Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned INDEX. VOLUME 63, 1978* Abelsonite, new nineral 930 Analyses, cont. Anafyses, cont. Ahc^vn+i^h cha^+r^ cosalite 1163 serPentine 49,546 868 brindleyite 485 davidite 30 sheryoodite guildite 474 diopslde 993 slderite 906 636 osumilite 49). dixenite 151 sPhene Actinolite-hornblende, coexisting 205 A"^^rhi +a l01B spinel 52,545 713 ADACHI, H. see NAKAI, I. 775 epidote-clinozoisite 632 stibiotantalite Adamellite, Maine 750 LL2L stransk i ite 2r4 '7'75 1176 Aeniqmatite, analyses fersnite 714 surate AFM nrn ie.rinns 532 forsterite 993 talc r005 r163 AKAO, M. see NUKUf, A. L252 643 tetrahedrite i-i +-h^h.dnar i f6 AIbate gadollnrte 190 776 643 anafyses 636 garner 5O,260, 263,625,641,1,O17,LI23 tonalite ^rvci^ | ct Y,r.rrrrF 1264 gfass 44,926 trachyte 777 ESUOIIE 1163 csLfrrsLrurr dr19acr 466 glaucochroite 355 Albrittonite, new nineral 410 643 virgi lite 463 ALDRIDGE, L.P. and G.M. BANCROFT, hedenbergite 1121 vysotskite 83s 722 M.E. FLEET, C.T. HERZBERG: hematolite 151 wc+rsuq!Yr Ls mnh;.i f F str.li cs II07 herderite 915 wolfaslonrte 277 ANDERSON, D.E. see OLIMPIO' , see FLEET, M.E. 1100 hornblende I45,2O7 ,1L24 Allanite, analysis 330 hydroxyapophyllite 198 Andesite, crystalllzation 75 ALLEN, J.C. and A.L. BOETTCBER: h\/.lrovvl -herderi te 91 5 Sequence 10 Amphiboles in andesite and ilnenlte 545,rr25 Andradite, low-temPerature basalt IO74 iron-fomation 900 stability 378 ALLEN, J-[4. and R. GOLDTL: iin+h^mnc^hifa 1005 Anorthite 5I4 Coexisting anphiboles from kallpyrochlore 529 breakdown reaction heat capacrtY, entropy r09 the Noranda area, Quebec 2O5 K-feldspar 752 ^^+i^il ^r^hartiac 437 AllopaItadiw, discredited khinite 1017 mineral (abstr) 796 kraiss lite 940 Anti"perthites 136 316 Alumohydrocalcite, new data labradorite 586 Apatite, biaxiality in (abstr) 795 lepidolite 203 Apophyllite grouP 196 Layer defomation AMELINCKX, S. see VAN GOETHEM' L. 548 1^rrari ndi +a 30 APPELO, C.A.J.: micas and Amethyst, dislocations in 744 I ^r'ari ndi +a" 38 and crystal energy of 742 Amphiboles 6-^^,,dvni +a 940 related ninerals = (abstr) 796 chemical analyses 263,527 ,1OAI 545,r).25 Appleite calcite B.M. 46r classification and manganochromite ).167 APPLEMAN, D.E. see FRENCH, nomenclature 1023 narsturite r1 88 ARAKI, T. SCC MOOR.E' P.B. 151 new mineral (abstr) 424 coexisting 2O5 monazate 759 Arcubisite. 520 discredited ndes 1049 monticellite Ardealite, structure stability IO74 muscovite 634,'151 Arfvedsonite, analysis 776 structure 24r olivine 546,715 in basalt 413 r175 AnaIcine, cel I dimensions, ^rfh^nvr^YAna 263,9O'7,lO'74 Argentina, surite structure 444 oswilite 49I Arizona Analyses, chemical palfadim antimonide I 169 chondrodite, titanian 535 535 actinolite 2O7,rOO5 ^^rALhihi+a 1017 clinohwite, titanian aenrgmatate 7'75 parnauite 104 dugganite 1016 254 a1b ite 636 pegnatites 9'73 garnet Pyroxenite 474 albrittonite 41r perrierite 503 guildite 1016 affanite 330 ha+e^ha^Lita 942 khinite amphibole 263 ,627 ,62A 'IO81 ,1092 phlogonite 5r,546 parakhinite 1016 254 anthophyllite 1005 plagioclase 944 p-vroxene-ilnenite intergrowths arfvedsonite 4I3,776 polhemusite 1158 ultramafic xenoliths 40 bismuthinite 1163 ^r,r^^h'l 1 i +6 IO2 Arnafcolite, in lunar basalts f2O9 835 pyrrhotite I275 Arsenbrackebuschite, new mineral (abs t2a2 breccia 103 quartzite ro2 tr ) ttu, S' I24L h-i hdl awi ta 488 rancleate 763 AUSTERMAN, S.B. see bustamite 277 rhodonite l1 38 Australia caf cite 906 richterite 716 alabandite r166 cheste rlte 1005 rowl-andite 756 davidite 30 332 chevkinite 503 rutile lr84 lepidolite 2A chlorite 294,635 rrrharc^ni ia 712 loverlngate 1166 chondrodite 536 sarabauite 715 manganochromite c 1 inohunlte 536,546 schis t 102 nickel tt66 ^r i n^i i nr h.mns^n i ra 1005 schizol ite 277 opal 737 clinopyroxene 66,260'626,650'IO79 c^hravari ta 1184 paltadium diantinonide cooperite 835 s e randi te 277 wollastonrte *Preparedby Brian Mason and Cynthia Barnes,Smithsonian Institution, Washington, DC. 1288 Bailey BAILEY, S.W. and O.H.J. CHRISTIE: BUERGER, M.J. and c.L SHOEMAKER: Chlorlte, analyses 635 Three-Iayer monoclinic Ari X-ray powder cmera for sErucEure 293 lepidolite 203 taking photographs at low Chondrodite, tilanian 535 _, see GUGGENHEIM, S . 186 Eemperatures A24 CHOU, I-MING: Calibration of BANCROFT, c.M. see ALDRIDGE,L.P. 1107 Burangite, (abstr) new mineral 793 oxygen buffers 690 _, see FLEET , M. E. 1100 BURNHAM, C.W. see VEBLEN, D.R. CHRISTfE, O.H.J. see BAILEY,S.W. 2O3 Band theory, and color 226 lo00 ,1053 Clnnabar, synthesis 1143 BARDOSSY, c. and c.w. BRINDLEY: BURNS, R.c. see BURNS, V.M. A2j Claringbullite, new mineral Rancieite associated with a BURNS, V.M. and R.c. BURNS: (abstr) 793 karstic bauxite deposlt 762 Authigenic todorokite and CLARK, G.,1. see MEAKINS, R.L. 737 BARKER, D.S.: Magmatic trends on phillipsite A2j CIARK, J.R. see BROWN, c.E. 814 alkali-iron-naqnesim diag,rams 531 BURRUSS, R.C. see MURCK. B.W. 40 _r 5€€ GHOSE, S. 160 BARNES, H.L. see POTTER, R.W. rI 1143 BURT, D.14.: MultisysLens analysis Clinochlore + quartz, stability Basaft 73 of beryllim mineral stabil- clinoeulite = nagnesian clino- crystaffization sequence 1076 ities 664 farr.<irila l:hcFr\ 12a3 Fra Mauro prERCE, 350 BUSECK, P.R. see L. I clinohwite, titanian 535,544 mare I2o9 Bustilite, analysis, crystal Cf inojimthonpsonite, new BASSETT, trI.A. see IIIILBURN, D.R. 591 sLruccure 2i4 mineral 1000, BASU, lo53 V.R.R.M. see RAO, A.T. 330 BYERIY, c. review of AtLas of the clinopyroxene, chenical analysis 1079 BAUR, tii.H.: Crystal structure ?extural Pattems af Basalts cI-tyretskite, new mineral refinement of lawsonite 3I1 and theLr Genetic Significanee (abstr) BENCE, A.E. see DOOLAN, B.L. 1088 (Augustithis) 1020 Color, in minera]s 219 BERI{AN, R.M. : Differentiaf themal Cooperite, composition, analysis of sone irradiated X-ray data 432 manerafs 807 cRArc, J.R. review of Quantita_ Berndtite, structure 2A9 CABRI, L.J. and J.H.c. LAFLAMME, l;tue Data FiLe of the IMA Beryl J.M. STEWART, K. TURNER, B.J. Comission on )re Microscopy anonalous biaxiality 316 t-l4j SKINNER: On cooperite, (Henry) '797 sectocal structure 725 braggite, and vysotsklte 932 CMSSEY, c. see SCHMID, R. 51.r Beryllium mineral stabilities 664 _r s€€ FLEISCHER, M. 424,59e Crichtonite-group minerals 36 Biaxiality, .in isometric and cafarsite, new data (abstr) l'95 CRIDDLE,A.J. see EMBMY, p.c. 853 dinetric crystals 316 Calcite CROOK,W.W. Irr and L.A. MARCOTTY: Blcchulite, synthesis, composition, composition 906 Albrittonite, a new cobalt thermodynamic properties 5g impurity-related centers in 732 chloride hydrate 4ro BICKEL, C.E. see '{ARNER. J.L- lOlO California errata I287 Biopyribotes, crystal fersmite 709 _, and R. C . EWING, A.,f . chemistry 239 105 ,1000, 3 9rossular 298 EHLMANN: Rowlandite from the BISH, D.L. see I4AKSTMOVIC, Z. 4A4 anesrte 563 Barringer Hill rare-earth BLENCOE, .f.c. see FERRY, J.M. 1225 fawsonite 311 pegmatite district 754 BLOSS, F.D.: The spindle stage: monticellite 366 CRUZ, M.T. see SETO, H. 572 a turning polnt for optical rynersonite 109 Cryptoperthites, 1ilellar crystal.Iography 433 stibiotantalite 709 coarsenlng 47O see LOUI SNATHAN, S .J. 394 _, CAMPBELL, I.H. see GATEHOUSE, B.M. 28 crystal energry, micas ja2 BOETTCHER, A.L. see ALLEN, ,J.C. IO7A Carofina sfate belt 96 Crystal fields, and color 22O Bdggild lanellae 136,r43,594 Canada Crystal foms, nomenclature 841 BoRC, I. review of Suba.uction amphiboles 205 Crystal structure Zone Metanorphisn (Ernst,ed.) 42g arfvedsonite 413 analcime 444 Bornite, superstructuring in 1 9'arnet 50 angfesite 506 BOVIN, J.-O. see O'KEEFFE, M. lgo iron-fornation s98 barite 506 Bragglte, composition, X-ray data 832 kinlcerfite 47 berndtite Brazfl 289 monticellite 55 brindleyite 444 clinohmite 544 olivine 48 bustilite 274 ilmenite 544 oswif ite 490 Ca^HPO, SO.4H^O 520 BRINDLEY, z44Z c.W. review of SeDenth phfogopite 51 carl Conference an CLaA Mineralogg serpentine 49 friesite 447 and. PetrologA celestite in Karlouy Varg sphalerite 93 506 (Konta) chondrodite, 803 spinel 52 titanian 535 and A. R.D. PORTER: clinohwite, titanian _r Occurrence Carlfriesite, structure, fomula, 535 of dickite chlorite inJmaica 554 synthesi s 447 293 see BARDOSSY, c . cu(Io.)^.2H^o r72 _, 762 CASSIE, R.M. see SCHUIZE, D.J. 258 JZ 2 Brindleyite, new mineral 4A4 CASTAING, R.: Acceptance of the grossular 297 BROCK, K.J. and L.D. SLATER: Roebling Medal 602 gui Idite 478 Epitaxial narcasite on pyrite 2IO Celadonite, infrared spectra 343 hydrochlorborite 814 BROWN, B.E.: The crystal Chantalite, new mineral (abstr) I2A2 hydroxyapophyllite 199 structure of a 3T lepidolite 332 CHAO, c.Y. see FLEISCHER, M. 424 inesite s63 BROWN, c.E. review of Feldspar Charoite, new mineraf (absLr) j93,1,2A2 lawsonite 311 MineraLs VoL, II: Chenical and CHATTERfEE, N.D. see cUpTA, A.K. 5g lepidolite 332 ?ertural Pyoperties (smith) 430 Chenical analyses, see Analyses, loverlngite 2A _, and ,f . R. CLARK: Crystal chemical n'dr rg d|rr utrr Le 874 structure of hydrochlorborite gl4 CHERNOSKY, J.V.Jr.: The stabiliLy nargarate 186 BROWN, P.E. and E.J. ESSENE, W.C. of clinochlore + quartz at low NaCl 337 KELLY: Sphalerite geobarometry tenperature 73 olivine 365 in the Bafnat-Edwards district, Chesterite, new mineral 1000,105 3 paramelaconite 180 New York 250 Chevkinite , Noryay 499 pectolite see PEACOR, D.R. _, 1137 phlogopite 293 Goldman 1289 Crystal structure, cont. Electron m.lcroscopy Fluid inclusions 40 pyrope 297 bornite I FOORD, E.E. and C.G. CUNNTNGHAM: pyroxenoids 274 ^n,-t-harthi tp 4'74 Themal trilsfomation of salesite I72 digenite 1 anonal-ously biaxial dimetric serandite 274 plagioclase 138,951 crystals 747 sheffoodite 863 pyrate 544 , and B.A.
Recommended publications
  • Nanoparticles of Lanthanide and Transition Metal Oxysulfides : from Colloidal Synthesis to Structure, Surface, Optical and Magnetic Properties Clement Larquet
    Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthesis to structure, surface, optical and magnetic properties Clement Larquet To cite this version: Clement Larquet. Nanoparticles of lanthanide and transition metal oxysulfides : from colloidal synthe- sis to structure, surface, optical and magnetic properties. Material chemistry. Sorbonne Université, 2018. English. NNT : 2018SORUS432. tel-02950055 HAL Id: tel-02950055 https://tel.archives-ouvertes.fr/tel-02950055 Submitted on 27 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale 397 : Physique et chimie des matériaux Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP) Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) Nanoparticles of lanthanide and transition metal oxysulfides: from colloidal synthesis to structure, surface, optical and magnetic properties Par M. Clément Larquet Thèse de doctorat de Sorbonne Université Dirigée par Clément Sanchez et Andrea Gauzzi Présentée et soutenue publiquement le 25 septembre 2018 Devant un jury composé de : Mme. Elsje Alessandra Quadrelli Directrice de recherches - CPE Lyon Rapporteur M. Stéphane Jobic Directeur de recherches - IEMN Rapporteur Mme. Catherine Louis Directrice de recherches - SU Examinatrice Mme. Asma Tougerti Chargée de recherches – Univ.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Download the Scanned
    JOURNAL MINERALOGICAL SOCIETY OF AMERICA 193 Boyle, Blank, Biernbaum, Clay, Frankenfield, Gordon, Oldach, Knabe, and Trudell. At Branchville, albite crystals, beryl, margarodite, spodumene, and cyrnatolite were obtained; at East Hampton, golden beryl; at White Rocks, masses of pink and greenish tourmaline; at Strickland's quarry' green tourmaline, albite, beryl, and spoctumene. Ihe report was illustrated with lantern slides of photographs taken on the trip, and exhibits of specimens. Mr. George Vaux, Jr. described a trip to Franklin, N. J. with Mr. Gordon, where some exceptionally 6ne specimens were obtained, including the following minerals: apatite, copper, rhodonite, datolite, willemite, glaucochroite, Ieuco- phoenicite, hancockite, wernerite, franklinite, and arsenopyrite. Seuurr, G. Goroon, SecretarY, BOOK REVIEW A LIST OF NEW CRYSTAL FORMS OF MINERALS. Hnnstnr P Wurrrocr. Bur,retrn ol Tnr: Auenlcau Museunr ol NATURAT-Ifrsronv, Vor. xrvr, Ant. II, pp.89-278,1[ewYorh,1922. In July 1910, the author published. in The Sthool of Mines Quarterl,L (Vol. 31, No. 4 and VoI. 32, No. 1) a list of new crystal forms which had been recorded in the literature since the appearance of Goldschmidt's Index der Krystallformen der Mineralien (1336_91). The present bulletin includes the former data and extends the compilation to 1920, thus furnishing crystallographers with a most useful reference work covering a period of thirty years (1890-1920). References prior to 1890 being available in Goldschmidt's "Index." Where a new orientation of a species has been proposed and accepted, forms previously cited have been transposed to correspond with the new axial elements In such cases the elements used are given at the head of the species.
    [Show full text]
  • JOURNAL the Russell Society
    JOURNAL OF The Russell Society Volume 20, 2017 www.russellsoc.org JOURNAL OF THE RUSSELL SOCIETY The journal of British Isles topographical mineralogy EDITOR Dr Malcolm Southwood 7 Campbell Court, Warrandyte, Victoria 3113, Australia. ([email protected]) JOURNAL MANAGER Frank Ince 78 Leconfield Road, Loughborough, Leicestershire, LE11 3SQ. EDITORIAL BOARD R.E. Bevins, Cardiff, U.K. M.T. Price, OUMNH, Oxford, U.K. R.S.W. Braithwaite, Manchester, U.K. M.S. Rumsey, NHM, London, U.K. A. Dyer, Hoddlesden, Darwen, U.K. R.E. Starkey, Bromsgrove, U.K. N.J. Elton, St Austell, U.K. P.A. Williams, Kingswood, Australia. I.R. Plimer, Kensington Gardens, S. Australia. Aims and Scope: The Journal publishes refereed articles by both amateur and professional mineralogists dealing with all aspects of mineralogy relating to the British Isles. Contributions are welcome from both members and non-members of the Russell Society. Notes for contributors can be found at the back of this issue, on the Society website (www.russellsoc.org) or obtained from the Editor or Journal Manager. Subscription rates: The Journal is free to members of the Russell Society. The non-member subscription rates for this volume are: UK £13 (including P&P) and Overseas £15 (including P&P). Enquiries should be made to the Journal Manager at the above address. Back numbers of the Journal may also be ordered through the Journal Manager. The Russell Society: named after the eminent amateur mineralogist Sir Arthur Russell (1878–1964), is a society of amateur and professional mineralogists which encourages the study, recording and conservation of mineralogical sites and material.
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • A Review of the Structural Architecture of Tellurium Oxycompounds
    Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances.
    [Show full text]
  • Leucophoenicite Mn (Sio4)3(OH)2
    2+ Leucophoenicite Mn7 (SiO4)3(OH)2 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: Crystals rare, typically slender, prismatic, elongated and striated [010], to 8 mm; in isolated grains or granular massive. Twinning: On k 001 , common, contact or interpenetrant twins, lamellar. f g Physical Properties: Cleavage: 001 , imperfect. Tenacity: Brittle. Hardness = 5.5{6 f g D(meas.) = 3.848 D(calc.) = [4.01] Optical Properties: Transparent to translucent. Color: Brown to light purple-red, raspberry-red, deep pink to light pink; rose-red to colorless in thin section. Luster: Vitreous. Optical Class: Biaxial ({). Pleochroism: Faint; rose-red 001 ; colorless 001 . Orientation: k f g ? f g X 001 cleavage. Dispersion: r > v; slight. ® = 1.751(3) ¯ = 1.771(3) ° = 1.782(3) ? f g 2V(meas.) = 74(5)± Cell Data: Space Group: P 21=a: a = 10.842(19) b = 4.826(6) c = 11.324(9) ¯ = 103:93(9)± Z = [2] X-ray Powder Pattern: Franklin, New Jersey, USA. 1.8063 (10), 2.877 (9), 2.684 (8), 4.36 (5), 3.612 (5), 2.365 (5), 2.620 (4) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 26.36 26.7 26.7 CaO 5.67 2.4 2.8 FeO trace 0.3 0.3 Na2O 0.39 MnO 60.63 62.8 64.7 K2O 0.24 ZnO 3.87 0.0 0.0 H2O 2.64 [2.3] [2.8] MgO 0.21 5.5 2.7 Total 100.01 [100.0] [100.0] (1) Franklin, New Jersey, USA; composite of two analyses, corresponding to (Mn5:89Ca0:70Zn0:32 Na0:04Mg0:03K0:01)§=6:99(Si1:01O4)3(OH)2: (2) Kombat mine, Namibia; by electron microprobe, H2O by di®erence; corresponding to (Mn5:98Mg0:92Ca0:29Fe0:02)§=7:21(SiO4)3(OH)1:72: (3) Valsesia-Valtournanche area, Italy; by electron microprobe, H2O by di®erence; corresponding to (Mn6:16Mg0:45Ca0:34Fe0:03)§=6:98(SiO4)3(OH)2:10: Mineral Group: Leucophoenicite group.
    [Show full text]
  • Raman Spectroscopic Study of the Tellurite Minerals: Carlfriesite and Spirof- fite
    This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray, Dickfos, Marilla,& Keeffe, Eloise (2009) Raman spectroscopic study of the tellurite minerals: Carlfriesite and spirof- fite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 71(5), pp. 1663-1666. This file was downloaded from: https://eprints.qut.edu.au/17256/ c Copyright 2009 Elsevier Reproduced in accordance with the copyright policy of the publisher Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.saa.2008.06.014 QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Dickfos, Marilla J. and Keeffe, Eloise C. (2009) Raman spectroscopic study of the tellurite minerals : carlfriesite and spiroffite. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 71(5). pp. 1663-1666. © Copyright 2009 Elsevier Raman spectroscopic study of the tellurite minerals: carlfriesite and spiroffite Ray L. Frost, • Marilla J. Dickfos and Eloise C. Keeffe Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. ---------------------------------------------------------------------------------------------------------------------------- Abstract Raman spectroscopy has been used to study the tellurite minerals spiroffite 2+ and carlfriesite, which are minerals of formula type A2(X3O8) where A is Ca for the mineral carlfriesite and is Zn2+ and Mn2+ for the mineral spiroffite.
    [Show full text]
  • Mineral Index
    Mineral Index Abhurite T.73, T.355 Anandite-Zlvl, T.116, T.455 Actinolite T.115, T.475 Anandite-20r T.116, T.45S Adamite T.73,T.405, T.60S Ancylite-(Ce) T.74,T.35S Adelite T.115, T.40S Andalusite (VoU, T.52,T.22S), T.27S, T.60S Aegirine T.73, T.30S Andesine (VoU, T.58, T.22S), T.41S Aenigmatite T.115, T.46S Andorite T.74, T.31S Aerugite (VoU, T.64, T.22S), T.34S Andradite T.74, T.36S Agrellite T.115, T.47S Andremeyerite T.116, T.41S Aikinite T.73,T.27S, T.60S Andrewsite T.116, T.465 Akatoreite T.73, T.54S, T.615 Angelellite T.74,T.59S Akermanite T.73, T.33S Ankerite T.74,T.305 Aktashite T.73, T.36S Annite T.146, T.44S Albite T.73,T.30S, T.60S Anorthite T.74,T.415 Aleksite T.73, T.35S Anorthoclase T.74,T.30S, T.60S Alforsite T.73, T.325 Anthoinite T.74, T.31S Allactite T.73, T.38S Anthophyllite T.74, T.47S, T.61S Allanite-(Ce) T.146, T.51S Antigorite T.74,T.375, 60S Allanite-(La) T.115, T.44S Antlerite T.74, T.32S, T.60S Allanite-(Y) T.146, T.51S Apatite T.75, T.32S, T.60S Alleghanyite T.73, T.36S Aphthitalite T.75,T.42S, T.60 Allophane T.115, T.59S Apuanite T.75,T.34S Alluaudite T.115, T.45S Archerite T.75,T.31S Almandine T.73, T.36S Arctite T.146, T.53S Alstonite T.73,T.315 Arcubisite T.75, T.31S Althausite T.73,T.40S Ardaite T.75,T.39S Alumino-barroisite T.166, T.57S Ardennite T.166, T.55S Alumino-ferra-hornblende T.166, T.57S Arfvedsonite T.146, T.55S, T.61S Alumino-katophorite T.166, T.57S Argentojarosite T.116, T.45S Alumino-magnesio-hornblende T.159,T.555 Argentotennantite T.75,T.47S Alumino-taramite T.166, T.57S Argyrodite (VoU,
    [Show full text]
  • Design Rules for Discovering 2D Materials from 3D Crystals
    Design Rules for Discovering 2D Materials from 3D Crystals by Eleanor Lyons Brightbill Collaborators: Tyler W. Farnsworth, Adam H. Woomer, Patrick C. O'Brien, Kaci L. Kuntz Senior Honors Thesis Chemistry University of North Carolina at Chapel Hill April 7th, 2016 Approved: ___________________________ Dr Scott Warren, Thesis Advisor Dr Wei You, Reader Dr. Todd Austell, Reader Abstract Two-dimensional (2D) materials are championed as potential components for novel technologies due to the extreme change in properties that often accompanies a transition from the bulk to a quantum-confined state. While the incredible properties of existing 2D materials have been investigated for numerous applications, the current library of stable 2D materials is limited to a relatively small number of material systems, and attempts to identify novel 2D materials have found only a small subset of potential 2D material precursors. Here I present a rigorous, yet simple, set of criteria to identify 3D crystals that may be exfoliated into stable 2D sheets and apply these criteria to a database of naturally occurring layered minerals. These design rules harness two fundamental properties of crystals—Mohs hardness and melting point—to enable a rapid and effective approach to identify candidates for exfoliation. It is shown that, in layered systems, Mohs hardness is a predictor of inter-layer (out-of-plane) bond strength while melting point is a measure of intra-layer (in-plane) bond strength. This concept is demonstrated by using liquid exfoliation to produce novel 2D materials from layered minerals that have a Mohs hardness less than 3, with relative success of exfoliation (such as yield and flake size) dependent on melting point.
    [Show full text]
  • IMA Master List
    The New IMA List of Minerals – A Work in Progress – Update: February 2013 In the following pages of this document a comprehensive list of all valid mineral species is presented. The list is distributed (for terms and conditions see below) via the web site of the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, which is the organization in charge for approval of new minerals, and more in general for all issues related to the status of mineral species. The list, which will be updated on a regular basis, is intended as the primary and official source on minerals. Explanation of column headings: Name: it is the presently accepted mineral name (and in the table, minerals are sorted by name). Chemical formula: it is the CNMNC-approved formula. IMA status: A = approved (it applies to minerals approved after the establishment of the IMA in 1958); G = grandfathered (it applies to minerals discovered before the birth of IMA, and generally considered as valid species); Rd = redefined (it applies to existing minerals which were redefined during the IMA era); Rn = renamed (it applies to existing minerals which were renamed during the IMA era); Q = questionable (it applies to poorly characterized minerals, whose validity could be doubtful). IMA No. / Year: for approved minerals the IMA No. is given: it has the form XXXX-YYY, where XXXX is the year and YYY a sequential number; for grandfathered minerals the year of the original description is given. In some cases, typically for Rd and Rn minerals, the year may be followed by s.p.
    [Show full text]
  • Robert T Downs
    Curriculum Vitae – Robert T. Downs 1 Field of Specialization: The crystallography and spectroscopy of minerals, with emphasis on crystal chemistry, bonding, temperature and pressure effects, characterization and identification. Contact Information: Dr Robert T Downs Department of Geosciences Voice: 520-626-8092 Gould-Simpson Building Lab: 520-626-3845 University of Arizona Fax: 520-621-2672 Tucson Arizona 85721-0077 [email protected] Education: University of British Columbia 1986 B.S. Mathematics Virginia Tech 1989 M.S. Geological Sciences Virginia Tech 1992 Ph.D. Geological Sciences Graduate Advisors: G.V. Gibbs (Mineralogy) and M.B. Boisen, Jr. (Mathematics) Carnegie Institution of Washington, Geophysical Laboratory, 1993 – 1996 Post-doc Advisors: R.M. Hazen and L.W. Finger Academic and Professional Appointments: Assistant Professor, Department of Geosciences, University of Arizona, August 1996 – 2002 Associate Professor, Department of Geosciences, University of Arizona, 2002 – 2008 Professor, Department of Geosciences, University of Arizona, 2008 – present Assistant to curator Joe Nagel: University of British Columbia, 1985 Assistant to curator Gary Ansell: National Mineral Collections of Canada, 1986 Assistant to curator Susan Eriksson: Virginia Tech Museum of Geological Sciences, 1990 Graduate teaching assistant: Virginia Tech, 1988 – 1992 Pre-doctoral Fellowship: Carnegie Institution of Washington, Geophysical Laboratory, 1991 Post-doctoral Fellowship: CIW, Geophysical Laboratory, February 1993 – July 1996 Visiting Professor,
    [Show full text]