helicopter Turboshaft Engines John Schenderlein1, and Tyler Clayton2 University of Colorado, Boulder, CO, 80304 Although they garnish less attention than their flashy jet cousins, turboshaft engines hold a specialized niche in the aviation industry. Built to be compact, efficient, and powerful, turboshafts have made modern helicopters and the feats they accomplish possible. First implemented in the 1950s, turboshaft geometry has gone largely unchanged, but advances in materials and axial flow technology have continued to drive higher power and efficiency from today's turboshafts. Similarly to the turbojet and fan industry, there are only a handful of big players in the market. The usual suspects - Pratt & Whitney, General Electric, and Rolls-Royce - have taken over most of the industry, but lesser known companies like Lycoming and Turbomeca still hold a footing in the Turboshaft world. Nomenclature shp = Shaft Horsepower SFC = Specific Fuel Consumption FPT = Free Power Turbine HPT = High Power Turbine Introduction & Background Turboshaft engines are very similar to a turboprop engine; in fact many turboshaft engines were created by modifying existing turboprop engines to fit the needs of the rotorcraft they propel. The most common use of turboshaft engines is in scenarios where high power and reliability are required within a small envelope of requirements for size and weight. Most helicopter, marine, and auxiliary power units applications take advantage of turboshaft configurations. In fact, the turboshaft plays a workhorse role in the aviation industry as much as it is does for industrial power generation. While conventional turbine jet propulsion is achieved through thrust generated by a hot and fast exhaust stream, turboshaft engines creates shaft power that drives one or more rotors on the vehicle. -
Rolls-Royce / Itp Regulation
EUROPEAN COMMISSION DG Competition Case M.8242 - ROLLS-ROYCE / ITP Only the English text is available and authentic. REGULATION (EC) No 139/2004 MERGER PROCEDURE Article 6(1)(b) in conjunction with Art 6(2) Date: 19/04/2017 In electronic form on the EUR-Lex website under document number 32017M8242 EUROPEAN COMMISSION Brussels, 19.04.2017 C(2017) 2613 final In the published version of this decision, some information has been omitted pursuant to Article PUBLIC VERSION 17(2) of Council Regulation (EC) No 139/2004 concerning non-disclosure of business secrets and other confidential information. The omissions are shown thus […]. Where possible the information omitted has been replaced by ranges of figures or a general description. To the notifying party: Subject: Case M.8242 – Rolls-Royce / ITP Commission decision pursuant to Article 6(1)(b) in conjunction with Article 6(2) of Council Regulation No 139/20041 and Article 57 of the Agreement on the European Economic Area2 Dear Sir or Madam, (1) On 24 February 2017, the European Commission received notification of a proposed concentration pursuant to Article 4 of the Merger Regulation by which the undertaking Rolls-Royce Holdings plc ("Rolls-Royce", United Kingdom) acquires within the meaning of Article 3(1)(b) of the Merger Regulation control of the whole of the undertaking Industria de Turbo Propulsores SA ("ITP", Spain) by way of a purchase of shares (the "Transaction").3 Rolls-Royce is designated hereinafter as the "Notifying Party", and Rolls-Royce and ITP are together referred to as the "Parties". 1 OJ L 24, 29.1.2004, p. -
Los Motores Aeroespaciales, A-Z
Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 < aeroteca.com > Depósito Legal B 9066-2016 Título: Los Motores Aeroespaciales A-Z. © Parte/Vers: 1/12 Página: 1 Autor: Ricardo Miguel Vidal Edición 2018-V12 = Rev. 01 Los Motores Aeroespaciales, A-Z (The Aerospace En- gines, A-Z) Versión 12 2018 por Ricardo Miguel Vidal * * * -MOTOR: Máquina que transforma en movimiento la energía que recibe. (sea química, eléctrica, vapor...) Sponsored by L’Aeroteca - BARCELONA ISBN 978-84-608-7523-9 Este facsímil es < aeroteca.com > Depósito Legal B 9066-2016 ORIGINAL si la Título: Los Motores Aeroespaciales A-Z. © página anterior tiene Parte/Vers: 1/12 Página: 2 el sello con tinta Autor: Ricardo Miguel Vidal VERDE Edición: 2018-V12 = Rev. 01 Presentación de la edición 2018-V12 (Incluye todas las anteriores versiones y sus Apéndices) La edición 2003 era una publicación en partes que se archiva en Binders por el propio lector (2,3,4 anillas, etc), anchos o estrechos y del color que desease durante el acopio parcial de la edición. Se entregaba por grupos de hojas impresas a una cara (edición 2003), a incluir en los Binders (archivadores). Cada hoja era sustituíble en el futuro si aparecía una nueva misma hoja ampliada o corregida. Este sistema de anillas admitia nuevas páginas con información adicional. Una hoja con adhesivos para portada y lomo identifi caba cada volumen provisional. Las tapas defi nitivas fueron metálicas, y se entregaraban con el 4 º volumen. O con la publicación completa desde el año 2005 en adelante. -Las Publicaciones -parcial y completa- están protegidas legalmente y mediante un sello de tinta especial color VERDE se identifi can los originales. -
Livre 1.Indb
European Aeronautic Defence and Space Company EADS N.V. Registration Document 2010 European Aeronautic Defence and Space Company EADS N.V. (the “Company” or “EADS” and together with its subsidiaries, the “Group”) is a Dutch company, which is listed in France, Germany and Spain. The applicable regulations with respect to public information and protection of investors, as well as the commitments made by the Company to securities and market authorities, are described in this registration document (the “Registration Document”). In addition to historical information, this Registration Document includes forward-looking statements. The forward-looking statements are generally identified by the use of forward-looking words, such as “anticipate”, “believe”, “estimate”, “expect”, “intend”, “plan”, “project”, “predict”, “will”, “should”, “may” or other variations of such terms, or by discussion of strategy. These statements relate to EADS’ future prospects, developments and business strategies and are based on analyses or forecasts of future results and estimates of amounts not yet determinable. These forward-looking statements represent the view of EADS only as of the dates they are made, and EADS disclaims any obligation to update forward-looking statements, except as may be otherwise required by law. The forward-looking statements in this Registration Document involve known and unknown risks, uncertainties and other factors that could cause EADS’ actual future results, performance and achievements to differ materially from those forecasted or suggested herein. These include changes in general economic and business conditions, as well as the factors described in “Risk Factors” below. This Registration Document was prepared in accordance with Annex 1 of EC Regulation 809/2004, filed in English with, and approved by, the Autoriteit Financiële Markten (the “AFM”) on 19 April 2011 in its capacity as competent authority under the Wet op het financieel toezicht (as amended) pursuant to Directive 2003/71/EC. -
Hypervelocity Missiles for Defence
HYPERVELOCITY MISSILES FOR DEFENCE Presented by Faqir Minhas College of Engineering PAF-Karachi Institute of Economics & Technology April 6, 2005 Table of contents 1. Prologue 3 2. Piloted aircraft and tactical missiles (technical developments) 3 3. Summary of piloted aircraft 5 4. Ballistic and cruise missiles 7 5. Ballistic trajectories 10 6. Conclusions 18 7. Hypersonic propulsion 20 8. Test facilities: 26 9. References 33 Note: This 34-page paper is abridged description of the presentation. It is condensed from the original paper of 150 pages, which contains detailed information on propulsion systems and hypersonic aerodynamics. Copies of this paper or the original paper can be obtained the Royal Aeronautical Society, Pakistan Division on demand. 2 Abstract The paper reviews the history of technical development in the field of hypervelocity missiles. It highlights the fact that the development of anti-ballistic systems in USA, Russia, France, UK, Sweden, and Israel is moving toward the final deployment stage; that USA and Israel are trying to sell PAC 2 and Arrow 2 to India; and that India’s Agni and Prithvi missiles have improved their accuracy, with assistance from Russia. Consequently, the paper proposes enhanced effort for development in Pakistan of a basic hypersonic tactical missile, with 300 KM range, 500 KG payload, and multi-role capability. The author argues that a system, developed within the country, at the existing or upgraded facilities, will not violate MTCR restrictions, and would greatly enhance the country’s defense capability. Furthermore, it would provide high technology jobs to Pakistani citizens. The paper reinforces the idea by suggesting that evolution in the field of aviation and electronics favors the development of ballistic, cruise and guided missile technologies; and that flight time of short and intermediate range missiles is so short that its interception is virtually impossible. -
Master of Engineering Thesis Modelling a Novel Orbital Ic
Department of Mechanical Engineering University of Canterbury Te Whare Wānanga o Waitaha Telephone: +64-3-366 7001 Private Bag 4800 Facsimile: +64-3-364 2078 Christchurch 8020, New Zealand Website: www.mech.canterbury.ac.nz MASTER OF ENGINEERING THESIS MODELLING A NOVEL ORBITAL IC ENGINE TO AID FURTHER DESIGN By Lindsay Muir BE (Hons) 31 August 2014 Requirements for the degree of MASTER OF ENGINEERING IN MECHANICAL ENGINEERING Approved by: Dr Dirk Pons, Project Supervisor 1 COPYRIGHT LINDSAY MUIR 24/10/2015 0 TABLE OF CONTENTS 1 INTRODUCTION ................................................................................................ 11 1.1 Scenario ............................................................................................................. 11 1.2 Purpose .............................................................................................................. 13 1.3 Scope ................................................................................................................. 14 2 BACKGROUND .................................................................................................. 15 2.1 The Radial and Rotary engine .......................................................................... 15 2.1.1 History ............................................................................................................. 15 2.1.2 Multi-row radials .............................................................................................. 18 2.1.3 Diesel radials ................................................................................................. -
Prendre L'air
PRENDRE L’AIR Musée Saint-Chamas – Barillet des moteurs Atar 8 et 9 N°3 La revue de l’Association des Amis du Musée Safran Décembre 2019 Contact Rond Point René Ravaud 77550 Réau Tél : 01 60 59 72 58 Mail : [email protected] Sommaire Editorial 3 Jacques Daniel Le mot du Président 3 Jean Claude Dufloux L’avionnerie isséenne 4 Henri Couturier Mr René Farsy : pilote d’essais à la Snecma 9 Jacques Daniel Le Dassault Mirage III T : banc d’essais volant 18 Jacques Daniel Le projet de Caravelle à moteurs Atar 101 22 Jacques Daniel Junkers Jumo 004 et BMW 003 26 Pierre Mouton Débuts de l’électronique à Snecma 29 Pierre Mouton Vintage Motor Cycle Club (VMCC) Manx Rally 2019 - Mésaventures et mes aventures 31 Gérard Basselin Notes de lecture 32 Jacques Daniel Crédits Photographies : Henri Couturier, Jacques Daniel Les articles et illustrations publiées dans cette revue ne peuvent être reproduits sans autorisation écrite préalable. 2 Editorial Pour ce troisième numéro, nous vous proposons un article sur l’industrie aéronautique d’Issy-les- Moulineaux du début du siècle dernier. A cette époque et jusqu’au milieu des années 1930, on utilisait plutôt le terme " avionnerie " pour désigner les constructeurs d’avions. Dans le domaine des turboréacteurs, la Snecma répondit, au début des années 1950, à un appel d’offre pour la motorisation du programme phare de l’aviation commerciale française : le SE-210 Caravelle. Entre 1951 et 1953, la société participa activement au projet en proposant des formules bi, tri et même quadriréacteurs basées sur le tout nouvel Atar 101. -
Ahead of Its Time 75 Years of MTU History
Annual Report 2008 Ahead of its time 75 years of MTU history. 100 years of aviation expertise. WorldReginfo - a6a23212-0bdc-4ce2-9f68-998dbc575eab Order backlog by segments (without consolidation) in € million Revenues by segments (without consolidation) in € million OEM MRO OEM MRO 2004 3,236.0 2,125.0 2004 1,375.6 575.9 2005 3,433.8 3,703.6 2005 1,434.8 766.9 2006 3,218.4 3,804.4 2006 1,483.1 954.7 2007 3,216.8 5,139.6 2007 1,599.5 1,004.7 2008 3,884.5 5,361.2 2008 1,642.9 1,113.0 EBITDA adjusted by segments (without consolidation) in € million Net profit in € million OEM MRO 2004 131.3 42.7 2004 0.2 2005 162.4 77.8 2005 32.8 2006 217.7 103.4 2006 89.1 2007 305.7 87.9 2007 154.1 2008 330.3 78.9 2008 179.7 WorldReginfo - a6a23212-0bdc-4ce2-9f68-998dbc575eab Selected consolidated financial information and key figures at a glance Change in € million (unless otherwise specified) 2008 - 2007 2008 2007 2006 Revenues and earnings Revenues 148.4 5.8 % 2,724.3 2,575.9 2,416.2 thereof: commercial and military engine business (OEM) 43.4 2.7 % 1,642.9 1,599.5 1,483.1 thereof: commercial maintenance business (MRO) 108.3 10.8 % 1,113.0 1,004.7 954.7 Earnings before interest, tax, depreciation and amortization (EBITDA) 15.6 4.0 % 408.5 392.9 335.6 Earnings before interest and tax (EBIT) 5.0 2.1 % 248.3 243.3 183.8 Net profit 25.6 16.6 % 179.7 154.1 89.1 Earnings (adjusted) Earnings before interest, tax, depreciation and amortization (EBITDA adjusted) 12.8 3.3 % 405.7 392.9 318.2 Earnings before interest and tax (EBIT adjusted) 18.4 5.9 % 331.0 312.6 -
2019 UNIVERSAL REGISTRATION DOCUMENT Including the Annual Financial Report CONTENTS
2019 UNIVERSAL REGISTRATION DOCUMENT Including the Annual Financial Report CONTENTS EXTRACT FROM THE INTEGRATED REPORT 2 5 NON-FINANCIAL SAFRAN AT A GLANCE 3 PERFORMANCE 241 EDITORIAL 4 5.1 Organization and management of non‑financial performance 242 GROUP PROFILE 6 5.2 Key non‑financial risks 246 ECOSYSTEM 12 5.3 Business ethics, export and customs controls 251 STRATEGY AND BUSINESS MODEL 18 5.4 Responsible purchasing 256 5.5 Climate and environment 258 CORPORATE GOVERNANCE 40 5.6 Health and safety 265 PERFORMANCE AND VALUE CREATION 46 5.7 Human resources 268 5.8 Social dialogue 275 5.9 Social impact 276 5.10 Methodological note and ITP report 278 5.11 Cross‑reference table for the Non‑financial Information Statement 284 PRESENTATION 1 OF THE GROUP 49 6 1.1 Safran overview 50 CORPORATE GOVERNANCE 287 1.2 Group businesses 54 6.1 Safran’s corporate governance structure 288 1.3 Competitive position 74 6.2 Membership structure of the Board Research and development 74 1.4 of Directors 291 1.5 Industrial investments 81 6.3 Operating procedures and work of Sites and production plants 83 1.6 the Board of Directors and the Board Safran performance and quality policy 84 1.7 Committees 324 6.4 Application of the AFEP‑MEDEF Corporate Governance Code 334 6.5 Directors’ interests in the Company’s share capital 334 2 REVIEW OF OPERATIONS IN 2019 6.6 Compensation policy and compensation AND OUTLOOK FOR 2020 87 packages for corporate officers 335 6.7 Cross‑reference table for the corporate 2.1 Comments on the Group’s performance governance report prepared