Lecture 7 Pumping & Populaon Inversion*

Min Yan Opcs and , KTH

15/04/16 1 * Some figures and texts belong to: O. Svelto, Principles of , 5th Ed., Springer. Reading

• Principles of Lasers (5th Ed.): Chapter 6. • Skip: Quantum mechanical treatment in 6.4.1.1 • Squeeze: 6.3.3-6.3.5, 6.4.1-6.4.4.

15/04/16 2

Pump

Iin Iout

Gain medium Mirror 1 Mirror 2

3 2

• Pump efficiency: ηp=Pm/Pp νp νmp • Pump rate: Rp, or dN2/dt 1 • Threshold pump power: P 0 th

15/04/16 3 Contents

Content Time

1. Pumping varieties 10 ’ 2. (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser)

3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’

Total: 80’

15/04/16 4 Contents

Content Time

1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser)

3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’

Total: 80’

15/04/16 5 Pumping variees

• Opcal pumping (CW/pulsed) o Lamp: for solid-state/liquid lasers [broad absorpon bands] o Laser: for solid-state/liquid/gas lasers [broad/narrow absorpon bands/lines]

• Electrical pumping (CW/RF/pulsed; for gas/semiconductor lasers)

• X-ray pumping

• E-beam pumping

• Chemical pumping

15/04/16 6 Contents

Content Time

1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser)

3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’

Total: 80’

15/04/16 7 Pumping: Lamp

Lamp types • For pulsed lasers: Medium-to-high pressure (500~1500 Torr) Xe or Kr flashlamps • For CW lasers: High-pressure (1-8atm) Kr lamps

• Ellipcal cylinder o Rod and lamp at foci o Specular reflecon Rod radius: mm~cm Rod length: cm~<1m • Close-coupling o Close-pack o Diffusive reflecon ü More uniform

15/04/16 8 1 atm = 760 Torr Pumping: Lamps • Pp↑ ηp↓ • More uniform

15/04/16 9 Pump efficiency and pump rate Assumpon: uniform Rp

3 Pp 2 P r ν P p νmp t 1 Pa 0 Pm

• Radiave efficiency • Transfer efficiency • Absorpon efficiency • Power quantum efficiency 15/04/16 10 Pump efficiency, ηp

Configuraon: Ellipcal cylinder

15/04/16 11 Absorpon efficiency, ηa

Emission

• Connuum ∝ J2 • Lines ∝ J

Alexandrite Nd:YAG

Absorpon

3+ 15/04/16 • Nd:YAG: Nd in Y3Al5O12 crystal (host-independent) 12 3+ • Alexandrite: Cr in BeAl2O4 crystal (host-dependent) Contents

Content Time

1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser)

3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’

Total: 80’

15/04/16 13 Laser pumping

• Convenience: Efficient and high-power diode lasers widely available

• Key examples: o Nd:YAG and “siblings” pumped by GaAs/AlGaAs QW-lasers (~800nm) o Yb:YAG, Nd:glass or Yb:Er:glass pumped by InGaAs/GaAs QW-lasers (950~980nm) o Alexandrite, Cr:LISAF pumped by GaInP/AlGaInP QW-lasers (640-680nm) o Tm:Ho:YAG laser pumped by AlGaAs QW-lasers (785nm)

808nm

15/04/16 14 Pumping diodes

i ii

i. Single-diode Beam:2x4µm2; P<100mW ii. Diode-array P≈2W iii. Diode-bar P=10-20W iv. Stacked-bars P=100W; emission bandwidth↑

iii iv

15/04/16 15 Pumping scheme

• Longitudinal pumping Beam shaping

• Transverse pumping Core ∅: 200µm

Nd:YAG slab Opcal fiber

Water

Gold-coated glass 10W CW 15/04/16 16 Pump efficiency

Nd:YAG

• Lamp v.s. Diode: ηa (6×) and ηpq (1.5 ×)

15/04/16 17 For uniform R Pump rate, p

Space-dependent lasing/pump beams: a maer of calculang A

1. Diode (longitudinal) ηpd: ηp for diode pumping

Opmum: wp ≈w0

2. Diode (transverse) Opmum a exists

3. Lamp ηpl: ηp for lamp pumping

w0: Laser beam waist Assumpon for cases 2 and 3: wp: pump beam waist • Rp=const if ra (undoped cladding)

15/04/16 18 Threshold pump power, Pth Procedure: c → c → Pth γ: logarithmic cavity loss σe: effecve smulated emission cross-secon l: acve medium length τ: upper-level lifeme

Comment: c differs for quasi-3-level system

1. Diode (longitudinal)

• Can be 50% larger 2. Diode (transverse) than case 1

• Can be 10 mes larger 3. Lamp than case 2 • High thermal load 15/04/16 19 Contents

Content Time

1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser)

3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’

Total: 80’

15/04/16 20 Electrical pumping

• Applicability: Gas or semiconductor lasers • Principle: Gas discharge • Configuraon: o Longitudinal: Uniform pumping () o Transverse: small voltage (arc discharge @ edges)

Low-pressure mercury vapor discharge [Wikipedia]

He Ne Ar Kr Xe N O2 H2

Source: Wikipedia 15/04/16 21 Excitaon mechanisms

• Collision of the first kind: o Or: electron-impact excitaon Excited state: • Vibraonal o For single-species gas • Rotaonal o More common • Electronic o Non-resonant o Prelude for 2nd-kind collision

• Collision of the second kind: o Resonant o ΔE < kT such that probability is high

15/04/16 22 Pump rate

• σe2: Electronic excitaon cross-secon o Dependent on electron energy E, as σe2(E) • Nt: Total species populaon • Ne: Electron density • v: Electron velocity o Follow a distribuon funcon f(E)

15/04/16 23 σe2

σ e2 ~ Eth

Eth E

Width of the curve is much broader compared to opcal excitaon.

15/04/16 24 f(E): Electron energy distribuon

• v=v +v th dri v /v ≈0.01 Electric-field-induced velocity dri th Thermal velocity: random, temperature-dependent, • f(E): Maxwell-Boltzmann distribuon

Te: Electron temp.

Te→ f(E) → vth → He-Ne: • f(E):Maxwellian (mean electron energy of 10 eV); 1 1 1 3 • σe2: 1 S→2 S; 1 S→2 S transions of He; • High electron energy; inefficient

15/04/16 25 Balance condions

Te is related to electrical field and pressure

• Energy-balance condion: Energy loss by electron collisions = Energy supplied to electrons by E field • Momentum-balance condion: Momentum should be conserved with a collision

Te is related to gas pressure and tube radius

• Ionizaon balance condion: Ionizaon Electron-ion recombinaon at tube walls

15/04/16 26 Scaling law of

Opmum Te (for achieving max Rp) can be obtained with various combinaons of R, p and ε.

Example: R↓ → p↑ → ↑

15/04/16 27 Contents

Content Time

1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser)

3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’

Total: 80’

15/04/16 28