Phylogenetic Systematics of the North American Fossil Caninae (Carnivora: Canidae)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Systematics of the North American Fossil Caninae (Carnivora: Canidae) PHYLOGENETIC SYSTEMATICS OF THE NORTH AMERICAN FOSSIL CANINAE (CARNIVORA: CANIDAE) RICHARD H. TEDFORD Curator Emeritus, Division of Paleontology American Museum of Natural History ([email protected]) XIAOMING WANG Department of Vertebrate Paleontology Natural History Museum of Los Angeles County,California ([email protected]) BERYL E. TAYLOR Frick Curator Emeritus Division of Paleontology American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 325, 218 pp., 71 figures, 7 tables Issued September 3, 2009 Copyright E American Museum of Natural History 2009 ISSN 0003-0090 CONTENTS Abstract.......................................................... 4 Introduction . ...................................................... 5 InstitutionalAbbreviations........................................... 7 ScopeandMethods.................................................. 9 Definitions . ..................................................... 10 ChronologicalFramework........................................... 11 Systematic Paleontology .............................................. 13 SubfamilyCaninaeFischerdeWaldheim,1817............................ 13 Leptocyon Matthew, 1918 ......................................... 14 Leptocyon sp.A............................................... 17 Leptocyon mollis (Merriam),1906.................................. 18 Leptocyon douglassi,newspecies................................... 19 Leptocyon vulpinus (Matthew), 1907 ................................ 22 Leptocyon delicatus (Loomis),1932................................. 25 Leptocyon sp.B............................................... 26 Leptocyon gregorii (Matthew),1907................................. 27 Leptocyon leidyi,newspecies...................................... 31 Leptocyon vafer (Leidy), 1858 . ................................... 34 Leptocyon matthewi,newspecies................................... 43 Leptocyon tejonensis,newspecies................................... 46 Tribe Vulpini Hemprich and Ehrenberg, 1832 ............................. 47 Vulpes Frisch, 1754 .............................................. 47 Vulpes kernensis, new species . ................................... 48 Vulpes stenognathus Savage, 1941................................... 49 Vulpes sp. cf. V. velox (Say),1823.................................. 56 Metalopex TedfordandWang,2008.................................. 58 Metalopex maconnelli, new species.................................. 58 Metalopex merriami TedfordandWang,2008......................... 62 Metalopex bakeri,newspecies..................................... 67 Urocyon Baird,1858............................................. 68 Urocyon webbi, new species ....................................... 69 Urocyon progressus Stevens,1965.................................. 71 Urocyon galushai,newspecies..................................... 72 Urocyon citrinus, new species. ................................... 73 Urocyon minicephalus Martin,1974................................. 75 TribeCaniniFischerdeWaldheim,1817................................. 77 Subtribe Cerdocyonina, new subtribe ................................. 78 Cerdocyon Smith, 1839 .......................................... 78 Cerdocyon texanus, new species .................................. 79 Cerdocyon? avius Torres and Ferrusquı´a, 1981 ....................... 82 Chrysocyon Smith,1839......................................... 83 Chrysocyon nearcticus, new species................................ 84 Theriodictis Mercerat,1891....................................... 88 Theriodictis? floridanus,newspecies................................. 88 Subtribe Canina Fischer de Waldheim, 1817, new rank..................... 89 Eucyon TedfordandQiu,1996.................................... 89 Eucyon? skinneri, new species ................................... 90 Eucyon davisi (Merriam),1911................................... 92 Canis Linnaeus,1758.......................................... 104 Canis ferox Miller and Carranza-Castan˜eda,1998.................... 105 Canis lepophagus Johnston,1938................................ 112 2 2009 TEDFORD ET AL.: NORTH AMERICAN FOSSIL CANINAE 3 Canis tho¨oides,newspecies.................................... 119 Canis feneus,newspecies..................................... 121 Canis cedazoensis Mooser and Dalquest, 1975....................... 122 Canis edwardii Gazin,1942.................................... 123 Canis latrans Say,1823....................................... 131 Canis armbrusteri Gidley,1913................................. 137 Canis dirus Leidy, 1858....................................... 144 Canis lupus Linnaeus,1758.................................... 148 Xenocyon Kretzoi,1938........................................ 150 Xenocyon texanus (Troxell), 1915................................ 152 Xenocyon lycaonoides Kretzoi,1938.............................. 154 Cuon Hodgson,1837.......................................... 157 Cuon alpinus Pallas,1811..................................... 157 PhyleticAnalysis.................................................. 161 Introduction.............................................. 161 CharacterAnalysis.......................................... 163 Phylogeny................................................ 168 DiscussionandConclusions.......................................... 177 Acknowledgments................................................. 183 References...................................................... 184 Appendix 1. Eurasian Species of Canis UsedinPhyleticAnalysis................ 194 Appendix2.CranialMeasurements..................................... 200 Appendix 3. Statistical Summaries of Dental Measurements.................... 205 Appendix4.MeasurementsofLimbBones............................... 218 ABSTRACT The canid subfamily Caninae includes all the living canids and their most recent fossil relatives. Their sister taxon is the Borophaginae with which they share an important modification of the lower carnassial, namely the presence of a bicuspid talonid, which gives this tooth an additional function in mastication. Contributing to thisfunctionisthe enlargement of the posterolingual cingulum of M1 and development of a hypocone. The Caninae diverged from the Borophaginae in the narrowing and elongation of the premolars separated by diastemata and placed in a shallow ramus and narrow muzzle. These latter features allow the Caninae to be recognized in the fossil record as early as the beginning of the Oligocene (34 Ma) and constitute evidence that they represent a monophyletic group. In striking contrast to the history of the Borophaginae, the Caninae remain confined to a closely similar group of fox-sized species (Leptocyon spp.) throughout the Oligocene and showing very limited cladogenesis into the end of the medial Miocene (12 Ma), a span that saw marked adaptive divergence in the Borophaginae and the origin of all its major clades. By 12 Ma (beginning of the Clarendonian Land Mammal age) few fox-sized borophagines remained and most of those held hypocarnivorus adaptations. At that point the Vulpini appear both as mesocarnivores (Vulpes spp.) and hypocarnivores (Metalopex spp.) reproducing, on a much smaller scale, the range of adaptations shown in the initial radiation of the Borophaginae. By the end of the Clarendonian (9 Ma) the first members of the tribe Canini appear. Initially this group was represented by the genus Eucyon, largely by a single widespread North American species E. davisi. Our cladistic analysis predicts that the roots of the South American clade subtribe Cerdocyonina, sister taxon to E. davisi and Canis species (together, subtribe Canina), must also have been present, but taxa representing this group do not appear in the North America record until the earliest Pliocene (latest Hemphillian, 5 Ma). Species of three genera (Cerdocyon, Chrysocyon, and possibly Theriodictis), now confined to South America, appear in the fossil record of the southern United States and northern Mexico prior to and just after the opening of the Panamanian Isthmus (ca. 3 Ma), indicating that important cladogenesis within the South American clade took place in North America. Species of Eucyon make their appearance in the Old World in the late Miocene, and E. davisi has a Pliocene record in Asia. Species of this genus undergo a modest adaptive radiation in Eurasia during the Pliocene. In the late Miocene and early Pliocene two species of Canis appear in North America (C. ferox and C. lepophagus), representing the initial cladogenesis within the genus. These animals are all coyote-sized and represent a broadening of body size range within a mesocarnivorous dental adaptation. Toward the end of the Pliocene and into the Pleistocene in North America a curious and rare group of jackal-like species (C. tho¨oides, C. feneus,andC. cedazoensis) seem to form an endemic clade arising near C. lepophagus. These taxa are dentally similar to jackals, especially C. aureus, but share no synapomorphies with them. The early cladogenesis of Canis in the Pliocene of North America produced a somewhat larger form, C. edwardii, that appears in the late Blancan at ca. 3 Ma. It also seems to have a sister relationship with C. lepophagus and with the coyote C. latrans, which appears much later in the record (late Irvingtonian) and quickly becomes distributed across the United States. The golden jackal (C. aureus) shares synapomorphies with the coyote and C. edwardii but does not appear in the fossil
Recommended publications
  • The Impact of Large Terrestrial Carnivores on Pleistocene Ecosystems Blaire Van Valkenburgh, Matthew W
    The impact of large terrestrial carnivores on SPECIAL FEATURE Pleistocene ecosystems Blaire Van Valkenburgha,1, Matthew W. Haywardb,c,d, William J. Ripplee, Carlo Melorof, and V. Louise Rothg aDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095; bCollege of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, United Kingdom; cCentre for African Conservation Ecology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa; dCentre for Wildlife Management, University of Pretoria, Pretoria, South Africa; eTrophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331; fResearch Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom; and gDepartment of Biology, Duke University, Durham, NC 27708-0338 Edited by Yadvinder Malhi, Oxford University, Oxford, United Kingdom, and accepted by the Editorial Board August 6, 2015 (received for review February 28, 2015) Large mammalian terrestrial herbivores, such as elephants, have analogs, making their prey preferences a matter of inference, dramatic effects on the ecosystems they inhabit and at high rather than observation. population densities their environmental impacts can be devas- In this article, we estimate the predatory impact of large (>21 tating. Pleistocene terrestrial ecosystems included a much greater kg, ref. 11) Pleistocene carnivores using a variety of data from diversity of megaherbivores (e.g., mammoths, mastodons, giant the fossil record, including species richness within guilds, pop- ground sloths) and thus a greater potential for widespread habitat ulation density inferences based on tooth wear, and dietary in- degradation if population sizes were not limited.
    [Show full text]
  • “Die Akklimatization Des Marderhundes (Nyctereutes
    Beiträge zur Jagd & Wild forschung. – 2010. – Bd. 34. – GmbH. – S. Nikolaj Roženko, Odessa / Ukraine Anatoliy Volokh, Melitopol The golden jackal (Canis aureus L., 1758) as a new species in the fauna of Ukraine Key words: golden jackal, area, steppe zone, Ukraine, mammals, population, dynamics, structure, biotopes, hunting Introduction The golden jackal (fig.1) has appeared in Ukraine in recent years being a new species for our fauna. Due to the fact that its distribution goes very rapidly we decided to study characteristics of the jackal ecology in the period of expansion and characteristics of the range spreading. Fig. 1 Jackal on Biryuchy Island (the Sea of Azov). Photo by V. Kolomiychuk Material and methods Over the period from 1998 to 2009 on the territories of Zaporizhja, Odesa and Kherson regions of Ukraine and the Autonomous Republic of Crimea the authors managed to collect data about observations of the jackal (n = 574) in various habitats. Of them 531 relate to the Dniester- Danube population, and 43 to the Eastern Ukrainian population. A scatological method was used to investigate the diet (n=16). Besides, we specially investigated a gastrointestinal tract of animals got during hunting, and also of those died due to various reasons (n=31). It gave an opportunity to analyze the content of a great number of samples. The numbers were counted by a transect method on two study plots located in different areas of the Dniester river delta. The data obtained with this method were transformed in qualitative indices using the formula: 1,57S P md , where P – density of animal population (number of individuals per 1 km2), S – number of cases when a researcher crossed a track of animals; m –length of the transect, km; d – average length of animal movements during 1 day, km (FORMOZOV 1932).
    [Show full text]
  • Shape Evolution and Sexual Dimorphism in the Mandible of the Dire Wolf, Canis Dirus, at Rancho La Brea Alexandria L
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2014 Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea Alexandria L. Brannick [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Animal Sciences Commons, and the Paleontology Commons Recommended Citation Brannick, Alexandria L., "Shape evolution and sexual dimorphism in the mandible of the dire wolf, Canis Dirus, at Rancho la Brea" (2014). Theses, Dissertations and Capstones. Paper 804. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. SHAPE EVOLUTION AND SEXUAL DIMORPHISM IN THE MANDIBLE OF THE DIRE WOLF, CANIS DIRUS, AT RANCHO LA BREA A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences by Alexandria L. Brannick Approved by Dr. F. Robin O’Keefe, Committee Chairperson Dr. Julie Meachen Dr. Paul Constantino Marshall University May 2014 ©2014 Alexandria L. Brannick ALL RIGHTS RESERVED ii ACKNOWLEDGEMENTS I thank my advisor, Dr. F. Robin O’Keefe, for all of his help with this project, the many scientific opportunities he has given me, and his guidance throughout my graduate education. I thank Dr. Julie Meachen for her help with collecting data from the Page Museum, her insight and advice, as well as her support. I learned so much from Dr.
    [Show full text]
  • Mammalia, Felidae, Canidae, and Mustelidae) from the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas
    Chapter 9 Carnivora (Mammalia, Felidae, Canidae, and Mustelidae) From the Earliest Hemphillian Screw Bean Local Fauna, Big Bend National Park, Brewster County, Texas MARGARET SKEELS STEVENS1 AND JAMES BOWIE STEVENS2 ABSTRACT The Screw Bean Local Fauna is the earliest Hemphillian fauna of the southwestern United States. The fossil remains occur in all parts of the informal Banta Shut-in formation, nowhere very fossiliferous. The formation is informally subdivided on the basis of stepwise ®ning and slowing deposition into Lower (least fossiliferous), Middle, and Red clay members, succeeded by the valley-®lling, Bench member (most fossiliferous). Identi®ed Carnivora include: cf. Pseudaelurus sp. and cf. Nimravides catocopis, medium and large extinct cats; Epicyon haydeni, large borophagine dog; Vulpes sp., small fox; cf. Eucyon sp., extinct primitive canine; Buisnictis chisoensis, n. sp., extinct skunk; and Martes sp., marten. B. chisoensis may be allied with Spilogale on the basis of mastoid specialization. Some of the Screw Bean taxa are late survivors of the Clarendonian Chronofauna, which extended through most or all of the early Hemphillian. The early early Hemphillian, late Miocene age attributed to the fauna is based on the Screw Bean assemblage postdating or- eodont and predating North American edentate occurrences, on lack of de®ning Hemphillian taxa, and on stage of evolution. INTRODUCTION southwestern North America, and ®ll a pa- leobiogeographic gap. In Trans-Pecos Texas NAMING AND IMPORTANCE OF THE SCREW and adjacent Chihuahua and Coahuila, Mex- BEAN LOCAL FAUNA: The name ``Screw Bean ico, they provide an age determination for Local Fauna,'' Banta Shut-in formation, postvolcanic (,18±20 Ma; Henry et al., Trans-Pecos Texas (®g.
    [Show full text]
  • Entre Chien Et Loup
    ANNEE 2003 THESE : 2003 – TOU 3 – 4102 ENTRE CHIEN ET LOUP : ETUDE BIOLOGIQUE ET COMPORTEMENTALE _________________ THESE pour obtenir le grade de DOCTEUR VETERINAIRE DIPLOME D’ETAT présentée et soutenue publiquement en 2003 devant l’Université Paul-Sabatier de Toulouse par Laurent, Sylvain, Patrice NEAULT Né, le 7 janvier 1976 à BELFORT (Territoire de Belfort) ___________ Directeur de thèse : M. le Professeur Roland DARRE ___________ JURY PRESIDENT : M. Henri DABERNAT Professeur à l’Université Paul-Sabatier de TOULOUSE ASSESSEUR : M. Roland DARRE Professeur à l’Ecole Nationale Vétérinaire de TOULOUSE M. Guy BODIN Professeur à l’Ecole Nationale Vétérinaire de TOULOUSE MINISTERE DE L'AGRICULTURE ET DE LA PECHE ECOLE NATIONALE VETERINAIRE DE TOULOUSE Directeur : M. P. DESNOYERS Directeurs honoraires……. : M. R. FLORIO M. J. FERNEY M. G. VAN HAVERBEKE Professeurs honoraires….. : M. A. BRIZARD M. L. FALIU M. C. LABIE M. C. PAVAUX M. F. LESCURE M. A. RICO M. A. CAZIEUX Mme V. BURGAT M. D. GRIESS PROFESSEURS CLASSE EXCEPTIONNELLE M. CABANIE Paul, Histologie, Anatomie pathologique M. CHANTAL Jean, Pathologie infectieuse M. DARRE Roland, Productions animales M. DORCHIES Philippe, Parasitologie et Maladies Parasitaires M. GUELFI Jean-François, Pathologie médicale des Equidés et Carnivores M. TOUTAIN Pierre-Louis, Physiologie et Thérapeutique PROFESSEURS 1ère CLASSE M. AUTEFAGE André, Pathologie chirurgicale M. BODIN ROZAT DE MANDRES NEGRE Guy, Pathologie générale, Microbiologie, Immunologie M. BRAUN Jean-Pierre, Physique et Chimie biologiques et médicales M. DELVERDIER Maxence, Histologie, Anatomie pathologique M. EECKHOUTTE Michel, Hygiène et Industrie des Denrées Alimentaires d'Origine Animale M. EUZEBY Jean, Pathologie générale, Microbiologie, Immunologie M. FRANC Michel, Parasitologie et Maladies Parasitaires M.
    [Show full text]
  • Paleontological Resources of the Upper and Middle San Pedro Valley
    Paleontological Resources of the Upper and Middle San Pedro Valley Robert D. McCord Arizona Museum of Natural History Geological setting Regional extension causing block faulting – creation of the Basin and Range ~15Ma Poorly developed drainage results in lakes in valley bottom ?-3.4 Ma Drainage develops with flow to north, marshes, ponds and lakes significant from time to time Early Pleistocene Saint David Formation ? – 3.4 million lakes, few fossils Well developed paleomagnetic timeframe – a first for terrestrial sediments! Succession of faunas from ~3 to 1.5 Ma Blancan to ? Irvingtonian NALMA Plants diatoms charophytes Equisetum (scouring rush) Ostracoda (aquatic crustaceans) Cypridopsis cf. vidua Limnocythere cf. staplini Limnocythere sp. Candona cf. renoensis Candona sp. A Candona sp. B ?Candonlella sp. ?Heterocypris sp. ?Cycloypris sp. Potamocypris sp. Cyprideis sp. Darwinula sp. Snails and a Clam Pisidium casertanum (clam) Fossaria dalli (aquatic snail) Lymnaea caperata (aquatic snail) Lymnaea cf. elodes (aquatic snail) Bakerilymnaea bulimoides (aquatic snail) Gyraulus parvus (aquatic snail) Promenetus exacuous (aquatic snail) Promenetus umbilicatellus (aquatic snail) Physa virgata (aquatic snail) Gastrocopta cristata (terrestrial snail) Gastrocopta tappaniana (terrestrial snail) Pupoides albilabris (terrestrial snail) Vertigo milium (terrestrial snail) Vertigo ovata (terrestrial snail) cf. Succinea (terrestrial snail) Deroceras aenigma (slug) Hawaila minuscula (terrestrial snail) Fish and Amphibians indeterminate small fish Ambystoma tigrinum (tiger salamander) Scaphiopus hammondi (spadefoot toad) Bufo alvarius (toad) Hyla eximia (tree frog) Rana sp. (leopard frog) Turtles and Lizards Kinosternon arizonense (mud turtle) Terrapene cf. ornata (box turtle) Gopherus sp. (tortoise) Hesperotestudo sp. (giant tortoise) Eumeces sp. (skink) “Cnemidophorus” sp. (whiptail lizard) Crotaphytus sp. (collared lizard) Phrynosoma sp. (horned lizard) Sceloporus sp.
    [Show full text]
  • Coyote Canis Latrans in 2007 IUCN Red List (Canis Latrans)
    MAMMALS OF MISSISSIPPI 10:1–9 Coyote (Canis latrans) CHRISTOPHER L. MAGEE Department of Wildlife and Fisheries, Mississippi State University, Mississippi State, Mississippi, 39762, USA Abstract—Canis latrans (Say 1823) is a canid commonly called the coyote. It is dog-like in appearance with varied colorations throughout its range. Originally restricted to the western portion of North America, coyotes have expanded across the majority of the continent. Coyotes are omnivorous and extremely adaptable, often populating urban and suburban environments. Preferred habitats include a mixture of forested, open, and brushy areas. Currently, there exist no threats or conservation concerns for the coyote in any part of its range. This species is currently experiencing an increasing population trend. Published 5 December 2008 by the Department of Wildlife and Fisheries, Mississippi State University Coyote location (Jackson 1951; Young 1951; Berg and Canis latrans (Say, 1823) Chesness 1978; Way 2007). The species is sexually dimorphic, with adult females distinctly CONTEXT AND CONTENT. lighter and smaller than adult males (Kennedy Order Carnivora, suborder Caniformia, et al. 2003; Way 2007). Average head and infraorder Cynoidea, family Canidae, subfamily body lengths are about 1.0–1.5 m with a tail Caninae, tribe Canini. Genus Canis consists length of about Young 1951). The skull of the of six species: C. aureus, C. latrans, C. lupus, coyote (Fig. 2) progresses through 6 distinct C. mesomelas, C. simensis, and C. adustus. developmental stages allowing delineation Canis latrans has 19 recognized subspecies between the age classes of juvenile, immature, (Wilson and Reeder 2005). young, young adult, adult, and old adult (Jackson 1951).
    [Show full text]
  • Estrategias De Subsistencia De Los Primeros Grupos Humanos Que Poblaron Europa
    ESTRATEGIAS DE SUBSISTENCIA DE LOS PRIMEROS GRUPOS HUMANOS QUE POBLARON EUROPA ESTRATEGIAS DE SUBSISTENCIA DE LOS PRIMEROS GRUPOS HUMANOS QUE POBLARON EUROPA: EVIDENCIAS CONSERVADAS EN BARRANCO LEÓN Y FUENTE NUEVA-3 (ORCE) M. PATROCINIO ESPIGARES* RESUMEN Varios yacimientos del Pleistoceno inferior de España, Francia e Italia preservan las evidencias de presencia humana más antiguas de Europa. En este contexto, son particularmente interesantes dos localidades ubicadas en las inmediaciones de la villa de Orce (Cuenca de Baza, Granada), Barranco León (BL) y Fuente Nueva-3 (FN-3), datadas en torno a 1,4 Ma. En estos yacimientos se han identificado evidencias de procesado de cadáveres de grandes mamíferos, realizado con herra- mientas líticas de factura Olduvayense. A estos hallazgos hay que sumarle la presencia de un diente de leche atribuido a Homo sp. en Barranco León. En este trabajo se describen en detalle las marcas de origen antrópico localizadas en estos yacimientos, se analizan los patrones de procesado de los cadáveres, y se discute sobre las estrategias de subsistencia de las primeras comunidades humanas que habitaron Europa. Palabras clave: Marcas de corte, Estrategias de subsistencia, Pleistoceno Inferior, Homo sp. ABSTRACT Several Early Pleistocene sites from Spain, France and Italy preserve ancient evidence of human presence. In this context are particularly interesting two localities placed near the town of Orce (Baza Basin, Granada), Barranco León (BL) and Fuente Nueva-3 (FN-3), dated to ~1.4 Ma. At these sites, evidence of processing of large mammal carcasses produced with Oldowan tools have been recovered. These findings are accompanied by the presence of a deciduous tooth, attributed to Homo sp., in Barranco León.
    [Show full text]
  • Rodentia, Mammalia) in Europe'
    Resumen EI yacimiento de Trinchera Oolina es uno de los mas importantes de la Sierra de Atapuerca par su contenido en restos humanos, Homo antecessor en el nivel de Trinchera Dolina 6. Ade­ mas de esto la enorme riqueza en restos arqueol6gicos y paleontol6gicos hace de Trinchera Dolina un yacimiento unico, de referencia obligada para el Pleistoceno y Paleolitico de Euro­ pa. Bioestratigraficamente, el yacimiento de Trinchera Oolina (TO) puede dividirse en tres grandes unidades: la que comprende los niveles TD3 a T06; la de los niveles T07 a TOS infe­ rior y I. de TO 8 superior. T011. Palabras clave: Mamiferos, Pleistoceno. Abstract Gran Dolina is one of the Pleistocene sites located at the Sierra de Atapuerca (Spain). The Gran Dolina deposits belong to different chronological periods of the Early and Middle Pleistocene. The uppermost levels of Gran Dolina (TDII, TDIO and TD8b) contain Middle Pleistocene (post-Cromerian) macro- and micromammal assemblages. The excavation works have overpassed level TDII and have not concluded yet at TDIO: TDII is poor in macromammal remains (carnivores and herbivores) but rich in rodents. The macromammals fossil material from TDtt is very scarce and this enables (for the macromammals) definite conclusions about the chronology and type of community of these levels. The lowermost levels of Gran Dolina (TD3/4, TD5, TD6 and TD8a) contain a different mammal assemblage with typical late Early Pleistocene-Cromerian species. This radical substitution of taxa is placed at TD8 layer probably due to a stratigraphic gap in this level. The level TD6 of the Gran Dolina site contains the earliest fossil human remains of Europe, Homo antecessor, and it has also a rich and diverse micromammal assemblage.
    [Show full text]
  • La Brea and Beyond: the Paleontology of Asphalt-Preserved Biotas
    La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas Edited by John M. Harris Natural History Museum of Los Angeles County Science Series 42 September 15, 2015 Cover Illustration: Pit 91 in 1915 An asphaltic bone mass in Pit 91 was discovered and exposed by the Los Angeles County Museum of History, Science and Art in the summer of 1915. The Los Angeles County Museum of Natural History resumed excavation at this site in 1969. Retrieval of the “microfossils” from the asphaltic matrix has yielded a wealth of insect, mollusk, and plant remains, more than doubling the number of species recovered by earlier excavations. Today, the current excavation site is 900 square feet in extent, yielding fossils that range in age from about 15,000 to about 42,000 radiocarbon years. Natural History Museum of Los Angeles County Archives, RLB 347. LA BREA AND BEYOND: THE PALEONTOLOGY OF ASPHALT-PRESERVED BIOTAS Edited By John M. Harris NO. 42 SCIENCE SERIES NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY SCIENTIFIC PUBLICATIONS COMMITTEE Luis M. Chiappe, Vice President for Research and Collections John M. Harris, Committee Chairman Joel W. Martin Gregory Pauly Christine Thacker Xiaoming Wang K. Victoria Brown, Managing Editor Go Online to www.nhm.org/scholarlypublications for open access to volumes of Science Series and Contributions in Science. Natural History Museum of Los Angeles County Los Angeles, California 90007 ISSN 1-891276-27-1 Published on September 15, 2015 Printed at Allen Press, Inc., Lawrence, Kansas PREFACE Rancho La Brea was a Mexican land grant Basin during the Late Pleistocene—sagebrush located to the west of El Pueblo de Nuestra scrub dotted with groves of oak and juniper with Sen˜ora la Reina de los A´ ngeles del Rı´ode riparian woodland along the major stream courses Porciu´ncula, now better known as downtown and with chaparral vegetation on the surrounding Los Angeles.
    [Show full text]
  • How Many Named Species Are Valid?
    How many named species are valid? John Alroy* National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, CA 93101 Edited by Peter Robert Crane, Royal Botanic Gardens, Kew, Surrey, United Kingdom, and approved January 7, 2002 (received for review December 19, 2001) Estimates of biodiversity in both living and fossil groups depend on declared a nomen dubium in 1910, synonymized with the canid raw counts of currently recognized named species, but many of Borophagus diversidens in 1930, revalidated but transferred to these names eventually will prove to be synonyms or otherwise Osteoborus in 1937, and finally synonymized again with B. invalid. This difficult bias can be resolved with a simple ‘‘flux ratio’’ diversidens in 1969, an opinion that was confirmed in 1980 and equation that compares historical rates of invalidation and reval- 1999. idation. Flux ratio analysis of a taxonomic data set of unrivalled The data set illustrates a best-case scenario: mammals in completeness for 4,861 North American fossil mammal species general (6), and North American fossil mammals in particular, shows that 24–31% of currently accepted names eventually will have been studied very disproportionately. Most fossil species prove invalid, so diversity estimates are inflated by 32–44%. The are invertebrates (17) and, like most living species, are defined estimate is conservative compared with one obtained by using an strictly on the basis of external morphology. About 192,000 older, more basic method. Although the degree of inflation varies invertebrate fossil species were known in 1970, and at least 3,000 through both historical and evolutionary time, it has a minor more are named every year (17).
    [Show full text]
  • Download PDF File
    1.08 1.19 1.46 Nimravus brachyops Nandinia binotata Neofelis nebulosa 115 Panthera onca 111 114 Panthera atrox 113 Uncia uncia 116 Panthera leo 112 Panthera pardus Panthera tigris Lynx issiodorensis 220 Lynx rufus 221 Lynx pardinus 222 223 Lynx canadensis Lynx lynx 119 Acinonyx jubatus 110 225 226 Puma concolor Puma yagouaroundi 224 Felis nigripes 228 Felis chaus 229 Felis margarita 118 330 227 331Felis catus Felis silvestris 332 Otocolobus manul Prionailurus bengalensis Felis rexroadensis 99 117 334 335 Leopardus pardalis 44 333 Leopardus wiedii 336 Leopardus geoffroyi Leopardus tigrinus 337 Pardofelis marmorata Pardofelis temminckii 440 Pseudaelurus intrepidus Pseudaelurus stouti 88 339 Nimravides pedionomus 442 443 Nimravides galiani 22 338 441 Nimravides thinobates Pseudaelurus marshi Pseudaelurus validus 446 Machairodus alberdiae 77 Machairodus coloradensis 445 Homotherium serum 447 444 448 Smilodon fatalis Smilodon gracilis 66 Pseudaelurus quadridentatus Barbourofelis morrisi 449 Barbourofelis whitfordi 550 551 Barbourofelis fricki Barbourofelis loveorum Stenogale Hemigalus derbyanus 554 555 Arctictis binturong 55 Paradoxurus hermaphroditus Genetta victoriae 553 558 Genetta maculata 559 557 660 Genetta genetta Genetta servalina Poiana richardsonii 556 Civettictis civetta 662 Viverra tangalunga 661 663 552 Viverra zibetha Viverricula indica Crocuta crocuta 666 667 Hyaena brunnea 665 Hyaena hyaena Proteles cristata Fossa fossana 664 669 770 Cryptoprocta ferox Salanoia concolor 668 772 Crossarchus alexandri 33 Suricata suricatta 775
    [Show full text]