CURRICULUM VITAE Walter S. Judd Address: Department
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARTICLE Floristic and Characterization of Grassland Vegetation at a Granitic Hill in Southern Brazil Robberson Bernal Setubal1* and Ilsi Iob Boldrini2
Revista Brasileira de Biociências Brazilian Journal of Biosciences http://www.ufrgs.br/seerbio/ojs ISSN 1980-4849 (on-line) / 1679-2343 (print) ARTICLE Floristic and characterization of grassland vegetation at a granitic hill in Southern Brazil Robberson Bernal Setubal1* and Ilsi Iob Boldrini2 Received: March 31 2009 Received after revision: November 19 2009 Accepted: November 20 2009 Available online at http://www.ufrgs.br/seerbio/ojs/index.php/rbb/article/view/1209 ABSTRACT: (Floristic and characterization of grasslands vegetation of a granite hill in Southern Brazil). A floristic and vegeta- tion study was carried out in the grassland formations at Morro São Pedro, Porto Alegre municipality, Rio Grande do Sul State, a granitic elevation area, so far poorly surveyed, that cradles important natural vegetation remnants of the region. After the study, which lasted from April 2005 to March 2009, we found 497 angiosperm species, distributed in four main grassland formation types: dry grassland, rocky grassland, humid grassland and wetlands. Among the species list three species are noteworthy: Alstroemeria albescens, a new species for the science, Lepuropethalon spathulatum, a new record for Southern Brazil, and Thrasyopsis juergensii, a new record for the Pampa biome. Based on our results and on support from other papers we concluded that ca. 65% of the grassland species present in the granitic hills of the region belong to seven main botanical families (Astera- ceae, Poaceae, Fabaceae, Cyperaceae, Rubiaceae, Verbenaceae and Apiaceae). The species belonging to these families are also determining in the vegetation phytophysiognomical and structural composition, so that cespitous grasses predominate in the landscape, shaping a continuous gramineous layer. -
Phylogeny and Classification of the Melastomataceae and Memecylaceae
Nord. J. Bot. - Section of tropical taxonomy Phylogeny and classification of the Melastomataceae and Memecy laceae Susanne S. Renner Renner, S. S. 1993. Phylogeny and classification of the Melastomataceae and Memecy- laceae. - Nord. J. Bot. 13: 519-540. Copenhagen. ISSN 0107-055X. A systematic analysis of the Melastomataceae, a pantropical family of about 4200- 4500 species in c. 166 genera, and their traditional allies, the Memecylaceae, with c. 430 species in six genera, suggests a phylogeny in which there are two major lineages in the Melastomataceae and a clearly distinct Memecylaceae. Melastomataceae have close affinities with Crypteroniaceae and Lythraceae, while Memecylaceae seem closer to Myrtaceae, all of which were considered as possible outgroups, but sister group relationships in this plexus could not be resolved. Based on an analysis of all morph- ological and anatomical characters useful for higher level grouping in the Melastoma- taceae and Memecylaceae a cladistic analysis of the evolutionary relationships of the tribes of the Melastomataceae was performed, employing part of the ingroup as outgroup. Using 7 of the 21 characters scored for all genera, the maximum parsimony program PAUP in an exhaustive search found four 8-step trees with a consistency index of 0.86. Because of the limited number of characters used and the uncertain monophyly of some of the tribes, however, all presented phylogenetic hypotheses are weak. A synapomorphy of the Memecylaceae is the presence of a dorsal terpenoid-producing connective gland, a synapomorphy of the Melastomataceae is the perfectly acrodro- mous leaf venation. Within the Melastomataceae, a basal monophyletic group consists of the Kibessioideae (Prernandra) characterized by fiber tracheids, radially and axially included phloem, and median-parietal placentation (placentas along the mid-veins of the locule walls). -
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1
Evolution of Angiosperm Pollen. 7. Nitrogen-Fixing Clade1 Authors: Jiang, Wei, He, Hua-Jie, Lu, Lu, Burgess, Kevin S., Wang, Hong, et. al. Source: Annals of the Missouri Botanical Garden, 104(2) : 171-229 Published By: Missouri Botanical Garden Press URL: https://doi.org/10.3417/2019337 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Annals-of-the-Missouri-Botanical-Garden on 01 Apr 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by Kunming Institute of Botany, CAS Volume 104 Annals Number 2 of the R 2019 Missouri Botanical Garden EVOLUTION OF ANGIOSPERM Wei Jiang,2,3,7 Hua-Jie He,4,7 Lu Lu,2,5 POLLEN. 7. NITROGEN-FIXING Kevin S. Burgess,6 Hong Wang,2* and 2,4 CLADE1 De-Zhu Li * ABSTRACT Nitrogen-fixing symbiosis in root nodules is known in only 10 families, which are distributed among a clade of four orders and delimited as the nitrogen-fixing clade. -
Plant Species List for Bob Janes Preserve
Plant Species List for Bob Janes Preserve Scientific and Common names obtained from Wunderlin 2013 Scientific Name Common Name Status EPPC FDA IRC FNAI Family: Azollaceae (mosquito fern) Azolla caroliniana mosquito fern native R Family: Blechnaceae (mid-sorus fern) Blechnum serrulatum swamp fern native Woodwardia virginica Virginia chain fern native R Family: Dennstaedtiaceae (cuplet fern) Pteridium aquilinum braken fern native Family: Nephrolepidaceae (sword fern) Nephrolepis cordifolia tuberous sword fern exotic II Nephrolepis exaltata wild Boston fern native Family: Ophioglossaceae (adder's-tongue) Ophioglossum palmatum hand fern native E I G4/S2 Family: Osmundaceae (royal fern) Osmunda cinnamomea cinnamon fern native CE R Osmunda regalis royal fern native CE R Family: Polypodiaceae (polypody) Campyloneurum phyllitidis long strap fern native Phlebodium aureum golden polypody native Pleopeltis polypodioides resurrection fern native Family: Psilotaceae (whisk-fern) Psilotum nudum whisk-fern native Family: Pteridaceae (brake fern) Acrostichum danaeifolium giant leather fern native Pteris vittata China ladder break exotic II Family: Salviniaceae (floating fern) Salvinia minima water spangles exotic I Family: Schizaeaceae (curly-grass) Lygodium japonicum Japanese climbing fern exotic I Lygodium microphyllum small-leaf climbing fern exotic I Family: Thelypteridaceae (marsh fern) Thelypteris interrupta hottentot fern native Thelypteris kunthii widespread maiden fern native Thelypteris palustris var. pubescens marsh fern native R Family: Vittariaceae -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- ERICACEAE ERICACEAE (Heath Family) A family of about 107 genera and 3400 species, primarily shrubs, small trees, and subshrubs, nearly cosmopolitan. The Ericaceae is very important in our area, with a great diversity of genera and species, many of them rather narrowly endemic. Our area is one of the north temperate centers of diversity for the Ericaceae. Along with Quercus and Pinus, various members of this family are dominant in much of our landscape. References: Kron et al. (2002); Wood (1961); Judd & Kron (1993); Kron & Chase (1993); Luteyn et al. (1996)=L; Dorr & Barrie (1993); Cullings & Hileman (1997). Main Key, for use with flowering or fruiting material 1 Plant an herb, subshrub, or sprawling shrub, not clonal by underground rhizomes (except Gaultheria procumbens and Epigaea repens), rarely more than 3 dm tall; plants mycotrophic or hemi-mycotrophic (except Epigaea, Gaultheria, and Arctostaphylos). 2 Plants without chlorophyll (fully mycotrophic); stems fleshy; leaves represented by bract-like scales, white or variously colored, but not green; pollen grains single; [subfamily Monotropoideae; section Monotropeae]. 3 Petals united; fruit nodding, a berry; flower and fruit several per stem . Monotropsis 3 Petals separate; fruit erect, a capsule; flower and fruit 1-several per stem. 4 Flowers few to many, racemose; stem pubescent, at least in the inflorescence; plant yellow, orange, or red when fresh, aging or drying dark brown ...............................................Hypopitys 4 Flower solitary; stem glabrous; plant white (rarely pink) when fresh, aging or drying black . Monotropa 2 Plants with chlorophyll (hemi-mycotrophic or autotrophic); stems woody; leaves present and well-developed, green; pollen grains in tetrads (single in Orthilia). -
New Sesquiterpene Lactones from the Genera Calea and Berlandiera (Asteraceae) and the Fragmentation Reactions of 1,3-Dihydroxyeudesmanolide Derivatives
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1983 New Sesquiterpene Lactones From the Genera Calea and Berlandiera (Asteraceae) and the Fragmentation Reactions of 1,3-Dihydroxyeudesmanolide Derivatives. Ihl Young Lee Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Lee, Ihl Young, "New Sesquiterpene Lactones From the Genera Calea and Berlandiera (Asteraceae) and the Fragmentation Reactions of 1,3-Dihydroxyeudesmanolide Derivatives." (1983). LSU Historical Dissertations and Theses. 3895. https://digitalcommons.lsu.edu/gradschool_disstheses/3895 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. -
Checklist Das Spermatophyta Do Estado De São Paulo, Brasil
Biota Neotrop., vol. 11(Supl.1) Checklist das Spermatophyta do Estado de São Paulo, Brasil Maria das Graças Lapa Wanderley1,10, George John Shepherd2, Suzana Ehlin Martins1, Tiago Egger Moellwald Duque Estrada3, Rebeca Politano Romanini1, Ingrid Koch4, José Rubens Pirani5, Therezinha Sant’Anna Melhem1, Ana Maria Giulietti Harley6, Luiza Sumiko Kinoshita2, Mara Angelina Galvão Magenta7, Hilda Maria Longhi Wagner8, Fábio de Barros9, Lúcia Garcez Lohmann5, Maria do Carmo Estanislau do Amaral2, Inês Cordeiro1, Sonia Aragaki1, Rosângela Simão Bianchini1 & Gerleni Lopes Esteves1 1Núcleo de Pesquisa Herbário do Estado, Instituto de Botânica, CP 68041, CEP 04045-972, São Paulo, SP, Brasil 2Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CP 6109, CEP 13083-970, Campinas, SP, Brasil 3Programa Biota/FAPESP, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CP 6109, CEP 13083-970, Campinas, SP, Brasil 4Universidade Federal de São Carlos – UFSCar, Rod. João Leme dos Santos, Km 110, SP-264, Itinga, CEP 18052-780, Sorocaba, SP, Brasil 5Departamento de Botânica – IBUSP, Universidade de São Paulo – USP, Rua do Matão, 277, CEP 05508-090, Cidade Universitária, Butantã, São Paulo, SP, Brasil 6Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana – UEFS, Av. Transnordestina, s/n, Novo Horizonte, CEP 44036-900, Feira de Santana, BA, Brasil 7Universidade Santa Cecília – UNISANTA, R. Dr. Oswaldo Cruz, 266, Boqueirão, CEP 11045-907, -
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E. -
Systematics and Relationships of Tryssophyton (Melastomataceae
A peer-reviewed open-access journal PhytoKeys 136: 1–21 (2019)Systematics and relationships of Tryssophyton (Melastomataceae) 1 doi: 10.3897/phytokeys.136.38558 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana Kenneth J. Wurdack1, Fabián A. Michelangeli2 1 Department of Botany, MRC-166 National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA 2 The New York Botanical Garden, 2900 Southern Blvd., Bronx, NY 10458, USA Corresponding author: Kenneth J. Wurdack ([email protected]) Academic editor: Ricardo Kriebel | Received 25 July 2019 | Accepted 30 October 2019 | Published 10 December 2019 Citation: Wurdack KJ, Michelangeli FA (2019) Systematics and relationships of Tryssophyton (Melastomataceae), with a second species from the Pakaraima Mountains of Guyana. PhytoKeys 136: 1–21. https://doi.org/10.3897/ phytokeys.136.38558 Abstract The systematics of Tryssophyton, herbs endemic to the Pakaraima Mountains of western Guyana, is re- viewed and Tryssophyton quadrifolius K.Wurdack & Michelang., sp. nov. from the summit of Kamakusa Mountain is described as the second species in the genus. The new species is distinguished from its closest relative, Tryssophyton merumense, by striking vegetative differences, including number of leaves per stem and leaf architecture. A phylogenetic analysis of sequence data from three plastid loci and Melastomata- ceae-wide taxon sampling is presented. The two species of Tryssophyton are recovered as monophyletic and associated with mostly Old World tribe Sonerileae. Fruit, seed and leaf morphology are described for the first time, biogeography is discussed and both species are illustrated. -
Biogeochemical Relationships of a Subtropical Dry Forest on Karst
2017 CARIBBEANCaribbean Naturalist NATURALIST No. 41:1–24No. 41 E. Medina, E. Cuevas, H. Marcano-Vega, E. Meléndez-Ackerman, and E.H. Helmer Biogeochemical Relationships of a Subtropical Dry Forest on Karst Ernesto Medina1,2,*, Elvira Cuevas3, Humfredo Marcano-Vega4, Elvia Meléndez-Ackerman3, and Eileen H. Helmer1 Abstract - Tropical dry forests on calcareous substrate constitute the main vegetation cover in many islands of the Caribbean. Dry climate and nutrient scarcity in those environments are ideal to investigate the potential role of high levels of soil calcium (Ca) in regulating plant selection and productivity. We analyzed the elemental composition of soil, loose lit- ter, and leaf samples of the woody vegetation on the plateau of Mona Island, an emergent block of carbonate rock in the Caribbean located between Puerto Rico and the Dominican Republic, to explore the nutrient relationships of plants growing on calcareous substrates. The mineral soil has an elemental composition characterized by high levels of aluminum (Al) and iron (Fe) in agreement with the hypothesis that it derives in part from sediments transported by rivers eroding plutonic rocks, and deposited before the massive lifting of biological limestone. Calcium concentration varied within sites, and Ca–Al and Ca–Fe cor- relations were negative in soils and positive in plant material, implying that element uptake from these soils depends on acidification of the rhizosphere. This acidification should be high enough to extract carbonate-bound elements and solubilize Al, Fe, and probably phos- phate (P) compounds. The most abundant cation in leaves was Ca, followed by potassium (K) and magnesium (Mg); Ca/K and Ca/Mg molar ratios averaged 2 and 3, respectively, in- dicating that most species maintain K and Mg uptake in the presence of high Ca levels. -
A Preliminary List of the Vascular Plants and Wildlife at the Village Of
A Floristic Evaluation of the Natural Plant Communities and Grounds Occurring at The Key West Botanical Garden, Stock Island, Monroe County, Florida Steven W. Woodmansee [email protected] January 20, 2006 Submitted by The Institute for Regional Conservation 22601 S.W. 152 Avenue, Miami, Florida 33170 George D. Gann, Executive Director Submitted to CarolAnn Sharkey Key West Botanical Garden 5210 College Road Key West, Florida 33040 and Kate Marks Heritage Preservation 1012 14th Street, NW, Suite 1200 Washington DC 20005 Introduction The Key West Botanical Garden (KWBG) is located at 5210 College Road on Stock Island, Monroe County, Florida. It is a 7.5 acre conservation area, owned by the City of Key West. The KWBG requested that The Institute for Regional Conservation (IRC) conduct a floristic evaluation of its natural areas and grounds and to provide recommendations. Study Design On August 9-10, 2005 an inventory of all vascular plants was conducted at the KWBG. All areas of the KWBG were visited, including the newly acquired property to the south. Special attention was paid toward the remnant natural habitats. A preliminary plant list was established. Plant taxonomy generally follows Wunderlin (1998) and Bailey et al. (1976). Results Five distinct habitats were recorded for the KWBG. Two of which are human altered and are artificial being classified as developed upland and modified wetland. In addition, three natural habitats are found at the KWBG. They are coastal berm (here termed buttonwood hammock), rockland hammock, and tidal swamp habitats. Developed and Modified Habitats Garden and Developed Upland Areas The developed upland portions include the maintained garden areas as well as the cleared parking areas, building edges, and paths. -
Pollinators in Peril: a Systematic Status Review of North American
POLLINATORS in Peril A systematic status review of North American and Hawaiian native bees Kelsey Kopec & Lori Ann Burd • Center for Biological Diversity • February 2017 Executive Summary hile the decline of European honeybees in the United States and beyond has been well publicized in recent years, the more than 4,000 species of native bees in North W America and Hawaii have been much less documented. Although these native bees are not as well known as honeybees, they play a vital role in functioning ecosystems and also provide more than $3 billion dollars in fruit-pollination services each year just in the United States. For this first-of-its-kind analysis, the Center for Biological Diversity conducted a systematic review of the status of all 4,337 North American and Hawaiian native bees. Our key findings: • Among native bee species with sufficient data to assess (1,437), more than half (749) are declining. • Nearly 1 in 4 (347 native bee species) is imperiled and at increasing risk of extinction. • For many of the bee species lacking sufficient population data, it’s likely they are also declining or at risk of extinction. Additional research is urgently needed to protect them. • A primary driver of these declines is agricultural intensification, which includes habitat destruction and pesticide use. Other major threats are climate change and urbanization. These troubling findings come as a growing body of research has revealed that more than 40 percent of insect pollinators globally are highly threatened, including many of the native bees critical to unprompted crop and wildflower pollination across the United States.