Characterizing and Evaluating Autonomous Controllers

Total Page:16

File Type:pdf, Size:1020Kb

Characterizing and Evaluating Autonomous Controllers Departamento de Autom´atica Programa de Doctorado en Investigaci´on Espacial Characterizing and Evaluating Autonomous Controllers Dissertation written by Pablo Mu~noz Mart´ınez Under the supervision of Dra. Mar´ıa Dolores Rodr´ıguez Moreno International advisors Dr. Amedeo Cesta and Dr. Andrea Orlandini Dissertation submitted to the School of Computing of the Universidad de Alcal´a, in partial fulfilment of the requirements for the degree of Doctor of Philosophy Characterizing and Evaluating Autonomous Controllers 2016 \The Viking Lander is a superbly instrumented and designed ma- chine. It extends human capabilities to other and alien land- scapes. By some standards, it's about as smart as a grasshopper, by others, only as intelligent as a bacterium. There's nothing de- meaning in these comparisons; it took nature hundreds of millions of years to evolve a bacterium, and billions of years to make a grasshopper. With only a little experience in this sort of business, we're getting pretty good at it." Carl Sagan Cosmos { episode 5, 1980. Acknowledgements Como en cualquier tesis, el primer agradecimiento no puede ser m´asque para el director, o directora en este caso. En gran medida esta tesis es fruto de Mar´ıa Dolores. El esfuerzo y dedicaci´onque he puesto yo en su confecci´onposiblemente se vea superado por el suyo. No puedo m´asque expresar mi m´asprofunda admiraci´on por sus conocimientos, aptitudes y el entusiasmo que pone en todo lo que hace. Por ello, muchas gracias por permitirme hacer este viaje junto a ti. Tambi´enquiero agradecer a todos mis compa~neros del laboratorio E31 en el que he pasado m´astiempo que en mi propia casa durante los ´ultimos a~nos, con menci´on especial a Yolanda y Javi. El laboratorio sin vosotros se hizo un lugar aburrido. Por suerte he seguido contando con m´asgente de la que poder aprender: Alex y Rub´en primero y ahora Dani, Diego y Fernando. Tambi´enagradecer a los miembros del Intelligent Systems Group por su apoyo, sobre todo al Dr. David F. Barrero que siempre tendr´aun hueco en el laboratorio. Y por supuesto al Dr. Bonifacio Casta~no; espero que disfrutes de tu jubilaci´onen lo m´asalto del mundo. >Y qu´eser´ıa de una tesis sin la familia y amigos? Tengo que dedicar esta tesis a mis padres, Juli´any Florinda y a mi hermana Flor. Siempre hab´eis estado ah´ı d´andome apoyo en los buenos y malos momentos. Por ello esta tesis tambi´en es vuestra. Aunque para sobrellevar los peores momentos nada mejor que el baloncesto, jugando en Rucker junto a Xuma, Juampa, Alberto y el resto de la plantilla que tanto ha cambiado estos a~nos. During this thesis I spent some time in Rome with the PST group at ISTC-CNR. I want to thank all the PST staff, but specially to the senior members: Amedeo, Andrea, Riccardo and Angelo. You form an excellent group and I hope I can continue working and learning from you; this thesis is only a first step. Finally, I want to thank to the ESA's technical officer Mr. Michel Van Win- nendael for his continuous support. I really appreciate his comments during every stage of this thesis. Also, I appreciate the help from the people of the Automation and Robotics Section in ESA-ESTEC, with emphasis to Mart´ın Azkarate and Carlos Crespo and their valuable knowledge about robotics. This thesis was supported by the European Space Agency under the Networking and Partnering Initiative titled Cooperative Systems for Autonomous Exploration Missions, contract 4000106544/12/NL/PA in collaboration with ISTC-CNR (Italy). I Abstract Autonomy in robotics by means of Artificial Intelligence (AI) Planning & Schedul- ing (P&S) is a widely research area with great interest in applications such as ex- ploration robots in hazardous or human unreachable areas. However, autonomous controllers for robotics are usually not well assessed. For instance, it is not easy to compare newer assets with previous works in the field. In this thesis we propose a framework, called On-Ground Autonomy Test Environment (OGATE), to support testing and assessment of autonomous controllers. It is supported on a methodology and a set of generally applicable and domain independent metrics to generate objec- tive evaluations, and a software tool to enable automatic benchmarking processes. To demonstrate the effectiveness of the framework, we exploit two autonomous con- trollers based on different P&S paradigms. First, the Goal Oriented Autonomous Controller (GOAC) developed under an European Space Agency (ESA) contract. Second, the Model-Based Architecture (MOBAR) developed during this PhD that exploits a different paradigm for autonomy. Particularly, MOBAR is designed with the objective of testing different Planning Domain Definition Language (PDDL) based planners to achieve on-board autonomy. In this regard, we also introduce a new planner, Unified Path Planning and Task Planning Architecture (up2ta), that integrates a state of the art PDDL planner with path planning algorithms. The objective of up2ta is to produce efficient plans for robotics exploration missions. Re- garding to the path planning algorithm, in this thesis we introduce two algorithms focused on mobile robots: S-Theta* that effectively reduces the heading changes of the path, and the 3D Accurate Navigation Algorithm (3Dana) that deals with Digital Terrain Models (DTMs) and traversability cost maps to produce safer and reachable paths in realistic environments. Given both controllers, OGATE has been success- fully exploited to evaluate them, allowing to characterize relevant aspects about the integration between Planning & Execution (P&E) that are hardly to be assessed in other ways. Moreover, the results are reproducible and objective, enabling compari- son among controllers with different P&S technologies and paradigms. III Extended abstract The expectations for robotic systems have evolved from the classical teleoperation paradigm of the previous century to the current aim of fully autonomous robots in- teracting with each other, being able to take their own decisions. However, although progress over the past few decades has been significant, such full autonomy still re- mains an open issue, partially due to the extensive variability and complexity of the scenarios to operate within. Reaching high autonomy levels can be justified in scenar- ios such as planetary and underwater exploration or natural disasters, as scenarios in which the human presence is rather than complicated, while also teleoperation may be infeasible. In recent time the European Space Agency (ESA) has started to explore possibil- ities for autonomy on board in different internal activities and studies. In particular, they have produced the Goal Oriented Autonomous Controller (GOAC) architec- ture, which is a prototype for robotics autonomy in space missions. GOAC can be modified in order to test on-board Artificial Intelligence (AI) Planning & Schedul- ing (P&S) techniques to provide goal oriented autonomy. Moreover, GOAC can be customized exploiting different autonomy levels and P&S systems, allowing other research groups not to start from scratch but to take advantage of the work done. For this reason this PhD starts from ESA assets in robotics to investigate open problems. In particular, we propose research effort to better explore the evaluation aspects of different autonomy architectures, to study efficient reaction policies when executing the goals and allow operators to focus on what they want the mission to do. In this direction, a main objective is to generate a framework that deals with autonomous controllers evaluation, assessing aspects related to the P&S system and its integration in robotics. With the objective of providing a wider support to verify the generated frame- work, this PhD provides the description of a new autonomous controller called Model- Based Architecture (MOBAR), that has similar functionalities as GOAC, but employ- ing different technologies and paradigms for P&S. From this robotic controller, this thesis also addresses the decisional capabilities of such controllers. Particularly, the deliberative layer has to produce feasible and safe plans to guide the execution to achieve the mission goals. In this extent, robotics applications in planetary surfaces require navigation planners that take into consideration terrain constraints to safely achieve the target locations. Then, path planning capabilities seems to be a required component in an autonomous mobile robot when facing long term missions. V For the generation of safer routes two aspects have been covered. First, as some robotics have limited turning capabilities, a new path planning algorithm, called S- Theta*, has been produced. This algorithm effectively reduces the heading changes of the robot respect to its former one, Theta*. From this point, classical path planning algorithms usually exploit a loosely realistic 2D terrain discretisation, being in the best case a traversability cost map. However, this seems not to be enough to provide safer paths in uneven terrains. Then, a second assess produced in this thesis is the 3D Accurate Navigation Algorithm (3Dana), a path planning algorithm that provides support to deal with traversability cost maps as well as Digital Terrain Models (DTMs). DTMs provide realistic 3D surfaces, so using them it is possible to extract paths considering the terrain relief. 3Dana evolves from S-Theta*, and provides different parametrizations that allows generation of smooth paths, while also avoids excessive terrain slopes that cannot be reached by the robotic platform. However, just providing a safe route between two points does not guarantee opti- mality in large missions with several targets. For this reason, we have merged a state of the art Planning Domain Definition Language (PDDL) planner with the proposed path planning algorithms. This new deliberative, called Unified Path Planning and Task Planning Architecture (up2ta), interleaves task planning and path planning for optimal sequencing of activities taking into consideration the robot paths.
Recommended publications
  • Autonomous Intelligent Robotic Manipulator for On-Orbit Servicing
    AUTONOMOUS INTELLIGENT ROBOTIC MANIPULATOR FOR ON-ORBIT SERVICING BENOIT P. LAROUCHE A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTORATE OF PHILOSOPHY GRADUATE PROGRAM IN EARTH AND SPACE SCIENCE YORK UNIVERSITY TORONTO, ONTARIO AUGUST 2012 Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du 1+1 Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-92801-1 Our file Notre reference ISBN: 978-0-494-92801-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • ASHS Is Inviting/Encouraging Poster Presenters to Up- Posters: Load a PDF of Their Poster
    vt- •• ��t E�. Gallo Winery � BalL American Funding Generations of Floral Progress Through Research Image Analysis for Plant Science Endowment and Scholarships 1 of 262 General Information Conference Facilities: Speaker Ready Room: All Conference activities will take place at the Tropicana Oral, Workshop, Special Sessions, and Keynote speakers Las Vegas. are requested to check in at the Speaker Ready Room located in Churchill. Please note, even if you have Registration hours: uploaded in advance, you are still asked to check in at the Speaker Ready room at least 24 hours in advance of Sunday, July 21. .3:00 PM – 6:00 PM your presentation to confirm that your media and Pow- erPoint presentations were successfully uploaded and Monday, July 22 .............7:30 AM – 6:00 PM running properly. Updates and modifications can only Tuesday, July 23. 7:30 AM – 6:00 PM be made up to 24 hours in advance of your presentation. Wednesday, July 24. .7:30 AM – 5:00 PM Thursday, July 25 ............7:30 AM – 2:00 PM Poster Presenters and E-Posters: ASHS is inviting/encouraging poster presenters to up- Posters: load a PDF of their poster. You may also upload mp4 video or audio files to go along with the poster. Posters are located in Cohiba 5-12. As part of enhancing the ASHS online conference proceedings, you have the option to make your poster Poster Set Up: into an interactive electronic version (E-Poster). If you would like to explore this option, a link will appear once Monday, July 22 .............2:00 PM – 5:00 PM you have uploaded your PDF file with instructions on how to create your E-Poster.
    [Show full text]
  • Robots Are Coming: News24: Sci-Tech: News
    Robots are coming: News24: Sci-Tech: News http://www.news24.com/SciTech/News/Robots-are-coming-20100622 Your current location is: Pretoria SAVE News24.com Home Mail Blogs Albums Classifieds 24.com Sites Jobs Property Cars kalahari.net Win a new console Feelings affect actions - study News24 Games are giving away a Wii, Xbox 360 or Scientists are finding that how something feels to a PS3 to one lucky reader. Find out more. person can affect how he or she acts. News 2010 Opinion Business Sport Lifestyle Games Multimedia Special Reports MyNews24 Newspapers Jobs South Africa | World | Africa | Entertainment | Science & Technology Robots are coming 2010-06-25 08:37 Duncan Alfreds Recommend Be the first of your friends to recommend this. Cape Town - Robots that perform the functions we Print article Email article see in science fiction movies are still some way off, but the technology for domestic robots is growing fast. Related Links "I believe that we will see robots that perform New robot 'learns like a child' smaller individual tasks, but not necessarily robots Will robots fight our wars? as complex as those in the sci-fi movies or as Nanotech robots deliver therapy butler robots, since we may not really need such robots in our daily life," Professor Hendrik Lund kalahari.net buy books, music, dvds, appliances and told News24. much more Electronic products delivered to your doorstop! Find every electronic product Lund is from Denmark where he is known for his from cameras,... robotics projects and workshops with children and was a guest speaker at the CSIR Meraka Institute and he was talking about the design approach for technological tools that may enhance playful interaction.
    [Show full text]
  • Getting Kids Into Robotics
    Tune in each month for a heads-up on where to get all of your “robotics resources” for the best prices! Getting Kids into Robotics obots and kids go together like rudimentary actions, such as reacting are available from several retailers Rbacon and eggs, peaches and to light or following a black line on a (a couple of the main online stores cream, resistors and capacitors. white piece of paper. Fortunately, are listed in the Sources), and are Thanks to low-cost construction kits there are many such kits available, at grouped by skill level. These basic — and not to mention popular prices starting at about $20. Of mechanical-only kits comprise the movies that glamorize automatons course, the more sophisticated the least expensive of the lot. Next, are — more and more children are robot and its abilities, the more the the kits that require electronics of exploring the world of robots. robot will cost. some kind come with complete and And that’s not a bad thing. At the lower end of the scale is ready-to-go circuit boards, though a Robotics encompasses multiple the single-function kit, requiring at few models are available with the disciplines, including mechanical least mechanical assembly. By electronics also in kit form. These are engineering, software “single-function,” it means just that. handy for learning about soldering programming, electronics, even These ‘bots are made to do and electronics construction. human psychology. In all, it’s a one thing and encompass no For purely mechanical great field to be interested in, intelligence or programming.
    [Show full text]
  • From a Theoretical Model to Pragmatic Robotics Arnaud Revel, Pierre Andry
    Emergence of structured interactions: from a theoretical model to pragmatic robotics Arnaud Revel, Pierre Andry To cite this version: Arnaud Revel, Pierre Andry. Emergence of structured interactions: from a theoretical model to pragmatic robotics. Neural Networks, Elsevier, 2009, 22 (2), pp.116-125. hal-00426214 HAL Id: hal-00426214 https://hal.archives-ouvertes.fr/hal-00426214 Submitted on 2 Dec 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Emergence of structured interactions: from a theoretical model to pragmatic robotics A.Revel ETIS Lab, CNRS UMR 8051, ENSEA P.Andry ETIS Lab, CNRS UMR 8051, Univ Cergy-Pontoise Abstract In this article, we present two neural architectures for the control of socially interacting robots. Beginning with a theoretical model of interaction inspired by developmental psychology, biology and physics, we present two sub- cases of the model that can be interpreted as “turn-taking” and “synchrony” at the behavioral level. These neural architectures are both detailed and tested in simulation. A robotic experiment is even presented for the “turn-taking” case. We then discuss the interest of such behaviors for the development of further social abilities in robots.
    [Show full text]
  • Supplement to Hortscience
    Supplement to HortScience Volume 54(9) September 2019 This supplement contains the abstracts of presentations from the National Conference of the American Society for Horticultural Science ASHS Annual Conference 22 July–25 July 2019, Las Vegas, Nevada ........................S1 American Society for Horticultural Science 1018 Duke Street, Alexandria, VA 22314 phone: 703.836.4606 • fax: 703.836.2024 • ashs.org • [email protected] Abstracts of Presentations from the Annual Conference of the American Society for Horticultural Science 22 July–25 July 2019, Las Vegas, Nevada Supplement to HortScience Volume 54(9), September 2019 Part 1: Special Sessions and Workshops.......................................S2 Part 2: Oral Presentations...........................................................S34 Part 3: Poster Presentations.......................................................S187 Part 4: Index of Authors............................................................S340 For citation purposes, abstracts should be cited as shown in the following example: Torres Quezada, E., Chase, Carlene A. 2019. Off-Season Cover Crops for Organic Strawberry Production in Florida. HortScience 54(9) S247. (Abstr.) American Society for Horticultural Science 1018 Duke Street, Alexandria, VA 22314 phone: 703.836.4606 • fax: 703.836.2024 • ashs.org • [email protected] —Workshops— Part 1: Workshops/Special Sessions Part 1: Special Sessions and Workshops SPECIAL SESSIONS AND WORKSHOPS commonly originating from sub-tropical and tropical cli- mates. As the names imply, orangeries and limonaias were constructed to protect tender fruits, as well as ornamental plants, requiring protection in temperate European climates Monday, July 22, 2019 during winter upon being brought back. In addition the influx of exotic plant materials requiring modified environ- History of Controlled Environment Hor- ments to survive and flourish, technological advancements ticulture *CEU Approved* in glass manufacturing allowed for glass panes of substan- Coordinator: Jules Janick tial size to be produced.
    [Show full text]
  • The Employment Consequences of Robots: Firm-Level Evidence
    The Employment Consequences of Robots: Firm-level Evidence Jay Dixon Statistics Canada Bryan Hong New York University Lynn Wu Wharton School of Management University of Pennsylvania Abstract As a new general-purpose technology, robots have the potential to radically transform industries and affect employment. Preliminary empirical studies using industry and geographic region-level data have shown that robots differ from prior general-purpose technologies and predict substantial negative effects on employment. Using novel firm-level data, we show that investments in robotics are associated with increased employee turnover, but also an increase in total employment within the firm. Examining changes in labor composition, we find that manager headcount has decreased but non-managerial employee headcount has increased, suggesting that robots displace managerial work that in prior waves of technology adoption was considered more difficult to replace. However, we also find that firms are more likely to hire managers from outside the firm and invest in additional training, suggesting that firms require different employee skills as the nature of work changes with robot investment. We also provide additional evidence that robot investments are not generally motivated by the desire to reduce labor costs but are instead related to an increased focus on improving product and service quality. With respect to changes in the way work is organized within the firm, we find that robot adoption predicts organizational changes in ways that differ from prior technologies. While information technology has generally been found to decentralize decision-making authority within organizational hierarchies, we find that robots can either centralize or decentralize decision-making, depending on the task.
    [Show full text]
  • Research Article the COMRADE System for Multirobot Autonomous Landmine Detection in Postconflict Regions
    Hindawi Publishing Corporation Journal of Robotics Volume 2015, Article ID 921370, 17 pages http://dx.doi.org/10.1155/2015/921370 Research Article The COMRADE System for Multirobot Autonomous Landmine Detection in Postconflict Regions Prithviraj Dasgupta,1 José Baca,1 K. R. Guruprasad,2 Angélica Muñoz-Meléndez,3 and Janyl Jumadinova4 1 Computer Science Department, University of Nebraska, Omaha, NE 68182, USA 2Mechanical Engineering Department, NIT, Surathkal, Karnataka 575025, India 3Computer Science Department, INAOE, 72840 Puebla, PUE, Mexico 4Computer Science Department, Allegheny College, Meadville, PA 16335, USA Correspondence should be addressed to Prithviraj Dasgupta; [email protected] Received 14 August 2014; Accepted 12 January 2015 Academic Editor: Giovanni Muscato Copyright © 2015 Prithviraj Dasgupta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We consider the problem of autonomous landmine detection using a team of mobile robots. Previous research on robotic landmine detection mostly employs a single robot equipped with a landmine detection sensor to detect landmines. Weenvisage that the quality of landmine detection can be significantly improved if multiple robots are coordinated to detect landmines in a cooperative manner by incrementally fusing the landmine-related sensor information they collect and then use that information to visit locations of potential landmines. Towards this objective, we describe a multirobot system called COMRADES to address different aspects of the autonomous landmine detection problem including distributed area coverage to detect and locate landmines, information aggregation to fuse the sensor information obtained by different robots, and multirobot task allocation (MRTA) to enable different robots to determine a suitable sequence to visit locations of potential landmines while reducing the time required and battery expended.
    [Show full text]
  • Robotics-DTF
    Robotics Domain Task Force Final Agenda ver.1.0.4 robotics/2006-04-04 OMG Technical Meeting - St. Louis, MO, USA -- April 24-28, 2006 TF/SIG Host Joint (Invited) Agenda Item Purpose Room Monday (April 24) WG and Committee Activites 8:30 12:00 SDO Robotics Robot Technology Components RFP submitter's meeting (closed) St. Peters 12:00 13:00 LUNCH Grand Ballroom ABC 13:00 18:00 Architecture Board Plenary Grand Ballroom D 13:00 14:20 Robotics WG (Service) discussion 14:20 15:40 Robotics WG (Profile) discussion 15:40 17:00 Robotics WG (Tool) discussion Gateway3 17:00 18:00 Robotics SDO Steering Committee of Robotics DTF Volunteer recruit (included Publicity Subcommitee discussion) Tuesday (April 25) Robotics Plenary 8:30 9:00 MARS SDO, Progress Report of the Robot Technology Components RFP revised submission reporting Gateway2 Robotics 10:05 10:20 Robotics, Welcome and review agenda Robotics/SDO Joint SDO Meeting Kick-off 10:20 11:20 Robotics, SDO, <Special Talk> Informative SDO Robotics "Real-Time ORB Middleware: Standards, Applications, and Variations” Poplar - Prof. Chris Gill (Washington University) 11:20 12:00 Robotics (SDO) "Communication protocol for the URC robot and server” RFI response - Hyun-Sik Shim (Samsung Electronics) 12:00 13:00 LUNCH Grand Ballroom ABC 13:00 14:00 Robotics (SDO) <Special Talk> Infomative "URBI: a Universal Platform for Personal Robotics” - Prof. Jean-Christophe Baillie (ENSTA/UEI Lab) 14:00 14:40 Robotics (SDO) "Fujitsu's robotics research and standardization activities” RFI response - Toshihiko Morita 14:40 15:20 Robotics (SDO) "Standardization of device interfaces for home service robot” RFI response Poplar - Ho-Chul Shin (ETRI) Break (20min) 15:40 16:20 Robotics (SDO) “Voice interface standardization items network robot in noisy environments” RFI response - Soon-Hyuk Hong (Samsung Electronics) 16:20 17:40 Robotics SDO WG (Infrastructure) discussion Wednesday (April 26) Robotics Plenary 8:30 9:10 Robotics (SDO) “Home robot navigation in SAIT” RFI response - Seok Won Bang and Y.
    [Show full text]
  • In Artificial Intelligence (Ai), Robotics and Autonomous
    LEADING THE WAY IN ARTIFICIAL INTELLIGENCE (AI), ROBOTICS AND AUTONOMOUS SYSTEMS The West of England region is home to the largest cluster of robotic companies in the UK. Credit: Open Bionics KEY EMPLOYMENT SECTORS INVEST Artificial intelligence (AI), robotics and autonomous systems are being supported WE ARE A BRISTOL in a variety of industries: Advanced Engineering, Aerospace, Healthcare & Medical, Nuclear, Manufacturing, Energy, TECHNOLOGY AND BATH Transport and Logistics, Environmental, Agriculture, Food & Drink, Creative Industries, Leisure and Gaming, World-class area rich in robotics, Construction, Education, Composites. POWERHOUSE aerospace technology, manufacturing and engineering. LEADING THE WAY A magnet for hardware/software The region is leading the way in Connected development, where Robotics, AI, IoT, Autonomous Vehicles, Assistive Robotics, Communication, Analytics converge. Smart Automation, Artificial Intelligence, Verifiable Autonomy, Teleoperation, World first programmable autonomous Aerial Robotics, Service robotics, Cobotics, robot (Grey Walter), Transputer chip Human Robot Interaction, Machine Vision, (Inmos), and Autonomous Bacteria Swarm robotics, Robot Ethics, 5G and Powered Robot (Ecobot). wireless testbeds, Smart Cities, Bioenergy Dynamic tech ecosystem and rich and Self sustainable Systems, Biomimetic heritage of robotics innovation. and Neuro-robotics and Soft Robotics. The area is home to globally Companies and organisations BRISTOL ROBOTICS recognised tech clusters in are working together to LABORATORY Robotics, Aerospace and produce adaptable robotics The UK’s largest academic centre for Advanced Engineering, High that interact with the real multidisciplinary robotics research. Tech, Creative & Digital and world, especially with humans One of the largest robotics labs in Europe. Low Carbon Technologies and and society in unpredictable, is a great place to locate to. unstructured and uncertain Outstanding research, and teaching and learning.
    [Show full text]
  • MULTI-ROBOT COVERAGE with DYNAMIC COVERAGE INFORMATION COMPRESSION Zachary L
    University of Nebraska at Omaha DigitalCommons@UNO Student Work 3-13-2014 MULTI-ROBOT COVERAGE WITH DYNAMIC COVERAGE INFORMATION COMPRESSION Zachary L. Wilson University of Nebraska at Omaha Follow this and additional works at: https://digitalcommons.unomaha.edu/studentwork Part of the Computer Sciences Commons Recommended Citation Wilson, Zachary L., "MULTI-ROBOT COVERAGE WITH DYNAMIC COVERAGE INFORMATION COMPRESSION" (2014). Student Work. 2900. https://digitalcommons.unomaha.edu/studentwork/2900 This Thesis is brought to you for free and open access by DigitalCommons@UNO. It has been accepted for inclusion in Student Work by an authorized administrator of DigitalCommons@UNO. For more information, please contact [email protected]. MULTI-ROBOT COVERAGE WITH DYNAMIC COVERAGE INFORMATION COMPRESSION A Thesis Presented to the Department of Computer Science and the Faculty of the Graduate College University of Nebraska In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science University of Nebraska at Omaha by Zachary L. Wilson March 13, 2014 Supervisory Committee: Professor Prithviraj Dasgupta Professor Stanley Wileman Professor Robert Todd UMI Number: 1554814 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 1554814 Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC.
    [Show full text]
  • Robotics INNOVATORS Handbook Version 1.2 by PAU, Pan Aryan University BELOW ARE the KEYWORDS YOU NEED to BE AWARE of WHEN WORKING in ROBOTICS
    Robotics INNOVATORS handbook Version 1.2 by PAU, Pan Aryan University BELOW ARE THE KEYWORDS YOU NEED TO BE AWARE OF WHEN WORKING IN ROBOTICS. Eventually PAA, Pan Aryan Associations will be established for each field of robotic work listed below & these Pan Aryan Associations will research, develop, collaborate, innovate & network. 5G AARNET ABB Group ABU Robocon ACIS ACOUSTIC PROXIMITY SENSOR ACTIVE CHORD MECHANISM ADAPTIVE SUSPENSION VEHICLE Robot (ASV) ALL TYPES OF ROBOTS | ROBOTS ROBOTICS ANTHROPOMORPHISM AR ARAA | This is the site of the Australian Robotics and Automation Association ARTICULATED GEOMETRY ASIMO ASIMOV THREE LAWS ATHLETE ATTRACTION GRIPPER (MAGNETIC GRIPPER) AUTOMATED GUIDED VEHICLE AUTONOMOUS ROBOT AZIMUTH-RANGE NAVIGATION Abengoa Solar Abilis Solutions Acoustical engineering Active Components Active appearance model Active contour model Actuator Adam Link Adaptable robotics Adaptive control Adaptive filter Adelbrecht Adept Technology Adhesion Gripper for Robotic Arms Adventures of Sonic the Hedgehog Aerospace Affine transformation Agency (philosophy) Agricultural robot Albert Hubo Albert One Alex Raymond Algorithm can help robots determine orientation of objects Alice mobile robot Allen (robot) Amusement Robot An overview of autonomous robots and articles with technologies used to build autonomous robots Analytical dynamics Andrey Nechypurenko Android Android (operating system) Android (robot) Android science Anisotropic diffusion Ant robotics Anthrobotics Apex Automation Applied science Arduino Arduino Robotics Are
    [Show full text]