Heisenberg and the Early Days of Quantum Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Philosophia Scientiæ, 13-2 | 2009 [En Ligne], Mis En Ligne Le 01 Octobre 2009, Consulté Le 15 Janvier 2021
Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 13-2 | 2009 Varia Édition électronique URL : http://journals.openedition.org/philosophiascientiae/224 DOI : 10.4000/philosophiascientiae.224 ISSN : 1775-4283 Éditeur Éditions Kimé Édition imprimée Date de publication : 1 octobre 2009 ISBN : 978-2-84174-504-3 ISSN : 1281-2463 Référence électronique Philosophia Scientiæ, 13-2 | 2009 [En ligne], mis en ligne le 01 octobre 2009, consulté le 15 janvier 2021. URL : http://journals.openedition.org/philosophiascientiae/224 ; DOI : https://doi.org/10.4000/ philosophiascientiae.224 Ce document a été généré automatiquement le 15 janvier 2021. Tous droits réservés 1 SOMMAIRE Actes de la 17e Novembertagung d'histoire des mathématiques (2006) 3-5 novembre 2006 (University of Edinburgh, Royaume-Uni) An Examination of Counterexamples in Proofs and Refutations Samet Bağçe et Can Başkent Formalizability and Knowledge Ascriptions in Mathematical Practice Eva Müller-Hill Conceptions of Continuity: William Kingdon Clifford’s Empirical Conception of Continuity in Mathematics (1868-1879) Josipa Gordana Petrunić Husserlian and Fichtean Leanings: Weyl on Logicism, Intuitionism, and Formalism Norman Sieroka Les journaux de mathématiques dans la première moitié du XIXe siècle en Europe Norbert Verdier Varia Le concept d’espace chez Veronese Une comparaison avec la conception de Helmholtz et Poincaré Paola Cantù Sur le statut des diagrammes de Feynman en théorie quantique des champs Alexis Rosenbaum Why Quarks Are Unobservable Tobias Fox Philosophia Scientiæ, 13-2 | 2009 2 Actes de la 17e Novembertagung d'histoire des mathématiques (2006) 3-5 novembre 2006 (University of Edinburgh, Royaume-Uni) Philosophia Scientiæ, 13-2 | 2009 3 An Examination of Counterexamples in Proofs and Refutations Samet Bağçe and Can Başkent Acknowledgements Partially based on a talk given in 17th Novembertagung in Edinburgh, Scotland in November 2006 by the second author. -
Autonomy and Automation Computational Modeling, Reduction, and Explanation in Quantum Chemistry Johannes Lenhard, Bielefeld Univ
Autonomy and Automation Computational modeling, reduction, and explanation in quantum chemistry Johannes Lenhard, Bielefeld University preprint abstract This paper discusses how computational modeling combines the autonomy of models with the automation of computational procedures. In particular, the case of ab initio methods in quantum chemistry will be investigated to draw two lessons from the analysis of computational modeling. The first belongs to general philosophy of science: Computational modeling faces a trade-off and enlarges predictive force at the cost of explanatory force. The other lesson is about the philosophy of chemistry: The methodology of computational modeling puts into doubt claims about the reduction of chemistry to physics. 1. Introduction In philosophy of science, there is a lively debate about the role and characteristics of models. The present paper wants to make a contribution to this debate about computational modeling in particular.1 Although there is agreement about the importance of computers in recent science, often their part is seen as merely accelerating computations. Of course, speed is a critical issue in practices of computation, because it restricts or enlarges the range of tractability for computational strategies.2 However, it will be argued in this paper that the conception of computational modeling, is not merely a matter of speed, i.e., not only amplifying already existing approaches, but has much wider philosophical significance. 1 There may be considerable overlap with the issue of simulation, but the argumentation of this paper does not depend on this part of terminology. 2 This has been aptly expressed in the part of Paul Humphreys’ book (2004) that deals with computational science. -
Edward Mills Purcell (1912–1997)
ARTICLE-IN-A-BOX Edward Mills Purcell (1912–1997) Edward Purcell grew up in a small town in the state of Illinois, USA. The telephone equipment which his father worked with professionally was an early inspiration. His first degree was thus in electrical engineering, from Purdue University in 1933. But it was in this period that he realized his true calling – physics. After a year in Germany – almost mandatory then for a young American interested in physics! – he enrolled in Harvard for a physics degree. His thesis quickly led to working on the Harvard cyclotron, building a feedback system to keep the radio frequency tuned to the right value for maximum acceleration. The story of how the Manhattan project brought together many of the best physicists to build the atom bomb has been told many times. Not so well-known but equally fascinating is the story of radar, first in Britain and then in the US. The MIT radiation laboratory was charged with developing better and better radar for use against enemy aircraft, which meant going to shorter and shorter wavelengths and detecting progressively weaker signals. This seems to have been a crucial formative period in Purcell’s life. His coauthors on the magnetic resonance paper, Torrey and Pound, were both from this lab. I I Rabi, the physicist who won the 1944 Nobel Prize for measuring nuclear magnetic moments by resonance methods in molecular beams, was the head of the lab and a major influence on Purcell. Interestingly, Felix Bloch (see article on p.956 in this issue) was at the nearby Radio Research lab but it appears that the two did not interact much. -
I. I. Rabi Papers [Finding Aid]. Library of Congress. [PDF Rendered Tue Apr
I. I. Rabi Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1992 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998009 LC Online Catalog record: http://lccn.loc.gov/mm89076467 Prepared by Joseph Sullivan with the assistance of Kathleen A. Kelly and John R. Monagle Collection Summary Title: I. I. Rabi Papers Span Dates: 1899-1989 Bulk Dates: (bulk 1945-1968) ID No.: MSS76467 Creator: Rabi, I. I. (Isador Isaac), 1898- Extent: 41,500 items ; 105 cartons plus 1 oversize plus 4 classified ; 42 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and educator. The collection documents Rabi's research in physics, particularly in the fields of radar and nuclear energy, leading to the development of lasers, atomic clocks, and magnetic resonance imaging (MRI) and to his 1944 Nobel Prize in physics; his work as a consultant to the atomic bomb project at Los Alamos Scientific Laboratory and as an advisor on science policy to the United States government, the United Nations, and the North Atlantic Treaty Organization during and after World War II; and his studies, research, and professorships in physics chiefly at Columbia University and also at Massachusetts Institute of Technology. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein. -
Appendix E Nobel Prizes in Nuclear Science
Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence -
1 WKB Wavefunctions for Simple Harmonics Masatsugu
WKB wavefunctions for simple harmonics Masatsugu Sei Suzuki Department of Physics, SUNY at Binmghamton (Date: November 19, 2011) _________________________________________________________________________ Gregor Wentzel (February 17, 1898, in Düsseldorf, Germany – August 12, 1978, in Ascona, Switzerland) was a German physicist known for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel– Kramers–Brillouin approximation in 1926. In his early years, he contributed to X-ray spectroscopy, but then broadened out to make contributions to quantum mechanics, quantum electrodynamics, and meson theory. http://en.wikipedia.org/wiki/Gregor_Wentzel _________________________________________________________________________ Hendrik Anthony "Hans" Kramers (Rotterdam, February 2, 1894 – Oegstgeest, April 24, 1952) was a Dutch physicist. http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers _________________________________________________________________________ Léon Nicolas Brillouin (August 7, 1889 – October 4, 1969) was a French physicist. He made contributions to quantum mechanics, radio wave propagation in the atmosphere, solid state physics, and information theory. http://en.wikipedia.org/wiki/L%C3%A9on_Brillouin _______________________________________________________________________ 1. Determination of wave functions using the WKB Approximation 1 In order to determine the eave function of the simple harmonics, we use the connection formula of the WKB approximation. V x E III II I x b O a The potential energy is expressed by 1 V (x) m 2 x 2 . 2 0 The x-coordinates a and b (the classical turning points) are obtained as 2 2 a 2 , b 2 , m0 m0 from the equation 1 V (x) m 2 x2 , 2 0 or 1 1 m 2a 2 m 2b2 , 2 0 2 0 where is the constant total energy. Here we apply the connection formula (I, upward) at x = a. -
Catalogue 51: Mostly New Acquisitions
Catalogue 51: Mostly New Acquisitions For the 48th California International Antiquarian Book Fair Oakland Marriott, City Center, Oakland February 6 – 8, 2015 Visit us at Booth 809 HistoryofScience.com Jeremy Norman & Co., Inc. P.O. Box 867 Novato, CA 94948 Voice: (415) 892-3181 Fax: (415) 276-2317 Email: [email protected] Copyright ©2015 by Jeremy Norman & Co., Inc. / Historyofscience.com First Edition of the First English Sex Manual — One of Three Known Complete Copies 1. [Pseudo-Aristotle]. Aristoteles master-piece, or the secrets of generation displayed in all the parts thereof . 12mo. [4, including woodcut frontispiece], 190, [2, blank], [12, including 6 wood- cut illustrations, one a repeat of the frontispiece]pp. Title leaf is a cancel. London: Printed for J. How, 1684. 144 x 85 mm. Early sheep, worn, binding separating from text block; preserved in a cloth box. Occasional worming and staining, edges frayed, woodcuts with holes, tears and chips slightly affecting images, last woodcut with marginal loss affecting a few words of text, a few leaves slightly cropped, but a good, unsophisticated copy of a book that was mostly read out of existence. $65,000 First Edition. Aristotle’s Masterpiece (neither by Aristotle nor a masterpiece) was the first sex manual in English, providing its readers with practical advice on copulation, conception, pregnancy and birth. This anony- mous, inexpensively printed work proved to be enormously popular: At least three editions were issued by J. How in 1684 (see ESTC and below in our description), and it went through well over 100 editions in the following two centuries.Versions even continued to be published into the early twentieth century, with one appearing as late as 1930! Although Aristotle’s Masterpiece was not intended as pornography, its frank discussion of sex and reproduction was seen as unfit for polite society; the book was often issued under false imprints and sold “under the table.” The publication history of the work is discussed in some detail in Roy Porter and Lesley Hall’s The Facts of Life (pp. -
From Physical Chemistry to Chemical Physics, 1913-1941
International Workshop on the History of Chemistry 2015 Tokyo From Physical Chemistry to Chemical Physics, 1913-1941 Jeremiah James Ludwig-Maximillian University, Munich, Germany There has never been one unique name for the intersection of chemistry and physics. Nor has it ever been defined by a single, stable set of methods. Nevertheless, it is possible and arguably rewarding to distinguish changes in the constellation of terms and techniques that have defined the intersection over the years. I will speak today about one such change, the advent and ascendancy of chemical physics in the interwar period. When the young Friedrich Wilhelm Ostwald first began to formulate his campaign for “physical chemistry” in 1877, he used the term almost interchangeably with two others, “general chemistry” and “theoretical chemistry.” According to his vision of what would soon become a new chemical discipline, physical chemistry would investigate and formulate the general principles that underlie all chemical reactions and phenomena. The primary strategy that he and his allies used to generate these principles was to formulate mathematical “laws” or “rules” generalizing the results of numerous experiments, often performed using measuring apparatus borrowed from physics. Their main fields of inquiry were thermochemistry and solution theory, and they avoided and often openly maligned speculations regarding structures or mechanisms that might underlie the macroscopic regularities embodied in their laws.1 In the first decades of the 20th-century, the modern atomic theory was firmly established, and with only a slight delay, the methods of 19th-century physical chemistry lost a considerable proportion of their audience. Theories relying upon atomistic thinking began to reshape the disciplinary intersections of chemistry and physics, and by the end of the 1930s, cutting-edge research into the general principles of chemistry looked quite different than it had at the turn of the century. -
Theory and Experiment in the Quantum-Relativity Revolution
Theory and Experiment in the Quantum-Relativity Revolution expanded version of lecture presented at American Physical Society meeting, 2/14/10 (Abraham Pais History of Physics Prize for 2009) by Stephen G. Brush* Abstract Does new scientific knowledge come from theory (whose predictions are confirmed by experiment) or from experiment (whose results are explained by theory)? Either can happen, depending on whether theory is ahead of experiment or experiment is ahead of theory at a particular time. In the first case, new theoretical hypotheses are made and their predictions are tested by experiments. But even when the predictions are successful, we can’t be sure that some other hypothesis might not have produced the same prediction. In the second case, as in a detective story, there are already enough facts, but several theories have failed to explain them. When a new hypothesis plausibly explains all of the facts, it may be quickly accepted before any further experiments are done. In the quantum-relativity revolution there are examples of both situations. Because of the two-stage development of both relativity (“special,” then “general”) and quantum theory (“old,” then “quantum mechanics”) in the period 1905-1930, we can make a double comparison of acceptance by prediction and by explanation. A curious anti- symmetry is revealed and discussed. _____________ *Distinguished University Professor (Emeritus) of the History of Science, University of Maryland. Home address: 108 Meadowlark Terrace, Glen Mills, PA 19342. Comments welcome. 1 “Science walks forward on two feet, namely theory and experiment. ... Sometimes it is only one foot which is put forward first, sometimes the other, but continuous progress is only made by the use of both – by theorizing and then testing, or by finding new relations in the process of experimenting and then bringing the theoretical foot up and pushing it on beyond, and so on in unending alterations.” Robert A. -
The Federal Government: a Nobel Profession
The Federal Government: A Nobel Profession A Report on Pathbreaking Nobel Laureates in Government 1901 - 2002 INTRODUCTION The Nobel Prize is synonymous with greatness. A list of Nobel Prize winners offers a quick register of the world’s best and brightest, whose accomplishments in literature, economics, medicine, science and peace have enriched the lives of millions. Over the past century, 270 Americans have received the Nobel Prize for innovation and ingenuity. Approximately one-fourth of these distinguished individuals are, or were, federal employees. Their Nobel contributions have resulted in the eradication of polio, the mapping of the human genome, the harnessing of atomic energy, the achievement of peace between nations, and advances in medicine that not only prolong our lives, but “This report should serve improve their quality. as an inspiration and a During Public Employees Recognition Week (May 4-10, 2003), in an effort to recognize and honor the reminder to us all of the ideas and accomplishments of federal workers past and present, the Partnership for Public Service offers innovation and nobility of this report highlighting 50 American Nobel laureates the work civil servants do whose award-winning achievements occurred while they served in government or whose public service every day and its far- work had an impact on their career achievements. They were honored for their contributions in the fields reaching impact.” of Physiology or Medicine, Economic Sciences, and Physics and Chemistry. Also included are five Americans whose work merited the Peace Prize. Despite this legacy of accomplishment, too few Americans see the federal government as an incubator for innovation and discovery. -
On the Shoulders of Giants: a Brief History of Physics in Göttingen
1 6 ON THE SHO UL DERS OF G I A NTS : A B RIEF HISTORY OF P HYSI C S IN G Ö TTIN G EN On the Shoulders of Giants: a brief History of Physics in Göttingen 18th and 19th centuries Georg Ch. Lichtenberg (1742-1799) may be considered the fore- under Emil Wiechert (1861-1928), where seismic methods for father of experimental physics in Göttingen. His lectures were the study of the Earth's interior were developed. An institute accompanied by many experiments with equipment which he for applied mathematics and mechanics under the joint direc- had bought privately. To the general public, he is better known torship of the mathematician Carl Runge (1856-1927) (Runge- for his thoughtful and witty aphorisms. Following Lichtenberg, Kutta method) and the pioneer of aerodynamics, or boundary the next physicist of world renown would be Wilhelm Weber layers, Ludwig Prandtl (1875-1953) complemented the range of (1804-1891), a student, coworker and colleague of the „prince institutions related to physics proper. In 1925, Prandtl became of mathematics“ C. F. Gauss, who not only excelled in electro- the director of a newly established Kaiser-Wilhelm-Institute dynamics but fought for his constitutional rights against the for Fluid Dynamics. king of Hannover (1830). After his re-installment as a profes- A new and well-equipped physics building opened at the end sor in 1849, the two Göttingen physics chairs , W. Weber and B. of 1905. After the turn to the 20th century, Walter Kaufmann Listing, approximately corresponded to chairs of experimen- (1871-1947) did precision measurements on the velocity depen- tal and mathematical physics. -
FELIX BLOCH October 23, 1905-September 10, 1983
NATIONAL ACADEMY OF SCIENCES F E L I X B L O C H 1905—1983 A Biographical Memoir by RO BE R T H OFSTADTER Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1994 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. FELIX BLOCH October 23, 1905-September 10, 1983 BY ROBERT HOFSTADTER ELIX BLOCH was a historic figure in the development of Fphysics in the twentieth century. He was one among the great innovators who first showed that quantum me- chanics was a valid instrument for understanding many physi- cal phenomena for which there had been no previous ex- planation. Among many contributions were his pioneering efforts in the quantum theory of metals and solids, which resulted in what are called "Bloch Waves" or "Bloch States" and, later, "Bloch Walls," which separate magnetic domains in ferromagnetic materials. His name is associated with the famous Bethe-Bloch formula, which describes the stopping of charged particles in matter. The theory of "Spin Waves" was also developed by Bloch. His early work on the mag- netic scattering of neutrons led to his famous experiment with Alvarez that determined the magnetic moment of the neutron. In carrying out this resonance experiment, Bloch realized that magnetic moments of nuclei in general could be measured by resonance methods. This idea led to the discovery of nuclear magnetic resonance, which Bloch origi- nally called nuclear induction. For this and the simulta- neous and independent work of E.