First Two Cases of Melanism in Cory's Shearwater Calonectris Diomedea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Puffinus Gravis (Great Shearwater)
Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Puffinus gravis (Great Shearwater) Priority 3 Species of Greatest Conservation Need (SGCN) Class: Aves (Birds) Order: Procellariiformes (Tubenoses) Family: Procellariidae (Fulmers, Petrels, And Shearwaters) General comments: Status seems secure though limited data Species Conservation Range Maps for Great Shearwater: Town Map: Puffinus gravis_Towns.pdf Subwatershed Map: Puffinus gravis_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: North American Waterbird Conservation Plan: High Concern United States Birds of Conservation Concern: Bird of Conservation Concern in Bird Conservation Regions 14 and/or 30: Yes High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: NA Culturally Significant: NA Habitats Assigned to Great Shearwater: Formation Name Cliff & Rock Macrogroup Name Rocky Coast Formation Name Subtidal Macrogroup Name Subtidal Pelagic (Water Column) Habitat System Name: Offshore **Primary Habitat** Stressors Assigned to Great Shearwater: No Stressors Currently Assigned to Great Shearwater or other Priority 3 SGCN. Species Level Conservation Actions Assigned to Great Shearwater: No Species Specific Conservation Actions Currently Assigned to Great Shearwater or other Priority 3 SGCN. Guild Level Conservation Actions: This Species is currently not attributed to a guild. -
BARC SUBMISSION Cory's Shearwater Calonectris Borealis
BARC SUBMISSION Cory’s Shearwater Calonectris borealis – Bremer Canyon ‘hotspot’, Western Australia, 5th January 2020 Machi Yoshida (prepared by Daniel Mantle & Plaxy Barratt) Submission note: we believe this sighting constitutes the 3rd time that one or more Cory’s Shearwater have been sighted in Australia (after a bird seen off Bremer Bay on the 19th January 2019 and up to four birds off Denmark, Western Australia six days prior to this record). Taxonomic notes: Cory’s Shearwater Calonectris borealis is a relatively recent split from Scopoli’s Shearwater Calonectris diomedea as accepted by the IOC (version 9.2; following Robb & Mullarney 2008, Howell 2012, and Sangster et al. 2012) and the HBW-Birdlife list of birds (version 3.0). However, other taxonomies such as Clements (2019) still consider these two taxa as subspecies (C. d. borealis and C. d. diomedea, respectively). All three of these major taxonomies accept Cape Verde Shearwater Calonectris edwardsii as a distinct species. Circumstances of sighting: a single Cory’s Shearwater was observed and photographed by Machi Yoshida at the Orca ‘hotspot’ at the head of the Bremer Canyon (near the shelf edge), Western Australia on the 5th January, 2020. This sighting was considerably more distant than the birds seen off Denmark six days previously by Machi and Billy Thom. Description (from photo): • A large shearwater with a thick, yellow bill, pale whitish underparts and dull beige to brown upperparts. • The yellow bill is notably robust, bright yellow, and with a darker tip (the fine detail is not apparent, but presumed to be a dark subterminal band rather than full dark tip). -
Sooty Shearwater Puffinus Griseus Few Changes in Bird Distribution
110 Petrels and Shearwaters — Family Procellariidae Sooty Shearwater Puffinus griseus birds are picked up regularly on the county’s beaches. Few changes in bird distribution have been as sud- Winter: From December to March the Sooty Shearwater den and dramatic as the Sooty Shearwater’s deser- is rare—currently much scarcer than the Short-tailed tion of the ocean off southern California. Before the Shearwater. Before 1982, winter counts ranged up to 20 1980s, this visitor from the southern hemisphere off San Diego 18 January 1969 (AFN 23:519, 1969). Since was the most abundant seabird on the ocean off San 1987, the highest winter count has been of three between San Diego and Los Coronados Islands 6 January 1995 (G. Diego in summer. After El Niño hit in 1982–83 and McCaskie). the ocean remained at an elevated temperature for the next 20 years, the shearwater’s numbers dropped Conservation: The decline of the Sooty Shearwater by 90% (Veit et al. 1996). A comparison confined followed quickly on the heels of the decline in ocean to the ocean near San Diego County’s coast would productivity off southern California that began in the likely show a decline even steeper. late 1970s: a decrease in zooplankton of 80% from 1951 to 1993 (Roemich and McGowan 1995, McGowan et al. Migration: The Sooty Shearwater begins arriving in April, 1998). The shearwater’s declines were especially steep in peaks in May (Briggs et al. 1987), remains (or remained) years of El Niño, and from 1990 on there was no recov- common through September, and then decreases in ery even when the oceanographic pendulum swung the number through December. -
The Stormy Petrel (Procellaria Pelagica)
THE 0.8~ O.SEMI-ANNUAL. 37 THE STORMYPETREL. Procellaria Pelagica. DY W. RAINE, TORONTO, CANADA This interesting little bird, though rare in North America, is plen- tiful on the British side of the Atlantic Ocean. It is supposed to be the smallest web-footed bird known, and seldom comes to shore ex- cept during the breeding season, when they resort to such places as the Stilly Islands, in the English Channel, and the islands of the Irish Sea; but their chief nesting places are in the Orkney and Shetland Islands, and St. Kilda and STORMY PETREL. the outer Hebrides. This bird is well known to sailors by the name of Mother Carey’s Chicken, and hated by them because it foretells an approaching storm. They are mostly seen in stormy weather, because the marine crea- tures, on which they feed, are tossed to the surface of the chopping waves, and can be easily picked up by the bird as it passes over the waves, pattering the water with its webbed feet, and flapping its wings so as to keep itself just above the surface. The name Petrel is given to these birds on account of its powers of walking on the water, as is related of St. Peter. This bird seems very happy during rough weather, and many a ship-wrecked sailor, while clinging half locausted to some floating wreckage, has envied this little bird of its powers of flight, as it traverses the rolling, seething billows with wonderful ease. It feeds on the little fish, crustaceaus and molluses which are found in abundance on the surface of the sea. -
White-Chinned Petrel Distribution, Abundance and Connectivity: NZ Populations and Their Global Context
White-chinned petrel distribution, abundance and connectivity: NZ populations and their global context Kalinka Rexer-Huber Final report to Conservation Services Programme, Department of Conservation December 2017 Please cite as: Rexer-Huber, K. 2017 White-chinned petrel distribution, abundance and connectivity: NZ populations and their global context. Report to NZ Deparment of Conservation. Parker Conservation, Dunedin pp 13. 1 Rexer-Huber | White-chinned petrels Summary The white-chinned petrel Procellaria aequinoctialis is one of the most frequently observed seabird species captured in fisheries bycatch, yet some populations remain virtually unstudied. In the New Zealand region, the priority programmes to fill key information gaps included surveying, tracking and collecting demographic data from white-chinned petrels in the Auckland Islands. Survey of the Campbell Island population and clarification of taxonomic uncertainty in the New Zealand region were secondary aims. The scope of this report is to summarise research findings, with focus on New Zealand populations of white-chinned petrels. An estimated 186,000 (95% CI: 131,000–248,000) white-chinned petrel pairs breed in the Auckland Islands, and the Campbell Island group supports around 22,000 (15,000–29,000) breeding pairs. The New Zealand region supports almost a third of white-chinned petrels globally, but population trends remain unknown. We establish population baselines that can be repeated for trend estimation. A tracking programme in the Auckland Islands has retrieved 40 geolocators from white-chinned petrels, which were analysed together with tracking data from all major island populations. NZ populations do not overlap at sea with populations from South Atlantic or Indian Ocean islands. -
The Taxonomy of the Procellariiformes Has Been Proposed from Various Approaches
山 階 鳥 研 報(J. Yamashina Inst. Ornithol.),22:114-23,1990 Genetic Divergence and Relationships in Fifteen Species of Procellariiformes Nagahisa Kuroda*, Ryozo Kakizawa* and Masayoshi Watada** Abstract The genetic analysis of 23 protein loci in 15 species of Procellariiformes was made The genetic distancesbetween the specieswas calculatedand a dendrogram was formulated of the group. The separation of Hydrobatidae from all other taxa including Diomedeidae agrees with other precedent works. The resultsof the present study support the basic Procellariidclassification system. However, two points stillneed further study. The firstpoint is that Fulmarus diverged earlier from the Procellariidsthan did the Diomedeidae. The second point is the position of Puffinuspacificus which appears more closely related to the Pterodroma petrels than to other Puffinus species. These points are discussed. Introduction The taxonomy of the Procellariiformes has been proposed from various approaches. The earliest study by Forbes (1882) was made by appendicular myology. Godman (1906) and Loomis (1918) studied this group from a morphological point of view. The taxonomy of the Procellariiformes by functional osteology and appendicular myology was studied by Kuroda (1954, 1983) and Klemm (1969), The results of the various studies agreed in proposing four families of Procellariiformes: Diomedeidae, Procellariidae, Hydrobatidae, and Pelecanoididae. They also pointed out that the Procellariidae was a heterogenous group among them. Timmermann (1958) found the parallel evolution of mallophaga and their hosts in Procellariiformes. Recently, electrophoretical studies have been made on the Procellariiformes. Harper (1978) found different patterns of the electromorph among the families. Bar- rowclough et al. (1981) studied genetic differentiation among 12 species of Procellari- iformes at 16 loci, and discussed the genetic distances among the taxa but with no consideration of their phylogenetic relationships. -
FEEDING ECOLOGY of the CAPE VERDEAN SHEARWATER (Calonectris Edwardsii) POPULATION of RASO ISLET, CAPE VERDE (P1-B-11)
2nd World Seabird Conference “Seabirds: Global Ocean Sentinels” 26-30 October 2015 Cape Town, South Africa FEEDING ECOLOGY OF THE CAPE VERDEAN SHEARWATER (Calonectris edwardsii) POPULATION OF RASO ISLET, CAPE VERDE (P1-B-11) Isabel Rodrigues1,3; Nuno Oliveira 2 Rui Freitas 3 Tommy Melo1 Pedro Geraldes 2 1Biosfera I, Cabo Verde, www.biosfera1.com; 2SPEA, Portugal, www.spea.pt, 3 Universidade de Cabo Verde, www.unicv.edu.cv Raso Islet with only 5.76 km2, is an area of great importance to Cape Verdean Shearwaters as we find one of the largest colonies of the species there. The great biological value of this islet is even more remarkable for hosting very large populations of other species, such as the Brown Booby, Red-billed Tropicalbird and even the endemic Raso Lark, among others. Along with Branco Islet, also included in the Nature Reserve, both populations constitute about 75% of the nesting population of the Cape Verde islands (Fig. 1). The Cape Verde Shearwater (Procellariiformes, Procellariidae) (Fig. 2) is an endemic species of Cape Verde and has recently been separated from Calonectris diomedea species, due to their morphological and genetic differences, and pelagic habits; feeding mostly on the open sea (Hazevoet 1995). METHODOLOGY RESULTS The samples were collected between 14 October and 12 November, in two In total, 80 regurgitations from juvenile Cape Verde Shearwaters were collected; consecutive years, 2012 and 2013. We randomly obtained 80 samples of juvenile including 50 individuals sampled in 2012, and 30 individuals in 2013. regurgitation. Each juvenile was sampled only once. During or after handling, Based on knowledge of local fish populations and according to the current juveniles tend to regurgitate stomach contents without the need to resort to the description, the identified prey of Cape Verde shearwaters belonged to 5 species induced regurgitation method. -
Albatross Or Mōlī (Phoebastria Immutabilis) Black-Footed Albatross Or Ka’Upu (Phoebastria Nigripes) Short-Tailed Albatross (Phoebastria Albatrus)
Hawaiian Bird Conservation Action Plan Focal Species: Laysan Albatross or Mōlī (Phoebastria immutabilis) Black-footed Albatross or Ka’upu (Phoebastria nigripes) Short-tailed Albatross (Phoebastria albatrus) Synopsis: These three North Pacific albatrosses are demographically similar, share vast oceanic ranges, and face similar threats. Laysan and Black-footed Albatrosses nest primarily in the Northwestern Hawaiian Islands, while the Short-tailed Albatross nests mainly on islands near Japan but forages extensively in U.S. waters. The Short-tailed Albatross was once thought to be extinct but its population has been growing steadily since it was rediscovered in 1951 and now numbers over 3,000 birds. The Laysan is the most numerous albatross species in the world with a population over 1.5 million, but its trend has been hard to determine because of fluctuations in number of breeding pairs. The Black-footed Albatross is one-tenth as numerous as the Laysan and its trend also has been difficult to determine. Fisheries bycatch caused unsustainable mortality of adults in all three species but has been greatly reduced in the past 10-20 years. Climate change and sea level rise are perhaps the greatest long-term threat to Laysan and Black-footed Albatrosses because their largest colonies are on low-lying atolls. Protecting and creating colonies on higher islands and managing non-native predators and human conflicts may become keys to their survival. Laysan, Black-footed, and Short-tailed Albatrosses (left to right), Midway. Photos Eric VanderWerf Status -
What Is the Importance of Islands to Environmental Conservation?
Environmental Conservation (2017) 44 (4): 311–322 C Foundation for Environmental Conservation 2017 doi:10.1017/S0376892917000479 What is the importance of islands to environmental THEMATIC SECTION Humans and Island conservation? Environments CHRISTOPH KUEFFER∗ 1 AND KEALOHANUIOPUNA KINNEY2 1Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, CH-8092 Zurich, Switzerland and 2Institute of Pacifc Islands Forestry, US Forest Service, 60 Nowelo St. Hilo, HI, USA Date submitted: 15 May 2017; Date accepted: 8 August 2017 SUMMARY islands of the world’s oceans, we cover both islands close to continents and others isolated far out in the oceans, and the This article discusses four features of islands that make full range from small to very large islands. Small and isolated them places of special importance to environmental islands represent unique cultural and biological values and the conservation. First, investment in island conservation environmental challenges of insularity in its most pronounced is both urgent and cost-effective. Islands are form. However, as we will demonstrate, all islands and island threatened hotspots of diversity that concentrate people share enough come concerns to consider them together unique cultural, biological and geophysical values, (Baldacchino 2007; Royle 2008; Gillespie & Clague 2009; and they form the basis of the livelihoods of Baldacchino & Niles 2011; Royle 2014). millions of islanders. Second, islands are paradigmatic Islands are hotspots of cultural, biological and geophysical places of human–environment relationships. Island diversity, and as such they form the basis of the livelihoods livelihoods have a long tradition of existing within of millions of islanders (Menard 1986; Nunn 1994; Royle spatial, ecological and ultimately social boundaries 2008; Gillespie & Clague 2009; Royle 2014; Kueffer et al. -
Cytochrome-B Evidence for Validity and Phylogenetic Relationships of Pseudobulweria and Bulweria (Procellariidae)
The Auk 115(1):188-195, 1998 CYTOCHROME-B EVIDENCE FOR VALIDITY AND PHYLOGENETIC RELATIONSHIPS OF PSEUDOBULWERIA AND BULWERIA (PROCELLARIIDAE) VINCENT BRETAGNOLLE,•'5 CAROLE A3VFII•,2 AND ERIC PASQUET3'4 •CEBC-CNRS, 79360 Beauvoirsur Niort, France; 2Villiers en Bois, 79360 Beauvoirsur Niort, France; 3Laboratoirede ZoologieMammi•res et Oiseaux,Museum National d'Histoire Naturelie, 55 rue Buffon,75005 Paris, France; and 4Laboratoirede Syst•matiquemol•culaire, CNRS-GDR 1005, Museum National d'Histoire Naturelie, 43 rue Cuvier, 75005 Paris, France ABSTRACT.--Althoughthe genus Pseudobulweria was described in 1936for the Fiji Petrel (Ps.macgillivrayi), itsvalidity, phylogenetic relationships, and the number of constituenttaxa it containsremain controversial. We tried to clarifythese issues with 496bp sequencesfrom the mitochondrialcytochrome-b gene of 12 taxa representingthree putative subspecies of Pseudobulweria,seven species in six othergenera of the Procellariidae(fulmars, petrels, and shearwaters),and onespecies each from the Hydrobatidae(storm-petrels) and Pelecanoidi- dae (diving-petrels).We alsoinclude published sequences for two otherpetrels (Procellaria cinereaand Macronectesgiganteus ) and use Diomedeaexulans and Pelecanuserythrorhynchos as outgroups.Based on thepronounced sequence divergence (5 to 5.5%)and separate phylo- genetichistory from othergenera that havebeen thought to be closelyrelated to or have beensynonymized with Pseudobulweria,we conclude that the genusis valid, and that the MascarenePetrel (Pseudobulweria aterrima) -
Appendix, French Names, Supplement
685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U. -
Order PROCELLARIIFORMES: Albatrosses
Text extracted from Gill B.J.; Bell, B.D.; Chambers, G.K.; Medway, D.G.; Palma, R.L.; Scofield, R.P.; Tennyson, A.J.D.; Worthy, T.H. 2010. Checklist of the birds of New Zealand, Norfolk and Macquarie Islands, and the Ross Dependency, Antarctica. 4th edition. Wellington, Te Papa Press and Ornithological Society of New Zealand. Pages 64, 78-79 & 82-83. Order PROCELLARIIFORMES: Albatrosses, Petrels, Prions and Shearwaters Checklist Committee (1990) recognised three families within the Procellariiformes, however, four families are recognised here, with the reinstatement of Pelecanoididae, following many other recent authorities (e.g. Marchant & Higgins 1990, del Hoyo et al. 1992, Viot et al. 1993, Warham 1996: 484, Nunn & Stanley 1998, Dickinson 2003, Brooke 2004, Onley & Scofield 2007). The relationships of the families within the Procellariiformes are debated (e.g. Sibley & Alquist 1990, Christidis & Boles 1994, Nunn & Stanley 1998, Livezey & Zusi 2001, Kennedy & Page 2002, Rheindt & Austin 2005), so a traditional arrangement (Jouanin & Mougin 1979, Marchant & Higgins 1990, Warham 1990, del Hoyo et al. 1992, Warham 1996: 505, Dickinson 2003, Brooke 2004) has been adopted. The taxonomic recommendations (based on molecular analysis) on the Procellariiformes of Penhallurick & Wink (2004) have been heavily criticised (Rheindt & Austin 2005) and have seldom been followed here. Family PROCELLARIIDAE Leach: Fulmars, Petrels, Prions and Shearwaters Procellariidae Leach, 1820: Eleventh room. In Synopsis Contents British Museum 17th Edition, London: 68 – Type genus Procellaria Linnaeus, 1758. Subfamilies Procellariinae and Fulmarinae and shearwater subgenera Ardenna, Thyellodroma and Puffinus (as recognised by Checklist Committee 1990) are not accepted here given the lack of agreement about to which subgenera some species should be assigned (e.g.