Longitudinal Pumping Beam Shaping

Longitudinal Pumping Beam Shaping

Lecture 7 Pumping & Populaon Inversion* Min Yan Op3cs and Photonics, KTH 15/04/16 1 * Some figures and texts belong to: O. Svelto, Principles of Lasers, 5th Ed., Springer. Reading • Principles of Lasers (5th Ed.): Chapter 6. • Skip: Quantum mechanical treatment in 6.4.1.1 • Squeeze: 6.3.3-6.3.5, 6.4.1-6.4.4. 15/04/16 2 Laser Pump Iin Iout Gain medium Mirror 1 Mirror 2 3 2 • Pump efficiency: ηp=Pm/Pp νp νmp • Pump rate: Rp, or dN2/dt 1 • Threshold pump power: P 0 th 15/04/16 3 Contents Content Time 1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser) 3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’ Total: 80’ 15/04/16 4 Contents Content Time 1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser) 3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’ Total: 80’ 15/04/16 5 Pumping varie3es • Opcal pumping (CW/pulsed) o Lamp: for solid-state/liquid lasers [broad absorp3on bands] o Laser: for solid-state/liquid/gas lasers [broad/narrow absorp3on bands/lines] • Electrical pumping (CW/RF/pulsed; for gas/semiconductor lasers) • X-ray pumping • E-beam pumping • Chemical pumping 15/04/16 6 Contents Content Time 1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser) 3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’ Total: 80’ 15/04/16 7 Pumping: Lamp Lamp types • For pulsed lasers: Medium-to-high pressure (500~1500 Torr) Xe or Kr flashlamps • For CW lasers: High-pressure (1-8atm) Kr lamps • Ellipcal cylinder o Rod and lamp at foci o Specular reflec3on Rod radius: mm~cm Rod length: cm~<1m • Close-coupling o Close-pack o Diffusive reflecon ü More uniform 15/04/16 8 1 atm = 760 Torr Pumping: Lamps • Pp↑ ηp↓ • More uniform 15/04/16 9 Pump efficiency and pump rate Assump3on: uniform Rp 3 Pp 2 P r ν P p νmp t 1 Pa 0 Pm • Radiave efficiency • Transfer efficiency • Absorp3on efficiency • Power quantum efficiency 15/04/16 10 Pump efficiency, ηp Configuraon: Ellip3cal cylinder 15/04/16 11 Absorp3on efficiency, ηa Emission • Connuum ∝ J2 • Lines ∝ J Alexandrite Nd:YAG Absorp#on 3+ 15/04/16 • Nd:YAG: Nd in Y3Al5O12 crystal (host-independent) 12 3+ • Alexandrite: Cr in BeAl2O4 crystal (host-dependent) Contents Content Time 1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser) 3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’ Total: 80’ 15/04/16 13 Laser pumping • Convenience: Efficient and high-power diode lasers widely available • Key examples: o Nd:YAG and “siblings” pumped by GaAs/AlGaAs QW-lasers (~800nm) o Yb:YAG, Nd:glass or Yb:Er:glass pumped by InGaAs/GaAs QW-lasers (950~980nm) o Alexandrite, Cr:LISAF pumped by GaInP/AlGaInP QW-lasers (640-680nm) o Tm:Ho:YAG laser pumped by AlGaAs QW-lasers (785nm) 808nm 15/04/16 14 Pumping diodes i ii i. Single-diode Beam:2x4µm2; P<100mW ii. Diode-array P≈2W iii. Diode-bar P=10-20W iv. Stacked-bars P=100W; emission bandwidth↑ iii iv 15/04/16 15 Pumping scheme • Longitudinal pumping Beam shaping • Transverse pumping Core ∅: 200µm Nd:YAG slab Op3cal fiber Water Gold-coated glass 10W CW 15/04/16 16 Pump efficiency Nd:YAG • Lamp v.s. Diode: ηa (6×) and ηpq (1.5 ×) 15/04/16 17 For uniform R Pump rate, <Rp> p Space-dependent lasing/pump beams: a maer of calculang A 1. Diode (longitudinal) ηpd: ηp for diode pumping Opmum: wp ≈w0 2. Diode (transverse) Opmum a exists 3. Lamp ηpl: ηp for lamp pumping w0: Laser beam waist Assump#on for cases 2 and 3: wp: pump beam waist • Rp=const if r<a (doped region) a: radius of the ac3ve region • Rp=0 if r>a (undoped cladding) 15/04/16 18 Threshold pump power, Pth Procedure: <N2>c → <Rp>c → Pth γ: logarithmic cavity loss σe: effec3ve s3mulated emission cross-secon l: ac3ve medium length τ: upper-level lifeme Comment: <N2>c differs for quasi-3-level system 1. Diode (longitudinal) • Can be 50% larger 2. Diode (transverse) than case 1 • Can be 10 3mes larger 3. Lamp than case 2 • High thermal load 15/04/16 19 Contents Content Time 1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser) 3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’ Total: 80’ 15/04/16 20 Electrical pumping • Applicability: Gas or semiconductor lasers • Principle: Gas discharge • Configuraon: o Longitudinal: Uniform pumping (glow discharge) o Transverse: small voltage (arc discharge @ edges) Low-pressure mercury vapor discharge [Wikipedia] He Ne Ar Kr Xe N O2 H2 Source: Wikipedia 15/04/16 21 Excitaon mechanisms • Collision of the first kind: o Or: electron-impact excitaon Excited state: • Vibraonal o For single-species gas • Rotaonal o More common • Electronic o Non-resonant o Prelude for 2nd-kind collision • Collision of the second kind: o Resonant o ΔE < kT such that probability is high 15/04/16 22 Pump rate • σe2: Electronic excitaon cross-secon o Dependent on electron energy E, as σe2(E) • Nt: Total species populaon • Ne: Electron density • v: Electron velocity o Follow a distribu3on func3on f(E) 15/04/16 23 σe2 σ e2 ~ Eth Eth E Width of the curve is much broader compared to op3cal excitaon. 15/04/16 24 f(E): Electron energy distribu3on • v=v +v th dri v /v ≈0.01 Electric-field-induced velocity dri th Thermal velocity: random, temperature-dependent, <v> • f(E): Maxwell-Boltzmann distribu#on Te: Electron temp. Te→ f(E) → vth → <v> He-Ne: • f(E):Maxwellian (mean electron energy of 10 eV); 1 1 1 3 • σe2: 1 S→2 S; 1 S→2 S transi3ons of He; • High electron energy; inefficient 15/04/16 25 Balance condi3ons Te is related to electrical field and pressure • Energy-balance condion: Energy loss by electron collisions = Energy supplied to electrons by E field • Momentum-balance condi#on: Momentum should be conserved with a collision Te is related to gas pressure and tube radius • Ionizaon balance condion: Ionizaon Electron-ion recombinaon at tube walls 15/04/16 26 Scaling law of gas laser Opmum Te (for achieving max Rp) can be obtained with various combinaons of R, p and ε. Example: R↓ → p↑ → ↑ 15/04/16 27 Contents Content Time 1. Pumping varieties 10 ’ 2. Optical pumping (lamp) 20 ’ 2.1. Schemes; 2.2 ηp and Rp 3. Optical pumping (laser) 3.1. Schemes; 3.2 ηp and Rp 25 ’ 3.3. Pump threshold Pth 4. Electrical pumping 25 ’ Total: 80’ 15/04/16 28 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us