The Spider Fauna from Uruguay River Islands: Understanding Its Role in a Biological Corridor
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Phylogeny, Divergence Times and Biogeography of Spiders of the Subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang A, , Wayne P
Molecular Phylogenetics and Evolution 68 (2013) 81–92 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae) ⇑ Jun-Xia Zhang a, , Wayne P. Maddison a,b a Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 b Department of Botany and Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 article info abstract Article history: We investigate phylogenetic relationships of the jumping spider subfamily Euophryinae, diverse in spe- Received 10 August 2012 cies and genera in both the Old World and New World. DNA sequence data of four gene regions (nuclear: Revised 17 February 2013 28S, Actin 5C; mitochondrial: 16S-ND1, COI) were collected from 263 jumping spider species. The molec- Accepted 13 March 2013 ular phylogeny obtained by Bayesian, likelihood and parsimony methods strongly supports the mono- Available online 28 March 2013 phyly of a Euophryinae re-delimited to include 85 genera. Diolenius and its relatives are shown to be euophryines. Euophryines from different continental regions generally form separate clades on the phy- Keywords: logeny, with few cases of mixture. Known fossils of jumping spiders were used to calibrate a divergence Phylogeny time analysis, which suggests most divergences of euophryines were after the Eocene. Given the diver- Temporal divergence Biogeography gence times, several intercontinental dispersal event sare required to explain the distribution of euophry- Intercontinental dispersal ines. Early transitions of continental distribution between the Old and New World may have been Euophryinae facilitated by the Antarctic land bridge, which euophryines may have been uniquely able to exploit Diolenius because of their apparent cold tolerance. -
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate -
Comparative Functional Morphology of Attachment Devices in Arachnida
Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas. -
Arachnids (Excluding Acarina and Pseudoscorpionida) of the Wichita Mountains Wildlife Refuge, Oklahoma
OCCASIONAL PAPERS THE MUSEUM TEXAS TECH UNIVERSITY NUMBER 67 5 SEPTEMBER 1980 ARACHNIDS (EXCLUDING ACARINA AND PSEUDOSCORPIONIDA) OF THE WICHITA MOUNTAINS WILDLIFE REFUGE, OKLAHOMA JAMES C. COKENDOLPHER AND FRANK D. BRYCE The Wichita Mountains are located in eastern Greer, southern Kiowa, and northwestern Comanche counties in Oklahoma. Since their formation more than 300 million years ago, these rugged mountains have been fragmented and weathered, until today the highest peak (Mount Pinchot) stands only 756 meters above sea level (Tyler, 1977). The mountains are composed predominantly of granite and gabbro. Forests of oak, elm, and walnut border most waterways, while at elevations from 153 to 427 meters prair ies are the predominant vegetation type. A more detailed sum mary of the climatic and biotic features of the Wichitas has been presented by Blair and Hubbell (1938). A large tract of land in the eastern range of the Wichita Moun tains (now northeastern Comanche County) was set aside as the Wichita National Forest by President McKinley during 1901. In 1905, President Theodore Roosevelt created a game preserve on those lands managed by the Forest Service. Since 1935, this pre serve has been known as the Wichita Mountains Wildlife Refuge. Numerous papers on Oklahoma spiders have been published (Bailey and Chada, 1968; Bailey et al., 1968; Banks et al, 1932; Branson, 1958, 1959, 1966, 1968; Branson and Drew, 1972; Gro- thaus, 1968; Harrel, 1962, 1965; Horner, 1975; Rogers and Horner, 1977), but only a single, comprehensive work (Banks et al., 1932) exists covering all arachnid orders in the state. Further additions and annotations to the arachnid fauna of Oklahoma can be found 2 OCCASIONAL PAPERS MUSEUM TEXAS TECH UNIVERSITY in recent revisionary studies. -
Aranhas (Araneae, Arachnida) Do Estado De São Paulo, Brasil: Diversidade, Esforço Amostral E Estado Do Conhecimento
Biota Neotrop., vol. 11(Supl.1) Aranhas (Araneae, Arachnida) do Estado de São Paulo, Brasil: diversidade, esforço amostral e estado do conhecimento Antonio Domingos Brescovit1,4, Ubirajara de Oliveira2,3 & Adalberto José dos Santos2 1Laboratório de Artrópodes, Instituto Butantan, Av. Vital Brasil, n. 1500, CEP 05503-900, São Paulo, SP, Brasil, e-mail: [email protected] 2Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Av. Antonio Carlos, n. 6627, CEP 31270-901, Belo Horizonte, MG, Brasil, e-mail: [email protected], [email protected] 3Pós-graduação em Ecologia, Conservação e Manejo da Vida Silvestre, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG 4Autor para correspondência: Antonio Domingos Brescovit, e-mail: [email protected] BRESCOVIT, A.D., OLIVEIRA, U. & SANTOS, A.J. Spiders (Araneae, Arachnida) from São Paulo State, Brazil: diversity, sampling efforts, and state-of-art. Biota Neotrop. 11(1a): http://www.biotaneotropica.org. br/v11n1a/en/abstract?inventory+bn0381101a2011. Abstract: In this study we present a database of spiders described and registered from the Neotropical region between 1757 and 2008. Results are focused on the diversity of the group in the State of São Paulo, compared to other Brazilian states. Data was compiled from over 25,000 records, published in scientific papers dealing with Neotropical fauna. These records enabled the evaluation of the current distribution of the species, the definition of collection gaps and priority biomes, and even future areas of endemism for Brazil. A total of 875 species, distributed in 50 families, have been described from the State of São Paulo. -
(Arachnida: Araneae) of the Floodplain Forests of the Main Amazon River Channel
ARTÍCULO: A contribution to the knowledge of the spider fauna (Arachnida: Araneae) of the floodplain forests of the main Amazon River channel Felipe N. A. A. Rego, Eduardo M. Venticinque, Antonio D. Brescovit, Cristina A. Rheims & Ana L. K. M. Albernaz Abstract: ARTÍCULO: We collected spiders during an expedition along 3000 km of the floodplains of the Brazilian part of the main channel of the Amazon River and identified them A contribution to the knowledge of to family, genus and species / morphospecies level whenever possible. More the spider fauna (Arachnida: Ara- than half of the collected species represented new records. The percentage of neae) of the floodplain forests of the singletons (35.6%) and doubletons (17.4%), the lack of overlapping between main Amazon River channel the data obtained in this study and that of the literature, and the under sampling Felipe N. A. A. Rego emphasizes the need for more inventories in the Amazon River floodplain and Pós-Graduação em Ecologia, Univer- a more complete set of sampling methods, such as canopy fogging and pitfall sidade de Brasília, 70919-970, Brasí- trapping. Therefore, knowledge on the fauna of the Amazon floodplains will lia, DF, Brazil. [email protected] remain an enormous challenge, regarding the still superficial collecting efforts, Eduardo M. Venticinque the lack of long-term samplings, taxonomic knowledge and capacity. Wildlife Conser. Soc., Rua dos Jato- Key words: Arachnida, Araneae, spiders, inventory, Amazon River, várzea, Amazo- bás, 274, Coroado 3, 69085-000 and nia. INPA, 69011-970, C.P. 478, Manaus, AM, Brazil. [email protected] A. D. -
A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views. -
Araneae: Salticidae: Sarindini)
Caracteres morfológicos y comportamentales de la mirmecomorfia en Sarinda marcosi Piza, 1937 (Araneae: Salticidae: Sarindini) Tesina de grado de la Licenciatura en Ciencias Biológicas Profundización en Entomología Damián Martín Hagopián Chenlo TUTOR Miguel Simó CO-TUTORA Anita Aisenberg Facultad de Ciencias, Universidad de la República Marzo 2019 1 CONTENIDOS AGRADECIMIENTOS……….……………………………………………………….3 RESUMEN……………………………………………………………………………….4 INTRODUCCIÓN………………………………………………………………………5 MATERIALES Y MÉTODOS……………………………………………..…..……6 Determinación taxonómica y distribución……………………………6 Índice de mirmecomorfia…………….……..……...……………………...7 Descripción de la mirmecomorfia………………………………………..7 Análisis estadísticos…………………………………………………………….9 RESULTADOS……………………………………………………….…………..…..10 Taxonomía……………………………………………….………………..……..10 Material examinado……………………..................................…..10 Historia natural………………………………………………………………….13 Distribución en el país…………………………………………..…………..15 Convergencias morfológicas y de coloración..……...……………15 Convergencias comportamentales………………………..…………..19 Ataques……………………..…………………………..…………………………23 DISCUSIÓN…………………………………………………………………………….23 BIBLIOGRAFÍA……………………………………………………………………….27 2 AGRADECIMIENTOS Especialmente a mis tutores Anita Aisenberg y Miguel Simó por orientarme en esta investigación y por todo lo que me han enseñado, disfrutando los caminos recorridos, felices de compartir con generosidad y humildad sus saberes. A Álvaro Laborda, por su compañerismo incondicional, enseñándome un sinfín de cuestiones teóricas y prácticas -
Redalyc.RECORDS of EPIGEAL SPIDERS in BAHÍA BLANCA IN
Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México ZANETTI, Noelia Inés RECORDS OF EPIGEAL SPIDERS IN BAHÍA BLANCA IN THE TEMPERATE REGION OF ARGENTINA Acta Zoológica Mexicana (nueva serie), vol. 32, núm. 1, abril, 2016, pp. 32-44 Instituto de Ecología, A.C. Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=57544858004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ISSN 0065-1737 (NUEVA SERIE) 32(1) 2016 RECORDS OF EPIGEAL SPIDERS IN BAHÍA BLANCA IN THE TEMPERATE REGION OF ARGENTINA Noelia Inés ZANETTI Laboratorio de Entomología Aplicada y Forense, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal (1876), Prov. Buenos Aires, Argentina / Cátedra de Parasitología Clínica, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca (8000), Prov. Buenos Aires, Argentina. E-mail: <[email protected]> Recibido: 05/03/2015; aceptado: 28/10/2015 Zanetti, N. I. 2016. Records of epigeal spiders in Bahía Blanca, in the Zanetti, N. I. 2016. Registros de arañas epigeas en Bahía Blanca, en temperate region of Argentina. Acta Zoológica Mexicana (n. s.), la región templada de Argentina. Acta Zoológica Mexicana (n. s.), 32(1): 32-44. 32(1): 32-44. ABSTRACT. Ecological surveys of diversity and seasonal patterns RESUMEN. A pesar del alto potencial de la diversidad de especies y of spiders in relation with cadavers have rarely been conducted, de- abundancia de arañas, raramente han sido conducidos censos ecológi- spite the high potential species diversity and abundance of spiders. -
SA Spider Checklist
REVIEW ZOOS' PRINT JOURNAL 22(2): 2551-2597 CHECKLIST OF SPIDERS (ARACHNIDA: ARANEAE) OF SOUTH ASIA INCLUDING THE 2006 UPDATE OF INDIAN SPIDER CHECKLIST Manju Siliwal 1 and Sanjay Molur 2,3 1,2 Wildlife Information & Liaison Development (WILD) Society, 3 Zoo Outreach Organisation (ZOO) 29-1, Bharathi Colony, Peelamedu, Coimbatore, Tamil Nadu 641004, India Email: 1 [email protected]; 3 [email protected] ABSTRACT Thesaurus, (Vol. 1) in 1734 (Smith, 2001). Most of the spiders After one year since publication of the Indian Checklist, this is described during the British period from South Asia were by an attempt to provide a comprehensive checklist of spiders of foreigners based on the specimens deposited in different South Asia with eight countries - Afghanistan, Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan and Sri Lanka. The European Museums. Indian checklist is also updated for 2006. The South Asian While the Indian checklist (Siliwal et al., 2005) is more spider list is also compiled following The World Spider Catalog accurate, the South Asian spider checklist is not critically by Platnick and other peer-reviewed publications since the last scrutinized due to lack of complete literature, but it gives an update. In total, 2299 species of spiders in 67 families have overview of species found in various South Asian countries, been reported from South Asia. There are 39 species included in this regions checklist that are not listed in the World Catalog gives the endemism of species and forms a basis for careful of Spiders. Taxonomic verification is recommended for 51 species. and participatory work by arachnologists in the region. -
WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/035099 Al 2 March 2017 (02.03.2017) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07C 39/00 (2006.01) C07D 303/32 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, C07C 49/242 (2006.01) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (21) International Application Number: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PCT/US20 16/048092 PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 22 August 2016 (22.08.2016) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (30) Priority Data: TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, 62/208,662 22 August 2015 (22.08.2015) US TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (71) Applicant: NEOZYME INTERNATIONAL, INC. -
Observations of a Semi-Aquatic Spider Attack: an Overlooked Fish Predator in A
Observations of a Semi-Aquatic Spider Attack: An Overlooked Fish Predator in a Well Studied Ecosystem? Amy E. Deacon, Aidan D. Farrell and Douglas F. Fraser Deacon, A. E., Farrell, A. D., and Fraser, D. F. 2015. Observations of a Semi-Aquatic Spider Attack: An Overlooked Fish Predator in a Well Studied Ecosystem? Living World, Journal of The Trinidad and Tobago Field Naturalists’ Club , 2015, 57-59. NATURE NOTES OEVHUYDWLRQ RI D SHPLATXDWLF SSLGHU AWWDFN AQ OYHUORRNHG )LVK 3UHGDWRU LQ D Well-Studied Ecosystem? We describe here a noteworthy spider encounter that Nyffeler and Pusey (2014) reviewed accounts of took place on the bank of the Ramdeen Stream in Trin- VSLGHU SUHGDWLRQ RQ ¿VK ZRUOGZLGH E\ FROODWLQJ SXE- LGDG¶V $ULPD 9DOOH\ ¶´1 ¶´: RQ lished and anecdotal reports. According to this paper, the August, 2014. This stream forms part of one of the most VLJKWLQJ GHVFULEHG KHUH LV WKH ¿UVW UHFRUGHG LQFLGHQFH RI intensively-studied freshwater ecosystems in the tropics; ¿VK SUHGDWLRQ E\ D VSLGHU LQ 7ULQLGDG 7KLV LV PRVW OLNHO\ for more than four decades international researchers have because few people have witnessed the event, and/or that been visiting this valley to discover more about the ecology previous descriptions have remained unpublished rather DQG HYROXWLRQ RI WKH ¿VKHV WKDW LW VXSSRUWV ± SULPDULO\ WKH WKDQ UHÀHFWLQJ WKH DFWXDO UDULW\ RI ¿VK SUHGDWLRQ E\ VSLGHUV Trinidadian guppy Poecilia reticulata DQG WKH NLOOL¿VK The pools in this case are manmade, but mimic pools Rivulus hartii (recently revised as Anablepsoides hartii). that are often found in such habitats and are naturally col- This unrivalled body of research has greatly expanded our RQLVHG E\ ULYXOXV 2YHU WKH FRXUVH RI SRRO YLVLWV E\ WKH understanding of natural selection, evolution and commu- DXWKRUV RYHU WZR \HDUV ¿VKLQJ VSLGHUV ZHUH REVHUYHG LQ nity ecology (Magurran 2005).