Introduction to Idaho Geology Web Course Geologic Overview of Idaho

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Idaho Geology Web Course Geologic Overview of Idaho Introduction to Idaho Geology Web Course The "Digital Geology of Idaho" systematically divides Idaho geology into individual teaching modules. The modules correspond with a 15-week Geology of Idaho course (Geology 456-556 for 2 credits). Modules can serve as a source of information, reference, maps and photographs of Idaho geology. The Digital Atlas of Idaho is a resource that also contains exercises for K-12 teachers. A New Idaho Geologic Map Another component of this project was preparation of a new Geologic Map of Idaho by the Idaho Geological Survey. The map on the left is a simplified version of this new geologic map. Each of the modules on this web site contain derivative geologic maps showing specific map units. The new Geologic Map of Idaho can be purchased for the Idaho Geological Survey. Fly-throughs Most modules have multiple digital watershed fly-through visualizations where geology has been "draped" over topography to provide a graphic visualization of the geology along Idaho river basins. Bonneville Flood Visualizations Module 14, "Lake Bonneville Flood", has extensive visualizations created by Dr. Shuhab Khan and his students at the University of Houston. "Idaho from the Air" pdf slideshow is a compilation of aerial photos taken by Paul Link. They give a unique perspective of the Idaho landscape. The geologic provinces of Idaho are briefly summarized in the table below. A geologic time scale is included to help with the perspective of the great amount of time that geologic history spans. Geologic Overview of Idaho Idaho has a complicated geologic history, which is reflected in its physical geography. The shaded relief map of Idaho shows the mountain ranges, and the major cities to give an idea of how the state is subdivided by its geography. GEOLOGY OF IDAHO Holocene-Pliocene Sediments Quaternary Basalt Quaternary-Tertiary Volcanic Rocks Tertiary Sediments Tertiary Volcanic Rocks Tertiary Basalts Tertiary Intrusive Rocks Cretaceous Intrusive Rocks Mesozoic Sedimentary Rocks Permian-Cretaceous Metamorphic and Intrusive Rocks Paleozoic Sedimentary Rocks Precambrian Intrusive Rocks Precambrian Metamorphic and Sedimentary Rocks Geology Description Age Period The Idaho Batholith is a composite mass of granitic plutons covering approximately 35,000 km2. Intrusive igneous rocks: Idaho Batholith granitic, granodiorite and tonalite. Three lobes separated by 110 ‐ 75 Ma Late Cretaceous geology and geography; Kaniksu Lobe in the Idaho panhandle, Atlanta and Bitterroot lobes in central Idaho. Mesoproterozoic sedimentary rocks deposited in a rift basin Belt 1470‐1400 located in what is now north Idaho and western Montana. Mesoproterozoic Supergroup Ma Missoula Group, Piegan Group, Ravalli Group, and Lower Belt. North‐west to south‐east trending thrust faults (late Cretaceous) Northern 1450‐1400 Mesoproterozoic, which cut through Mesoproterozoic Sedimentary rocks of the Belt Thrust Belt Ma deposits. Late Cretaceous Supergroup (sandstone, shale, limestone). The Idaho‐Wyoming thrust belt is one segment of the Cordilleran 700‐150 Ma Idaho‐ thrust belt that contains folded and thrusted Paleozoic and deposited. Neoproterozoic, Wyoming Mesozoic sedimentary rocks. The thrust faults folded and 150 to 55 Ma Paleozoic, Triassic, Thrust Belt compressed earlier emplaced sediments in late Mesozoic and thrust Jurassic early Tertiary, trending north‐west to south‐east. faulting. Flare‐up of volcanic activity in central Idaho creating intrusive Challis pink granite and eruptions of rhyolite lavas. Andesite and dacite 52‐45 Ma Eocene Volcanics with extensional faulting. Formation of major mineral deposits. Western edge central Idaho. Middle Cretaceous (120‐100 Ma) ~370 ‐ 250 Accreted accretion of "exotic" Terranes of Paleozoic limestone on top of Ma & 150 ‐ Paleozoic & Terranes oceanic volcanic rock with Jurassic intrusions. Seven Devils 170 Ma Mesozoic Group. intrusions Columbia River Extensive plateau of volcanic basalt and rhyolite located on the 17 Ma Middle Miocene Basalt western edge of central Idaho. Beginning about 17 million years ago, linear mountain ranges in Neoproterozoic & Basin and south‐east Idaho, consisting of sedimentary sandstone, shale and 700 ‐ 150 Ma. Paleozoic Range limestone, broken by NW‐SE trending normal faults (extensional sediments forces). Cut by Snake River Plain Belt across southern Idaho consisting of Idavada Volcanics, Snake River Yellowstone Volcanics (rhyolite), Snake River Basalt with some 17 Ma‐ Miocene to Plain Quaternary Sedimentary rocks. Created by the passage of the Present Holocene continent over a "Hot Spot". A region in southwestern Idaho related to the Snake River Plain Owyhee but remained a highland region of Idavada and Yellowstone 17 Ma Miocene Plateau volcanics, and Snake River Basalt. Felsic volcanics, Miocene silicic flows and tuffs. Geologic Time Period Epoch Eon Era Holocene 10,000 yrs Pleistocene Quaternary 2 Ma Pliocene 5 Ma Miocene Neogene 24 Ma Cenozoic Oligocene 37 Ma Tertiary Eocene 58 Ma Paleogene Paleocene 66 Ma Cretaceous 144 Ma Jurassic 208 Ma Mesozoic Triassic 245 Ma Permian 286 Ma Phanerozoic Pennsylvanian 320 Ma Mississippian Carboniferous 360 Ma Devonian 408 Ma Paleozoic Silurian 438 Ma Ordovician 505 Ma Cambrian 540 Ma Neo- (late) 1000 Ma Meso- (middle) Proterozoic Precambrian PrePhanerozoic 1600 Ma Paleo-(early) 2500 Ma Archean Oldest Rock ~3900 Ma Earth ~4600 Ma by Diana Boyack [email protected] modified July 16, 2007 Specific research papers and field trip guides are listed with each module. Some resources recommended to accompany the Idaho Geology course are listed below. Many are included as pdf files throughout the website. ALT, D. AND HYNDMAN, D., 1989, ROADSIDE GEOLOGY OF IDAHO, MOUNTAIN PRESS, MISSOULA, MT. DIGITAL ATLAS OF IDAHO: HTTP://IMNH.ISU.EDU/DIGITALATLAS LINK, P. K. AND PHOENIX, E. C., 1996, 2ND EDITION, "ROCKS, RAILS, AND TRAILS" , IDAHO MUSEUM OF NATURAL HISTORY. (AVAILABLE DIGITALLY ON THE DIGITAL ATLAS OF IDAHO WEBSITE) ORR, W. N. AND ORR, E. L., 2002, (2006 REISSUE), GEOLOGY OF THE PACIFIC NORTHWEST , WAVELAND PRESS, LONG GROVE, IL, 337 P. VALLIER, T., 1998, ISLANDS AND RAPIDS: A GEOLOGIC STORY OF HELLS CANYON, CONFLUENCE PRESS, LEWISTON, ID 151P. Publications resulting from this NSF grant include: JAMES R. CASH, J.R., LEWIS, R.S., AND STURGIS, D.J., PHOTOGRAPHS OF THE GEOLOGY OF CENTRAL AND NORTHERN IDAHO : IDAHO GEOLOGICAL SURVEY INFORMATION CIRCULAR I-62 HTTP://WWW.IDAHOGEOLOGY.ORG/ LINK, P.K., LEWIS, R.S., AND STANFORD, L., 2008 , GEOLOGIC MAP OF IDAHO, IDAHO GEOLOGICAL SURVEY, SCALE 1:500,000. LONG, SEAN P. AND LINK, PAUL K., 2007, GEOLOGIC MAP COMPILATION OF THE MALAD CITY 30 X 60 MINUTE QUADRANGLE, IDAHO, IDAHO GEOLOGICAL SURVEY MAP: T-07-1, SCALE 1:100,000. RODGERS, D.W., ET AL., 2006. GEOLOGIC MAP OF THE INKOM QUADRANGLE, BANNOCK COUNTY, IDAHO, IDAHO GEOLOGICAL SURVEY MAP: T-06-2, SCALE: 1:24,000. Acknowledgements THIS WEB SITE WAS DEVELOPED BY PAUL K. LINK OF IDAHO STATE UNIVERSITY, REED S. LEWIS OF THE IDAHO GEOLOGICAL SURVEY, SHUHAB KHAN OF THE UNIVERSITY OF HOUSTON, AND KEEGAN SCHMIDT OF LEWIS-CLARK STATE COLLEGE, THESE WERE PREPARED BY STUDENTS OF DR. DAN AMES, IDAHO STATE UNIVERSITY, IDAHO FALLS, WITH FUNDING FROM THE NATIONAL SCIENCE FOUNDATION GEOSCIENCE EDUCATION PROGRAM - NSF GEO-0331174. CONTRIBUTORS TO CONTENT AND DESIGN ARE: LAURA DEGREY, LORI TAPANILA, NATE ARAVE, KRISTEN STRAUB, AND DIANA BOYACK AND MANY STUDENTS IN VARIOUS CLASSES AT IDAHO STATE UNIVERSITY. .
Recommended publications
  • A Mesoproterozoic Iron Formation PNAS PLUS
    A Mesoproterozoic iron formation PNAS PLUS Donald E. Canfielda,b,1, Shuichang Zhanga, Huajian Wanga, Xiaomei Wanga, Wenzhi Zhaoa, Jin Sua, Christian J. Bjerrumc, Emma R. Haxenc, and Emma U. Hammarlundb,d aResearch Institute of Petroleum Exploration and Development, China National Petroleum Corporation, 100083 Beijing, China; bInstitute of Biology and Nordcee, University of Southern Denmark, 5230 Odense M, Denmark; cDepartment of Geosciences and Natural Resource Management, Section of Geology, University of Copenhagen, 1350 Copenhagen, Denmark; and dTranslational Cancer Research, Lund University, 223 63 Lund, Sweden Contributed by Donald E. Canfield, February 21, 2018 (sent for review November 27, 2017; reviewed by Andreas Kappler and Kurt O. Konhauser) We describe a 1,400 million-year old (Ma) iron formation (IF) from Understanding the genesis of the Fe minerals in IFs is one step the Xiamaling Formation of the North China Craton. We estimate toward understanding the relationship between IFs and the this IF to have contained at least 520 gigatons of authigenic Fe, chemical and biological environment in which they formed. For comparable in size to many IFs of the Paleoproterozoic Era (2,500– example, the high Fe oxide content of many IFs (e.g., refs. 32, 34, 1,600 Ma). Therefore, substantial IFs formed in the time window and 35) is commonly explained by a reaction between oxygen and between 1,800 and 800 Ma, where they are generally believed to Fe(II) in the upper marine water column, with Fe(II) sourced have been absent. The Xiamaling IF is of exceptionally low thermal from the ocean depths. The oxygen could have come from ex- maturity, allowing the preservation of organic biomarkers and an change equilibrium with oxygen in the atmosphere or from ele- unprecedented view of iron-cycle dynamics during IF emplace- vated oxygen concentrations from cyanobacteria at the water- ment.
    [Show full text]
  • Redalyc.Lost Terranes of Zealandia: Possible Development of Late
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Adams, Christopher J Lost Terranes of Zealandia: possible development of late Paleozoic and early Mesozoic sedimentary basins at the southwest Pacific margin of Gondwanaland, and their destination as terranes in southern South America Andean Geology, vol. 37, núm. 2, julio, 2010, pp. 442-454 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173916371010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Ge%gy 37 (2): 442-454. July. 2010 Andean Geology formerly Revista Geológica de Chile www.scielo.cl/andgeol.htm Lost Terranes of Zealandia: possible development of late Paleozoic and early Mesozoic sedimentary basins at the southwest Pacific margin of Gondwana­ land, and their destination as terranes in southern South America Christopher J. Adams GNS Science, Private Bag 1930, Dunedin, New Zealand. [email protected] ABSTRACT. Latesl Precambrian to Ordovician metasedimentary suecessions and Cambrian-Ordovician and Devonian­ Carboniferous granitoids form tbe major par! oftbe basemenl of soutbem Zealandia and adjacenl sectors ofAntarctica and southeastAustralia. Uplift/cooling ages ofthese rocks, and local Devonian shallow-water caver sequences suggest tbal final consolidation oftbe basemenl occurred tbrough Late Paleozoic time. A necessary consequence oftlris process would have been contemporaneous erosion and tbe substantial developmenl of marine sedimentary basins al tbe Pacific margin of Zealandia.
    [Show full text]
  • MBMG 657 Maurice Mtn 24K.Ai
    MONTANA BUREAU OF MINES AND GEOLOGY MBMG Open-File Report 657 ; Plate 1 of 1 A Department of Montana Tech of The University of Montana Geologic Map of the Maurice Mountain 7.5' Quadrangle, 2015 INTRODUCTION YlcYlc Lawson Creek Formation (Mesoproterozoic)—Characterized by couplets (cm-scale) and couples (dm-scale) of fine- to medium-grained white to pink quartzite and red, purple, black, A collaborative Montana Bureau of Mines and Geology–Idaho Geological Survey (MBMG–IGS) and green argillite. Lenticular and flaser bedding are common and characteristic. Mud rip-up mapping project began in 2007 to resolve some long-standing controversies concerning the clasts are locally common, and some are as much as 15 cm in diameter. Thick intervals of 113° 07' 30" 5' 2' 30" R 12 W 113° 00' relationships between two immensely thick, dissimilar, Mesoproterozoic sedimentary sequences: the 45° 37' 30" 45° 37' 30" medium-grained, thick-bedded (m-scale) quartzite are commonly interbedded with the TKg TKg Lemhi Group and the Belt Supergroup (Ruppel, 1975; Winston and others, 1999; Evans and Green, argillite-rich intervals. The quartzite intervals appear similar to the upper part of the CORRELATION DIAGRAM 32 2003; O’Neill and others, 2007; Burmester and others, 2013). The Maurice Mountain 7.5′ quadrangle underlying Swauger Formation (unit Ysw), but quartz typically comprises a large percentage 20 Ybl occupies a key location for study of these Mesoproterozoic strata, as well as for examination of of the grains (up to 93 percent) in contrast to the feldspathic Swauger Formation. Except in Qaf 45 Tcg Ybl 40 Ybl Holocene important Proterozoic through Tertiary tectonic features.
    [Show full text]
  • A Template for an Improved Rock-Based Subdivision of the Pre-Cryogenian Timescale
    Downloaded from http://jgs.lyellcollection.org/ by guest on September 28, 2021 Perspective Journal of the Geological Society Published Online First https://doi.org/10.1144/jgs2020-222 A template for an improved rock-based subdivision of the pre-Cryogenian timescale Graham A. Shields1*, Robin A. Strachan2, Susannah M. Porter3, Galen P. Halverson4, Francis A. Macdonald3, Kenneth A. Plumb5, Carlos J. de Alvarenga6, Dhiraj M. Banerjee7, Andrey Bekker8, Wouter Bleeker9, Alexander Brasier10, Partha P. Chakraborty7, Alan S. Collins11, Kent Condie12, Kaushik Das13, David A. D. Evans14, Richard Ernst15,16, Anthony E. Fallick17, Hartwig Frimmel18, Reinhardt Fuck6, Paul F. Hoffman19,20, Balz S. Kamber21, Anton B. Kuznetsov22, Ross N. Mitchell23, Daniel G. Poiré24, Simon W. Poulton25, Robert Riding26, Mukund Sharma27, Craig Storey2, Eva Stueeken28, Rosalie Tostevin29, Elizabeth Turner30, Shuhai Xiao31, Shuanhong Zhang32, Ying Zhou1 and Maoyan Zhu33 1 Department of Earth Sciences, University College London, London, UK 2 School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, UK 3 Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA, USA 4 Department of Earth and Planetary Sciences, McGill University, Montreal, Canada 5 Geoscience Australia (retired), Canberra, Australia 6 Instituto de Geociências, Universidade de Brasília, Brasilia, Brazil 7 Department of Geology, University of Delhi, Delhi, India 8 Department of Earth and Planetary Sciences, University of California, Riverside,
    [Show full text]
  • Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China
    minerals Article Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China: Constraints from Zircon U–Pb Dating and Hf Isotopes Wei Liu 1,2,*, Xiaoyong Yang 1,*, Shengyuan Shu 1, Lei Liu 1 and Sihua Yuan 3 1 CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China; [email protected] (S.S.); [email protected] (L.L.) 2 Chengdu Center, China Geological Survey, Chengdu 610081, China 3 Department of Earthquake Science, Institute of Disaster Prevention, Langfang 065201, China; [email protected] * Correspondence: [email protected] (W.L.); [email protected] (X.Y.) Received: 27 May 2018; Accepted: 30 July 2018; Published: 3 August 2018 Abstract: Zircon U–Pb dating and Hf isotopic analyses are performed on clastic rocks, sedimentary tuff of the Dongchuan Group (DCG), and a diabase, which is an intrusive body from the base of DCG in the SW Yangtze Block. The results provide new constraints on the Precambrian basement and the Late Paleoproterozoic to Mesoproterozoic tectonic evolution of the SW Yangtze Block, South China. DCG has been divided into four formations from the bottom to the top: Yinmin, Luoxue, Heishan, and Qinglongshan. The Yinmin Formation, which represents the oldest rock unit of DCG, was intruded by a diabase dyke. The oldest zircon age of the clastic rocks from the Yinmin Formation is 3654 Ma, with "Hf(t) of −3.1 and a two-stage modeled age of 4081 Ma. Another zircon exhibits an age of 2406 Ma, with "Hf(t) of −20.1 and a two-stage modeled age of 4152 Ma.
    [Show full text]
  • The World Turns Over: Hadean–Archean Crust–Mantle Evolution
    Lithos 189 (2014) 2–15 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Review paper The world turns over: Hadean–Archean crust–mantle evolution W.L. Griffin a,⁎, E.A. Belousova a,C.O'Neilla, Suzanne Y. O'Reilly a,V.Malkovetsa,b,N.J.Pearsona, S. Spetsius a,c,S.A.Wilded a ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Dept. Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia b VS Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia c Scientific Investigation Geology Enterprise, ALROSA Co Ltd, Mirny, Russia d ARC Centre of Excellence for Core to Crust Fluid Systems, Dept of Applied Geology, Curtin University, G.P.O. Box U1987, Perth 6845, WA, Australia article info abstract Article history: We integrate an updated worldwide compilation of U/Pb, Hf-isotope and trace-element data on zircon, and Re–Os Received 13 April 2013 model ages on sulfides and alloys in mantle-derived rocks and xenocrysts, to examine patterns of crustal evolution Accepted 19 August 2013 and crust–mantle interaction from 4.5 Ga to 2.4 Ga ago. The data suggest that during the period from 4.5 Ga to ca Available online 3 September 2013 3.4 Ga, Earth's crust was essentially stagnant and dominantly maficincomposition.Zirconcrystallizedmainly from intermediate melts, probably generated both by magmatic differentiation and by impact melting. This quies- Keywords: – Archean cent state was broken by pulses of juvenile magmatic activity at ca 4.2 Ga, 3.8 Ga and 3.3 3.4 Ga, which may Hadean represent mantle overturns or plume episodes.
    [Show full text]
  • Late Jurassic Dinosaurs on the Move, Gastroliths and Long-Distance Migration" (2019)
    Augustana College Augustana Digital Commons Geography: Student Scholarship & Creative Works Geography Winter 12-8-2019 Late Jurassic Dinosaurs on the Move, Gastroliths and Long- Distance Migration Josh Malone Augustana College, Rock Island Illinois Follow this and additional works at: https://digitalcommons.augustana.edu/geogstudent Part of the Geology Commons, Physical and Environmental Geography Commons, Sedimentology Commons, and the Spatial Science Commons Augustana Digital Commons Citation Malone, Josh. "Late Jurassic Dinosaurs on the Move, Gastroliths and Long-Distance Migration" (2019). Geography: Student Scholarship & Creative Works. https://digitalcommons.augustana.edu/geogstudent/8 This Student Paper is brought to you for free and open access by the Geography at Augustana Digital Commons. It has been accepted for inclusion in Geography: Student Scholarship & Creative Works by an authorized administrator of Augustana Digital Commons. For more information, please contact [email protected]. LATE JURASSIC DINOSAURS ON THE MOVE, GASTROLITHS AND LONG- DISTANCE MIGRATION a senior thesis written by Joshua Malone in partial fulfillment of the graduation requirements for the major in Geography Augustana College Rock Island, Illinois 61201 1 Table of Contents 1. Abstract ................................................................................................................................................ 4 2. Introduction ........................................................................................................................................
    [Show full text]
  • Proterozoic Ocean Chemistry and Evolution: a Bioinorganic Bridge? A
    S CIENCE’ S C OMPASS ● REVIEW REVIEW: GEOCHEMISTRY Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? A. D. Anbar1* and A. H. Knoll2 contrast, weathering under a moderately oxidiz- Recent data imply that for much of the Proterozoic Eon (2500 to 543 million years ing mid-Proterozoic atmosphere would have 2– ago), Earth’s oceans were moderately oxic at the surface and sulfidic at depth. Under enhanced the delivery of SO4 to the anoxic these conditions, biologically important trace metals would have been scarce in most depths. Assuming biologically productive marine environments, potentially restricting the nitrogen cycle, affecting primary oceans, the result would have been higher H2S productivity, and limiting the ecological distribution of eukaryotic algae. Oceanic concentrations during this period than either redox conditions and their bioinorganic consequences may thus help to explain before or since (8). observed patterns of Proterozoic evolution. Is there any evidence for such a world? Canfield and his colleagues have developed an argument based on the S isotopic compo- n the present-day Earth, O2 is abun- es and forms insoluble Fe-oxyhydroxides, sition of biogenic sedimentary sulfides, 2– dant from the upper atmosphere to thus removing Fe and precluding BIF forma- which reflect SO4 availability and redox the bottoms of ocean basins. When tion. This reading of the stratigraphic record conditions at their time of formation (16–18). O 2– life began, however, O2 was at best a trace made sense because independent geochemi- When the availability of SO4 is strongly 2– Ͻϳ constituent of the surface environment. The cal evidence indicates that the partial pressure limited (SO4 concentration 1 mM, ϳ intervening history of ocean redox has been of atmospheric oxygen (PO2) rose substan- 4% of that in present-day seawater), H2S interpreted in terms of two long-lasting tially about 2400 to 2000 Ma (4–7).
    [Show full text]
  • The Archean Geology of Montana
    THE ARCHEAN GEOLOGY OF MONTANA David W. Mogk,1 Paul A. Mueller,2 and Darrell J. Henry3 1Department of Earth Sciences, Montana State University, Bozeman, Montana 2Department of Geological Sciences, University of Florida, Gainesville, Florida 3Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana ABSTRACT in a subduction tectonic setting. Jackson (2005) char- acterized cratons as areas of thick, stable continental The Archean rocks in the northern Wyoming crust that have experienced little deformation over Province of Montana provide fundamental evidence long (Ga) periods of time. In the Wyoming Province, related to the evolution of the early Earth. This exten- the process of cratonization included the establishment sive record provides insight into some of the major, of a thick tectosphere (subcontinental mantle litho- unanswered questions of Earth history and Earth-sys- sphere). The thick, stable crust–lithosphere system tem processes: Crustal genesis—when and how did permitted deposition of mature, passive-margin-type the continental crust separate from the mantle? Crustal sediments immediately prior to and during a period of evolution—to what extent are Earth materials cycled tectonic quiescence from 3.1 to 2.9 Ga. These compo- from mantle to crust and back again? Continental sitionally mature sediments, together with subordinate growth—how do continents grow, vertically through mafi c rocks that could have been basaltic fl ows, char- magmatic accretion of plutons and volcanic rocks, acterize this period. A second major magmatic event laterally through tectonic accretion of crustal blocks generated the Beartooth–Bighorn magmatic zone assembled at continental margins, or both? Structural at ~2.9–2.8 Ga.
    [Show full text]
  • Early Mesozoic Paleogeography and Tectonic Evolution of the Western
    Downloaded from gsabulletin.gsapubs.org on August 26, 2011 Early Mesozoic paleogeography and tectonic evolution of the western United States: Insights from detrital zircon U-Pb geochronology, Blue Mountains Province, northeastern Oregon Todd A. LaMaskin1,†, Jeffrey D. Vervoort2, Rebecca J. Dorsey1, and James E. Wright3 1Department of Geological Sciences, University of Oregon, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA 2School of Earth and Environmental Sciences, Washington State University, Pullman, Washington 99164-2812, USA 3Department of Geology, University of Georgia, 308 Geography-Geology Building, 210 Field Street, Athens, Georgia 30602-2501, USA ABSTRACT the southwestern United States and modi- Vallier, 1995; Dorsey and LaMaskin, 2007, fied by input from cratonal, miogeoclinal, 2008). This proliferation of models reflects, This study assesses early Mesozoic prove- and Cordilleran-arc sources during Triassic in part, insufficient constraints on provenance nance linkages and paleogeographic-tectonic and Jurassic time. Jurassic sediments likely links to North America, the early Mesozoic models for the western United States based were derived from the Cordilleran arc and latitude of marginal arc-basin complexes, and on new petrographic and detrital zircon data an orogenic highland in Nevada that yielded the amount of subsequent post-Jurassic margin- from Triassic and Jurassic sandstones of the recycled sand from uplifted Triassic backarc parallel displacement. “Izee” and Olds Ferry terranes of the Blue basin deposits.
    [Show full text]
  • Megaripples from the Mesoproterozoic of the Kimberley Region, Northwestern Australia and Its Geological Implications
    Journal of Palaeogeography 2012, 1(1): 15−25 DOI: 10.3724/SP.J.1261.2012.00003 Lithofacies palaeogeography and sedimentology Megaripples from the Mesoproterozoic of the Kimberley region, northwestern Australia and its geological implications Lan Zhongwu1, 2, 3, , Zhong-Qiang Chen2, 4, * 1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2. School of Earth and Environment, The University of Western Australia, Australia 3. Key Lab of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 4. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, China Abstract Large ripples are described from the Mesoproterozoic Hilfordy Formation in the Kimberley region, northwestern Australia. Both ripple index (RI) and ripple symmetry in- dex (RSI) suggest the Kimberley ripples were likely generated by storm waves. Their wave height is up to 15−23 cm and wave length is up to 70−90 cm. These features, incorporated with other morphological characteristics such as symmetry, steepness, ripple spacing, and compositions, agree well with the megaripples previously reported from the intertidal-nearshore settings of modern seas and the geological past. The Mesoproterozoic ripples were likely gen- erated by the storm-induced flows. Literature survey of the global record of megaripples reveals that such structures have occurred through the geological past from the Archean to present day. They were particularly common in the Neoproterozoic and had the largest ripple length and ripple height among the modern and geological records. This is probably because extreme storms prevailed at that time.
    [Show full text]
  • Oxygenated Mesoproterozoic Lake Revealed Through Magnetic
    Oxygenated Mesoproterozoic lake revealed through magnetic mineralogy Sarah P. Slotznicka,1, Nicholas L. Swanson-Hysella, and Erik A. Sperlingb aDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; and bDepartment of Geological Sciences, Stanford University, Stanford, CA 94305 Edited by Paul F. Hoffman, University of Victoria, Victoria, BC, Canada, and approved October 29, 2018 (received for review August 4, 2018) Terrestrial environments have been suggested as an oxic haven Formation has been further interpreted to indicate the pres- for eukaryotic life and diversification during portions of the Pro- ence of more than 50 different species (4). This record is terozoic Eon when the ocean was dominantly anoxic. However, argued to be more diverse than similar-aged marine assemblages, iron speciation and Fe/Al data from the ca. 1.1-billion-year-old which leads to the interpretation that lacustrine environments Nonesuch Formation, deposited in a large lake and bearing a with stable oxygenated waters may have been more hospitable diverse assemblage of early eukaryotes, are interpreted to indi- to eukaryotic evolution than marine ones (4). Early oxygena- cate persistently anoxic conditions. To shed light on these distinct tion of lacustrine environments during the Mesoproterozoic hypotheses, we analyzed two drill cores spanning the trans- has also been proposed based on large sulfur isotope frac- gression into the lake and its subsequent shallowing. While the tionations from sedimentary rocks of the Stoer and Torridon proportion of highly reactive to total iron (FeHR/FeT) is consis- groups that were interpreted to have resulted from oxidative tent through the sediments and typically in the range taken sulfur cycling (15).
    [Show full text]