Interview with Hans W. Liepmann
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Philosophia Scientiæ, 13-2 | 2009 [En Ligne], Mis En Ligne Le 01 Octobre 2009, Consulté Le 15 Janvier 2021
Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 13-2 | 2009 Varia Édition électronique URL : http://journals.openedition.org/philosophiascientiae/224 DOI : 10.4000/philosophiascientiae.224 ISSN : 1775-4283 Éditeur Éditions Kimé Édition imprimée Date de publication : 1 octobre 2009 ISBN : 978-2-84174-504-3 ISSN : 1281-2463 Référence électronique Philosophia Scientiæ, 13-2 | 2009 [En ligne], mis en ligne le 01 octobre 2009, consulté le 15 janvier 2021. URL : http://journals.openedition.org/philosophiascientiae/224 ; DOI : https://doi.org/10.4000/ philosophiascientiae.224 Ce document a été généré automatiquement le 15 janvier 2021. Tous droits réservés 1 SOMMAIRE Actes de la 17e Novembertagung d'histoire des mathématiques (2006) 3-5 novembre 2006 (University of Edinburgh, Royaume-Uni) An Examination of Counterexamples in Proofs and Refutations Samet Bağçe et Can Başkent Formalizability and Knowledge Ascriptions in Mathematical Practice Eva Müller-Hill Conceptions of Continuity: William Kingdon Clifford’s Empirical Conception of Continuity in Mathematics (1868-1879) Josipa Gordana Petrunić Husserlian and Fichtean Leanings: Weyl on Logicism, Intuitionism, and Formalism Norman Sieroka Les journaux de mathématiques dans la première moitié du XIXe siècle en Europe Norbert Verdier Varia Le concept d’espace chez Veronese Une comparaison avec la conception de Helmholtz et Poincaré Paola Cantù Sur le statut des diagrammes de Feynman en théorie quantique des champs Alexis Rosenbaum Why Quarks Are Unobservable Tobias Fox Philosophia Scientiæ, 13-2 | 2009 2 Actes de la 17e Novembertagung d'histoire des mathématiques (2006) 3-5 novembre 2006 (University of Edinburgh, Royaume-Uni) Philosophia Scientiæ, 13-2 | 2009 3 An Examination of Counterexamples in Proofs and Refutations Samet Bağçe and Can Başkent Acknowledgements Partially based on a talk given in 17th Novembertagung in Edinburgh, Scotland in November 2006 by the second author. -
Modelling Vortex-Vortex and Vortex-Boundary Interaction
Modelling vortex-vortex and vortex-boundary interaction Rhodri Burnett Nelson DEPARTMENT OF MATHEMATICS UNIVERSITY COLLEGE LONDON A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY SUPERVISOR Prof. N. R. McDonald September 2009 I, Rhodri Burnett Nelson, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. SIGNED Abstract The motion of two-dimensional inviscid, incompressible fluid with regions of constant vorticity is studied for three classes of geophysically motivated problem. First, equilibria consisting of point vortices located near a vorticity interface generated by a shear flow are found analytically in the linear (small-amplitude) limit and then numerically for the fully nonlinear problem. The equilibria considered are mainly periodic in nature and it is found that an array of equilibrium shapes exist. Numerical equilibria agree well with those predicted by linear theory when the amplitude of the waves at the interface is small. The next problem considered is the time-dependent interaction of a point vortex with a single vorticity jump separating regions of opposite signed vorticity on the surface of a sphere. Initially, small amplitude interfacial waves are generated where linear theory is applicable. It is found that a point vortex in a region of same signed vorticity initially moves away from the interface and a point vortex in a region of opposite signed vortex moves towards it. Configurations with weak vortices sufficiently far from the interface then undergo meridional oscillation whilst precessing about the sphere. A vortex at a pole in a region of same sign vorticity is a stable equilibrium whereas in a region of opposite-signed vorticity it is an unstable equilibrium. -
Alwyn C. Scott
the frontiers collection the frontiers collection Series Editors: A.C. Elitzur M.P. Silverman J. Tuszynski R. Vaas H.D. Zeh The books in this collection are devoted to challenging and open problems at the forefront of modern science, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science. Furthermore, it is intended to encourage active scientists in all areas to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, consciousness and complex systems – the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. Other Recent Titles The Thermodynamic Machinery of Life By M. Kurzynski The Emerging Physics of Consciousness Edited by J. A. Tuszynski Weak Links Stabilizers of Complex Systems from Proteins to Social Networks By P. Csermely Quantum Mechanics at the Crossroads New Perspectives from History, Philosophy and Physics Edited by J. Evans, A.S. Thorndike Particle Metaphysics A Critical Account of Subatomic Reality By B. Falkenburg The Physical Basis of the Direction of Time By H.D. Zeh Asymmetry: The Foundation of Information By S.J. Muller Mindful Universe Quantum Mechanics and the Participating Observer By H. Stapp Decoherence and the Quantum-to-Classical Transition By M. Schlosshauer For a complete list of titles in The Frontiers Collection, see back of book Alwyn C. -
United States Rocket Research and Development During World War II
United States Rocket Research and Development During World War II Unidentified U.S. Navy LSM(R) (Landing Ship Medium (Rocket)) launching barrage rockets during a drill late in the Second World War. Image courtesy of the U.S. National Archives and Records Administration. and jet-assisted takeoff (JATO) units for piston-pow- Over the course of the Second World War, rockets ered attack fighters and bombers. Wartime American evolved from scientific and technical curiosities into rocket research evolved along a number of similar and practical weapons with specific battlefield applications. overlapping research trajectories. Both the U.S. Navy The Allied and Axis powers both pursued rocket re- and Army (which included the Army Air Forces) devel- search and development programs during the war. Brit- oped rockets for ground bombardment purposes. The ish and American rocket scientists and engineers (and services also fielded aerial rockets for use by attack their Japanese adversaries) mainly focused their efforts aircraft. The Navy worked on rocket-powered bombs on tactical applications using solid-propellant rockets, for antisubmarine warfare, while the Army developed while the Germans pursued a variety of strategic and the handheld bazooka antitank rocket system. Lastly, tactical development programs primarily centered on both the Army and Navy conducted research into JATO liquid-propellant rockets. German Army researchers units for use with bombers and seaplanes. Throughout led by Wernher von Braun spent much of the war de- the war, however, limited coordination between the veloping the A-4 (more popularly known as the V-2), armed services and federal wartime planning bodies a sophisticated long-range, liquid-fueled rocket that hampered American rocket development efforts and led was employed to bombard London and Rotterdam late to duplicated research and competition amongst pro- in the war. -
Massachusetts Institute of Technology Bulletin
d 7I THE DEAN OF SCIEN<C OCT 171972 MASSACHUSETTS INSTITUTE OF TECHNOLOGY BULLETIN REPORT OF THE PRESIDENT 1971 MASSACHUSETTS INSTITUTE OF TECHNOLOGY BULLETIN REPORT OF THE PRESIDENT FOR THE ACADEMIC YEAR 1970-1971 MASSACHUSETTS INSTITUTE OF TECHNOLOGY BULLETIN VOLUME 107, NUMBER 2, SEPTEMBER, 1972 Published by the Massachusetts Institute of Technology 77 MassachusettsAvenue, Cambridge, Massachusetts, five times yearly in October, November, March, June, and September Second class postage paid at Boston, Massachusetts. Issues of the Bulletin include REPORT OF THE TREASURER REPORT OF THE PRESIDENT SUMMER SESSION CATALOGUE PUBLICATIONS AND THESES and GENERAL CATALOGUE Send undeliverable copies and changes of address to Room 5-133 Massachusetts Institute of Technology Cambridge,Massachusetts 02139. THE CORPORATION Honorary Chairman:James R. Killian, Jr. Chairman:Howard W. Johnson President:Jerome B. Wiesner Chancellor: Paul E. Gray Vice Presidentand Treasurer:Joseph J. Snyder Secretary:John J. Wilson LIFE MEMBERS Bradley Dewey, Vannevai Bush, James M. Barker, Thomas C. Desmond, Marshall B. Dalton, Donald F. Carpenter, Thomas D. Cabot, Crawford H. Greenewalt, Lloyd D. Brace, William A. Coolidge, Robert C. Sprague, Charles A. Thomas, David A. Shepard, George J. Leness, Edward J. Hanley, Cecil H. Green, John J. Wilson, Gilbert M. Roddy, James B. Fisk, George P. Gardner, Jr., Robert C. Gunness, Russell DeYoung, William Webster, William B. Murphy, Laurance S. Rockefeller, Uncas A. Whitaker, Julius A. Stratton, Luis A. Ferr6, Semon E. Knudsen, Robert B. Semple, Ir6n6e du Pont, Jr., Eugene McDermott, James R. Killian, Jr. MEMBERS Albert H. Bowker, George P. Edmonds, Ralph F. Gow, Donald A. Holden, H. I. Romnes, William E. -
1 WKB Wavefunctions for Simple Harmonics Masatsugu
WKB wavefunctions for simple harmonics Masatsugu Sei Suzuki Department of Physics, SUNY at Binmghamton (Date: November 19, 2011) _________________________________________________________________________ Gregor Wentzel (February 17, 1898, in Düsseldorf, Germany – August 12, 1978, in Ascona, Switzerland) was a German physicist known for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel– Kramers–Brillouin approximation in 1926. In his early years, he contributed to X-ray spectroscopy, but then broadened out to make contributions to quantum mechanics, quantum electrodynamics, and meson theory. http://en.wikipedia.org/wiki/Gregor_Wentzel _________________________________________________________________________ Hendrik Anthony "Hans" Kramers (Rotterdam, February 2, 1894 – Oegstgeest, April 24, 1952) was a Dutch physicist. http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers _________________________________________________________________________ Léon Nicolas Brillouin (August 7, 1889 – October 4, 1969) was a French physicist. He made contributions to quantum mechanics, radio wave propagation in the atmosphere, solid state physics, and information theory. http://en.wikipedia.org/wiki/L%C3%A9on_Brillouin _______________________________________________________________________ 1. Determination of wave functions using the WKB Approximation 1 In order to determine the eave function of the simple harmonics, we use the connection formula of the WKB approximation. V x E III II I x b O a The potential energy is expressed by 1 V (x) m 2 x 2 . 2 0 The x-coordinates a and b (the classical turning points) are obtained as 2 2 a 2 , b 2 , m0 m0 from the equation 1 V (x) m 2 x2 , 2 0 or 1 1 m 2a 2 m 2b2 , 2 0 2 0 where is the constant total energy. Here we apply the connection formula (I, upward) at x = a. -
Catalogue 51: Mostly New Acquisitions
Catalogue 51: Mostly New Acquisitions For the 48th California International Antiquarian Book Fair Oakland Marriott, City Center, Oakland February 6 – 8, 2015 Visit us at Booth 809 HistoryofScience.com Jeremy Norman & Co., Inc. P.O. Box 867 Novato, CA 94948 Voice: (415) 892-3181 Fax: (415) 276-2317 Email: [email protected] Copyright ©2015 by Jeremy Norman & Co., Inc. / Historyofscience.com First Edition of the First English Sex Manual — One of Three Known Complete Copies 1. [Pseudo-Aristotle]. Aristoteles master-piece, or the secrets of generation displayed in all the parts thereof . 12mo. [4, including woodcut frontispiece], 190, [2, blank], [12, including 6 wood- cut illustrations, one a repeat of the frontispiece]pp. Title leaf is a cancel. London: Printed for J. How, 1684. 144 x 85 mm. Early sheep, worn, binding separating from text block; preserved in a cloth box. Occasional worming and staining, edges frayed, woodcuts with holes, tears and chips slightly affecting images, last woodcut with marginal loss affecting a few words of text, a few leaves slightly cropped, but a good, unsophisticated copy of a book that was mostly read out of existence. $65,000 First Edition. Aristotle’s Masterpiece (neither by Aristotle nor a masterpiece) was the first sex manual in English, providing its readers with practical advice on copulation, conception, pregnancy and birth. This anony- mous, inexpensively printed work proved to be enormously popular: At least three editions were issued by J. How in 1684 (see ESTC and below in our description), and it went through well over 100 editions in the following two centuries.Versions even continued to be published into the early twentieth century, with one appearing as late as 1930! Although Aristotle’s Masterpiece was not intended as pornography, its frank discussion of sex and reproduction was seen as unfit for polite society; the book was often issued under false imprints and sold “under the table.” The publication history of the work is discussed in some detail in Roy Porter and Lesley Hall’s The Facts of Life (pp. -
My Father, Frank Joseph Malina (1 ), Was Born a Hundred Years Ago on October 2 1912 in Brenham,Texas.The Son of Czech Immigrants
My father, Frank Joseph Malina engineering practice. (1 ), was born a hundred years Engineering was often a trial ago on October 2 1912 in and error affair; Von Karman Brenham,Texas. The son of believed that you could make Czech immigrants, his parents things scientifi cally. My father were music teachers, but had went on to become a leading run grocery stores and a hotel; pioneering of American they wanted their son to be a Rocketry and, with Von Karman, musician. Music was a founder of NASA's Jet respectable profession; my Propulsion Lab. The team led by father went on to become a my father is credited with rocket scientist, a field that was launching the first human-made not respectable did not exist object into space. when he was born. When my father started working Brenham was a small farming on rockets he was a student; community and my father tells of his fellow students were all his boredom and finding refuge headed for the booming in the town library. There, among aeronautics industry, the other books, he read Jules internet of its ti me; they couldn't Verne and became infected with believe he would waste his the dream of space travel. And education on a field as absurd to go to space you had to make as rockets. Rockets were in things, invent things. such bad repute that they use the word Jet Propulsion rather My father majored in mechanical than the word Rockets. My engineering atTexas A and M father and a motley group of and went on to study students started making aeronautics at the California rockets. -
Astronautique
Astronautique par Jean CHEYMOL * Le mot et la chose ne surprennent plus les jeunes d'aujourd'hui. Télévi sion, journaux et surtout romans d'anticipation les ont saturés de ces faits qui n'épatent guère plus que les gens de notre génération. En allait-il autrement il y a cinquante ans ? A cette époque, même après avoir lu Jules Verne les allusions aux voyages dans la Lune ne faisaient pas sérieux ! Pour ma part je dois faire amende honorable à cause de mon incrédulité moqueuse. Parcourant vers 1928 un journal d'information scientifique, j'y découvris avec effarement la création d'un prix international d'Astronautique [Esnault-Pelterie (1)] devant être attribué par la Société Astronomique de France « au meilleur travail scientifique original, théorique ou expérimental, capable de faire progresser l'une des questions dont dépend la réalisation de la navigation intersidérale ou d'augmenter les connaissances humaines dans l'une des branches touchant à la science astronautique ». Fusée pour aller dans les astres ! Pourquoi pas pour entrer en contact avec leurs habitants ! Vous voyez d'ici l'ironie facile en salle de garde envers les lunatiques de la Société Astronautique de France et les créateurs d'une telle récompense (2). Et cependant en notre temps la prospection vers les planètes progres sent d'année en année : (*) Séance de la Société Française d'Histoire de la Médecine du 22 avril 1972, jour de l'alunissage d'Apolo XVI. (1) Le mot « astronautique » fut donné par J.H. Rosny aîné, alors Président de l'Académie Goncourt et membre du Comité d'attribution du prix. -
5 X-Ray Crystallography
Introductory biophysics A. Y. 2016-17 5. X-ray crystallography and its applications to the structural problems of biology Edoardo Milotti Dipartimento di Fisica, Università di Trieste The interatomic distance in a metallic crystal can be roughly estimated as follows. Take, e.g., iron • density: 7.874 g/cm3 • atomic weight: 56 3 • molar volume: VM = 7.1 cm /mole then the interatomic distance is roughly VM d ≈ 3 ≈ 2.2nm N A Edoardo Milotti - Introductory biophysics - A.Y. 2016-17 The atomic lattice can be used a sort of diffraction grating for short-wavelength radiation, about 100 times shorter than visible light which is in the range 400-750 nm. Since hc 2·10−25 J m 1.24 eV µm E = ≈ ≈ γ λ λ λ 1 nm radiation corresponds to about 1 keV photon energy. Edoardo Milotti - Introductory biophysics - A.Y. 2016-17 !"#$%&'$(")* S#%/J&T&U2*#<.%&CKET3&VG$GG./"#%G3&W.%-$/; +(."J&AN&>,%()&CTDB3&S.%)(/3&X.1*&W.%-$/; Y#<.)&V%(Z.&(/&V=;1(21&(/&CTCL&[G#%&=(1&"(12#5.%;&#G&*=.& "(GG%$2*(#/&#G&\8%$;1&<;&2%;1*$)1] 9/(*($));&=.&1*:"(."&H(*=&^_/F*./3&$/"&*=./&H(*=&'$`&V)$/2I&(/& S.%)(/3&H=.%.&=.&=$<()(*$*."&(/&CTBD&H(*=&$&*=.1(1&[a<.% "(.& 9/*.%G.%./Z.%12=.(/:/F./ $/&,)$/,$%$)).)./ V)$**./[?& 7=./&=.&H#%I."&$*&*=.&9/1*(*:*.&#G&7=.#%.*(2$)&V=;1(213&=.$"."& <;&>%/#)"&Q#--.%G.)"3&:/*()&=.&H$1&$,,#(/*."&G:))&,%#G.11#%&$*& *=.&4/(5.%1(*;&#G&0%$/IG:%*&(/&CTCL3&H=./&=.&$)1#&%.2.(5."&=(1& Y#<.)&V%(Z.?& !"#$%"#&'()#**(&8 9/*%#":2*#%;&<(#,=;1(21&8 >?@?&ABCD8CE Arnold Sommerfeld (1868-1951) ... Four of Sommerfeld's doctoral students, Werner Heisenberg, Wolfgang Pauli, Peter Debye, and Hans Bethe went on to win Nobel Prizes, while others, most notably, Walter Heitler, Rudolf Peierls, Karl Bechert, Hermann Brück, Paul Peter Ewald, Eugene Feenberg, Herbert Fröhlich, Erwin Fues, Ernst Guillemin, Helmut Hönl, Ludwig Hopf, Adolf KratZer, Otto Laporte, Wilhelm LenZ, Karl Meissner, Rudolf Seeliger, Ernst C. -
February 2021 | Page 1
Featured Stories "You’re not on sabbatical or vacation. It’s an unusual situation where you’re involuntarily isolating," says Science Writer Jay Thompson. Facing a Pandemic By Yourself By Celeste Hoang Weary of the company in your pandemic bubble? Imagine if the only company were you. When even those with loved ones feel lonely, when thousands die and thousands more risk their lives to save some, the alone are easily overlooked. There isn’t exactly an ad one can place to seek a friend for what sometimes feels like the end of the world. For the many JPLers living alone through this pandemic, admitting to hardship can feel embarrassing when compared to the struggles of healthcare workers or parents with young children. But while a physical bubble of one is safe and quiet, the mind knows no rest. JPLers have coped in different ways. Some dove into therapy and self-reflection. Some said hello and goodbye to relationships—sometimes doing both during lockdown. Others ran marathons as metaphors to keep moving. Universe | February 2021 | Page 1 For the most part, they just endured, safely staying within their own homes—and privately navigating the highs and lows on their own—until the world sees this through. These are a few of their stories. Eric Oij on a recent solo trip to Lake Mono, California. Eric Oij It’s no surprise that Eric Oij—jolly, gregarious, and easy to laugh—is a self-described extrovert. That personality type, of course, has been a source of torment for the 37-year-old software engineer during the pandemic. -
IGNITION! an Informal History of Liquid Rocket Propellants by John D
IGNITION! U.S. Navy photo This is what a test firing should look like. Note the mach diamonds in the ex haust stream. U.S. Navy photo And this is what it may look like if something goes wrong. The same test cell, or its remains, is shown. IGNITION! An Informal History of Liquid Rocket Propellants by John D. Clark Those who cannot remember the past are condemned to repeat it. George Santayana RUTGERS UNIVERSITY PRESS IS New Brunswick, New Jersey Copyright © 1972 by Rutgers University, the State University of New Jersey Library of Congress Catalog Card Number: 72-185390 ISBN: 0-8135-0725-1 Manufactured in the United Suites of America by Quinn & Boden Company, Inc., Rithway, New Jersey This book is dedicated to my wife Inga, who heckled me into writing it with such wifely re marks as, "You talk a hell of a fine history. Now set yourself down in front of the typewriter — and write the damned thing!" In Re John D. Clark by Isaac Asimov I first met John in 1942 when I came to Philadelphia to live. Oh, I had known of him before. Back in 1937, he had published a pair of science fiction shorts, "Minus Planet" and "Space Blister," which had hit me right between the eyes. The first one, in particular, was the earliest science fiction story I know of which dealt with "anti-matter" in realistic fashion. Apparently, John was satisfied with that pair and didn't write any more s.f., kindly leaving room for lesser lights like myself.