Letter to the Editor

Total Page:16

File Type:pdf, Size:1020Kb

Letter to the Editor Molecular Phylogenetics and Evolution 40 (2006) 900–902 www.elsevier.com/locate/ympev Letter to the editor Sicyopterus lagocephalus: Widespread species, species for species recognition? With regard to the first question, complex, or neither? A critique on the use of molecular data we maintain that species diagnoses must rely on evidence for species identification that is in the form of character-based apomorphies (= character-state transformations). Pairwise divergences In a recent study, Keith et al. (2005) analyzed partial are necessarily distance-based, not character-based, so they cytochrome b sequences for 55 terminals belonging to the are incapable of identifying the character-state transforma- Indo-Pacific sicydiine (rock-climbing) goby genus Sicyopte- tions necessary for diagnosing any clade or terminal. With rus and concluded that the specimens they refer to as ‘‘Sicy- regard to the second question, we do not believe that there opterus lagocephalus’’ formed a single widespread species is a single immutable pairwise divergence value that is diag- that ‘‘occurs throughout 18,000 km from the west of the nostic for species recognition, particularly given wide vari- Indian Ocean... to the east of the Pacific Ocean.’’ They ation in the rates of molecular evolution among lineages based their ‘‘single widespread species’’ hypothesis on the (even those closely related), not to mention issues of taxon monophyly of an assemblage comprising the specimens sampling density. Nevertheless, the burden of proof falls they referred to as ‘‘Sicyopterus lagocephalus’’ and a curso- on the authors, who fail to provide an answer. ry discussion of pairwise sequence divergences. What Keith Species complex. Prior to Watson et al. (2000), Sicyopte- et al. fail to explain (or even address) is how they justify rus lagocephalus was restricted to islands of the western such a conclusion in light of the evidence presented and Indian Ocean (see below, and Sparks and Nelson, 2004 what hypothesis they have actually tested. The stated goal for additional commentary on the validity of this taxon). of their study was to analyze ‘‘representative taxa of the Watson et al. (2000) placed 12 species into the synonymy genus Sicyopterus, and specially [sic] the ubiquity of the of S. lagocephalus, greatly expanding the range of this spe- species S. lagocephalus, in order to determine whether its cies to include Pacific forms. It is clear that there is substan- huge range is really occupied by only one species, and to tial hierarchical structure evident for ‘‘S. lagocephalus’’ in describe its possible genetic subdivisions.’’ Unfortunately, the cladograms presented by Keith et al. (2005) (their Figs. they failed to test whether or not this particular clade of 2 and 3); such structure is suggestive of reproductive isola- Sicyopterus comprises a single widespread species, a species tion and a lack of gene flow. Furthermore, their own complex, or neither. We will briefly discuss each of these molecular clock estimates suggest that some ‘‘genetic sub- possibilities in light of the evidence presented by Keith divisions’’ of S. lagocephalus have been reproductively sep- et al. (2005) and previous studies of Sicyopterus, and con- arated longer than many other Sicyopterus species that they clude with a critique on the use of molecular methods for consider to be valid (their Fig. 3). From the evidence taxonomic purposes. (= topologies) presented, both the French Polynesian and Single widespread species. By the authors’ own account, Mascarene-Comoros clades of ‘‘S. lagocephalus’’ are rela- the conclusion that their ‘‘Sicyopterus lagocephalus clade’’ tively old (their Fig. 3). Indeed, the French Polynesian comprised but a single species was only justified by ‘‘the clade of ‘‘S. lagocephalus’’ is estimated to be older than tree topology together with the small genetic distances S. rapa and S. marquesensis, both of which they consider measured between haplotypes.’’ Given that species are his- to be valid species; however, this problematic and conflict- torical individuals, it is, therefore, unnecessary for species ing result is not discussed. Moreover, a maximal ‘‘intraspe- to be monophyletic (e.g., Skinner, 2004). As a result, the cific’’ divergence of 2.6% is reported for ‘‘S. lagocephalus’’ monophyly of this assemblage provides no evidence with between New Caledonian and Mauritian samples; whereas, regard to species recognition, although it may serve as a interspecific divergences of 3.7% are reported between both heuristic toward species delimitation. With regard to the S. marquesensis and ‘‘S. lagocephalus’’, and S. marquesensis ‘‘small’’ pairwise sequence divergences for partial cyto- and S. aiensis (Keith et al., 2005). Yet, there is no accom- chrome b sequences that the authors present as evidence panying discussion as to why 3.7% divergence in partial for a single species, Keith et al. fail to address the critical cytochrome b sequences implies distinct species, whereas questions: can pairwise sequence divergences be used to 2.6% does not. In short, the authors’ decision to recognize diagnose species and, if they can diagnose species, what distinct species in the former (3.7% divergence) and a single amount of cytochrome b sequence divergence is required species in the latter (2.6% divergence) is entirely arbitrary 1055-7903/$ - see front matter Ó 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2006.05.016 Letter to the editor / Molecular Phylogenetics and Evolution 40 (2006) 900–902 901 and unsupported by the divergence time estimates argument that S. lagocephalus, identified by Watson presented. et al.’s (2000) morphometric and meristic determination, Neither. Although largely ignored by Keith et al. (2005), is S. lagocephalus sensu Watson et al. (2000). An equally the availability of the name Sicyopterus lagocephalus has tenable result of their study could have been that all Sicy- been refuted by Sparks and Nelson (2004), who argued that opterus form a single species because they too are mono- no Indo-Pacific sicydiine goby could properly be referred phyletic; a line of reasoning that could be extrapolated to as Sicyopterus lagocephalus. Briefly, the type specimen out as far as one would like to take it. This example illus- of Gobius lagocephalus Pallas, 1770 is lost, the original trates why a rational and defensible justification for species description and illustration lack diagnostic features, and limits cannot be based on a topology alone (see also Davis the type was collected from ‘‘American Seas.’’ Given that and Nixon, 1992; Brower, 1999; DeSalle et al., 2005). Sicyopterus is restricted to the Indo-Pacific and does not The use of molecular methods for taxonomic purposes. occur in American seas, and that Pallas’ description and Most taxonomic studies still employ traditional compara- illustration can only be accurately classified to the subfam- tive anatomical approaches, but there is a growing body ilial level, Sparks and Nelson (2004) contended that Gobius of literature focusing on the integration of molecular data lagocephalus must be treated as a nomen dubium. Therefore, into taxonomy. A charge for the use of sequence data in despite Watson et al.’s (2000) claim to the contrary, the species identification is being spearheaded by the Barcode name is not available for any Indo-Pacific Sicyopterus of Life initiative (see October 2005 Philosophical Transac- species. tions of the Royal Society, London: Biological Sciences We believe that the primary reason that Keith et al. 360:1462 for the proceedings of the First International Bar- failed to achieve their goal of testing the ubiquity of their code Conference). It is obvious from this symposium vol- ‘‘Sicyopterus lagocephalus clade’’ is because they uncritical- ume and the studies cited within, that the methods for ly accepted Watson et al.’s (2000) ‘‘determination’’ of the DNA taxonomy alone, or its integration into taxonomy species limits of S. lagocephalus a priori as fact or back- as a whole, are still a topic of considerable debate. Most ground knowledge (Keith et al., 2005, 722). We stress that studies focusing on barcoding as a means of species recog- this acceptance was solely an appeal to authority or faith, nition have relied on distance-based methods (e.g., Hebert in that Watson et al. (2000) failed to provide any apomor- et al., 2003); however, such an approach is at odds with tra- phic features (genotypic or phenotypic) or a unique combi- ditional character-based phenotypic taxonomy (DeSalle nation of apomorphies that, in conjunction with a et al., 2005). Although we agree with DeSalle et al. cladogram, would allow either Watson et al. (2000) or (2005) that character-based phylogenetic methods are more Keith et al. (2005) to conclude that what they had in their appropriate than distance-based methods for establishing hand could be assigned to S. lagocephalus (see Sparks and so-called DNA barcodes or addressing alpha-taxonomic Nelson, 2004). Perhaps this might explain why one of the problems, we believe that a combination of character- putative S. lagocephalus specimens examined in the Keith based phylogenies and non-tree based concepts or methods et al. study (SIC840, AY940724) is instead identified on (e.g., population aggregation analysis [Davis and Nixon, GenBank as a Cotylopus. We maintain that since Keith 1992], cladistic haplotype aggregation [Brower, 1999]) et al. assumed a priori that Watson et al.’s (2000) determi- should be employed to examine all available evidence for nation for species
Recommended publications
  • Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
    EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus ..................................................................................................
    [Show full text]
  • Phénologies, Mécanismes Et Perturbations Anthropiques Des
    Phénologies, mécanismes et perturbations anthropiques des dynamiques de migration dulçaquicoles des espèces amphidromes : cas des Sicydiinae de La Réunion Raphaël Lagarde To cite this version: Raphaël Lagarde. Phénologies, mécanismes et perturbations anthropiques des dynamiques de migra- tion dulçaquicoles des espèces amphidromes : cas des Sicydiinae de La Réunion. Ecologie, Environ- nement. Université de la Réunion, 2018. Français. NNT : 2018LARE0007. tel-01879914 HAL Id: tel-01879914 https://tel.archives-ouvertes.fr/tel-01879914 Submitted on 24 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. .0 Phénologies, mécanismes et perturbations anthropiques des dynamiques de migration dulçaquicoles des espèces amphidromes : cas des Sicydiinae de La Réunion Thèse pour l’obtention du titre de Docteur en biologie des populations de l’Université de La Réunion, école doctorale sciences, technologies et santé par Raphaël Lagarde Thèse dirigée par Dominique Ponton et soutenue le 25 juin 2018 devant un jury composé de : - C. ALIAUME Professeure, Université
    [Show full text]
  • Annotated Checklist of the Fish Species (Pisces) of La Réunion, Including a Red List of Threatened and Declining Species
    Stuttgarter Beiträge zur Naturkunde A, Neue Serie 2: 1–168; Stuttgart, 30.IV.2009. 1 Annotated checklist of the fish species (Pisces) of La Réunion, including a Red List of threatened and declining species RONALD FR ICKE , THIE rr Y MULOCHAU , PA tr ICK DU R VILLE , PASCALE CHABANE T , Emm ANUEL TESSIE R & YVES LE T OU R NEU R Abstract An annotated checklist of the fish species of La Réunion (southwestern Indian Ocean) comprises a total of 984 species in 164 families (including 16 species which are not native). 65 species (plus 16 introduced) occur in fresh- water, with the Gobiidae as the largest freshwater fish family. 165 species (plus 16 introduced) live in transitional waters. In marine habitats, 965 species (plus two introduced) are found, with the Labridae, Serranidae and Gobiidae being the largest families; 56.7 % of these species live in shallow coral reefs, 33.7 % inside the fringing reef, 28.0 % in shallow rocky reefs, 16.8 % on sand bottoms, 14.0 % in deep reefs, 11.9 % on the reef flat, and 11.1 % in estuaries. 63 species are first records for Réunion. Zoogeographically, 65 % of the fish fauna have a widespread Indo-Pacific distribution, while only 2.6 % are Mascarene endemics, and 0.7 % Réunion endemics. The classification of the following species is changed in the present paper: Anguilla labiata (Peters, 1852) [pre- viously A. bengalensis labiata]; Microphis millepunctatus (Kaup, 1856) [previously M. brachyurus millepunctatus]; Epinephelus oceanicus (Lacepède, 1802) [previously E. fasciatus (non Forsskål in Niebuhr, 1775)]; Ostorhinchus fasciatus (White, 1790) [previously Apogon fasciatus]; Mulloidichthys auriflamma (Forsskål in Niebuhr, 1775) [previously Mulloidichthys vanicolensis (non Valenciennes in Cuvier & Valenciennes, 1831)]; Stegastes luteobrun- neus (Smith, 1960) [previously S.
    [Show full text]
  • DNA Barcoding Indonesian Freshwater Fishes: Challenges and Prospects
    DNA Barcodes 2015; 3: 144–169 Review Open Access Nicolas Hubert*, Kadarusman, Arif Wibowo, Frédéric Busson, Domenico Caruso, Sri Sulandari, Nuna Nafiqoh, Laurent Pouyaud, Lukas Rüber, Jean-Christophe Avarre, Fabian Herder, Robert Hanner, Philippe Keith, Renny K. Hadiaty DNA Barcoding Indonesian freshwater fishes: challenges and prospects DOI 10.1515/dna-2015-0018 the last decades is posing serious threats to Indonesian Received December 12, 2014; accepted September 29, 2015 biodiversity. Indonesia, however, is one of the major sources of export for the international ornamental trade Abstract: With 1172 native species, the Indonesian and home of several species of high value in aquaculture. ichthyofauna is among the world’s most speciose. Despite The development of new tools for species identification that the inventory of the Indonesian ichthyofauna started is urgently needed to improve the sustainability of the during the eighteen century, the numerous species exploitation of the Indonesian ichthyofauna. With the descriptions during the last decades highlight that the aim to build comprehensive DNA barcode libraries, the taxonomic knowledge is still fragmentary. Meanwhile, co-authors have started a collective effort to DNA barcode the fast increase of anthropogenic perturbations during all Indonesian freshwater fishes. The aims of this review are: (1) to produce an overview of the ichthyological *Corresponding author: Nicolas Hubert, Institut de Recherche pour le researches conducted so far in Indonesia, (2) to present Développement (IRD), UMR226 ISE-M, Bât. 22 - CC065, Place Eugène an updated checklist of the freshwater fishes reported Bataillon, 34095 Montpellier cedex 5, France, E-mail: nicolas.hubert@ to date from Indonesia’s inland waters, (3) to highlight ird.fr the challenges associated with its conservation and Domenico Caruso, Laurent Pouyaud, Jean-Christophe Avarre, Institut de Recherche pour le Développement (IRD), UMR226 ISE-M, management, (4) to present the benefits of developing Bât.
    [Show full text]
  • Does Your Lip Stick? Evolutionary Aspects of the Mouth Morphology of the Indo‐Pacific Clinging Goby of the Sicyopterus Genus
    Received: 18 July 2018 | Revised: 15 November 2018 | Accepted: 14 March 2019 DOI: 10.1111/jzs.12291 ORIGINAL ARTICLE Does your lip stick? Evolutionary aspects of the mouth morphology of the Indo‐Pacific clinging goby of the Sicyopterus genus (Teleostei: Gobioidei: Sicydiinae) based on mitogenome phylogeny Clara Lord1 | Laure Bellec2 | Agnès Dettaï3 | Céline Bonillo4 | Philippe Keith1 1Unité Biologie des organismes et écosystèmes aquatiques (BOREA), Sorbonne Abstract Université, Muséum national d’Histoire Sicydiinae gobies have an amphidromous life cycle. Adults grow, feed, and repro‐ naturelle, Université de Caen Normandie, CNRS, IRD, CP26, Université des Antilles, duce in rivers, while larvae have a marine dispersal phase. Larvae recruit back Paris, France to rivers and settle in upstream habitats. Within the Sicydiinae subfamily, the 2 IFREMER, Centre Brest, REM/EEP/LEP, ZI Sicyopterus genus, one of the most diverse (24 species), is distributed in the tropi‐ de la Pointe du Diable, Plouzané, France 3Institut Systématique, Évolution, cal islands of the Indo‐Pacific. One of the characters used to determine Sicyopterus Biodiversité (ISYEB), Muséum national species is the upper lip morphology, which can be either smooth, crenulated, or d’Histoire naturelle, École Pratique des Hautes Études, CNRS, CP30, Sorbonne with papillae, and with (2 or 3) or without clefts. The mouth is used as a second‐ Université, Paris, France ary locomotor organ along with the pelvic sucker. It is thus strongly related to the 4 Département Systématique et Évolution, climbing ability of species and is of major importance for the upstream migration UMS 2700 “Outils et Méthodes de la Systématique Intégrative” MNHN‐ and the colonization of insular freshwater systems.
    [Show full text]
  • PROGRAM the 11Th International Congress of Vertebrate Morphology
    PROGRAM The 11th International Congress of Vertebrate Morphology 29 June – 3 July 2016 Bethesda North Marriott Hotel & Conference Center Washington, DC CONTENTS Welcome to ICVM 11 ........................ 5 Note from The Anatomical Record........... 7 Administration ............................. 9 Previous Locations of ICVM ................. 10 General Information ........................ .11 Sponsors .................................. 14 Program at-a-Glance ....................... 16 Exhibitor Listing............................ 18 Program ................................... 19 Wednesday 29th June, 2016 ................... .19 Thursday 30th June, 2016 ..................... 22 Friday 1st July, 2016 ........................... 34 Saturday 2nd July, 2016 ....................... 44 Sunday 3rd July, 2016 ......................... 52 Hotel Floor Plan ................... Back Cover Program 3 Journal of Experimental Biology (JEB)(JEB) isis atat thethe forefrontforefront ofof comparaticomparativeve physiolophysiologygy and integrative biolobiology.gy. We publish papers on the form and function of living ororganismsganisms at all levels of biological organisation and cover a didiverseverse array of elds,fields, including: • Biochemical physiology •I• Invertebratenvertebrate and vertebrate physiology • Biomechanics • Neurobiology and neuroethology • Cardiovascular physiology • Respiratory physiology • Ecological and evolutionary physiology • Sensory physiology Article types include ReseaResearchrch Articles, Methods & TeTechniques,chniques, ShoShortrt
    [Show full text]
  • View/Download P
    GOBIIFORMES (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 5 May 2020 Order GOBIIFORMES (part 2 of 7) Family OXUDERCIDAE Mudskipper Gobies (Acanthogobius through Oxyurichthys) Taxonomic note: includes taxa previously placed in the gobiid subfamilies Amblyopinae, Gobionellinae and Sicydiinae. Acanthogobius Gill 1859 acanthus, spine, allusion not explained, probably referring to 8-9 spines on first dorsal fin of A. flavimanus; gobius, goby Acanthogobius elongatus Fang 1942 referring to its more elongate body compared to congeners (then placed in Aboma) in China and Japan [A. elongata (Ni & Wu 1985) from Nanhui, Shanghai, China, is a junior primary homonym treated as valid by some authors but needs to be renamed] Acanthogobius flavimanus (Temminck & Schlegel 1845) flavus, yellow; manus, hand, referring to its yellow ventral fins Acanthogobius hasta (Temminck & Schlegel 1845) spear or dart, allusion not explained, perhaps referring to its very elongate, tapered body and lanceolate caudal fin Acanthogobius insularis Shibukawa & Taki 1996 of islands, referring to its only being known from island habitats Acanthogobius lactipes (Hilgendorf 1879) lacteus, milky; pes, foot, referring to milky white stripe in middle of fused ventral fins Acanthogobius luridus Ni & Wu 1985 pale yellow, allusion not explained, perhaps referring to body coloration and/or orange-brown tail Akihito Watson, Keith & Marquet 2007 in honor of Emperor Akihito of Japan (b. 1933), for his many contributions to goby systematics and phylogenetic research Akihito futuna Keith, Marquet & Watson 2008 named for the Pacific island of Futuna, where it appears to be endemic Akihito vanuatu Watson, Keith & Marquet 2007 named for the island nation of Vanuatu, only known area of occurrence Amblychaeturichthys Bleeker 1874 amblys, blunt, presumably referring to blunt head and snout of type species, A.
    [Show full text]
  • DNA Barcoding Indonesian Freshwater Fishes: Challenges and Prospects
    DNA Barcodes 2015; 3: 144–169 Review Open Access Nicolas Hubert*, Kadarusman, Arif Wibowo, Frédéric Busson, Domenico Caruso, Sri Sulandari, Nuna Nafiqoh, Laurent Pouyaud, Lukas Rüber, Jean-Christophe Avarre, Fabian Herder, Robert Hanner, Philippe Keith, Renny K. Hadiaty DNA Barcoding Indonesian freshwater fishes: challenges and prospects DOI 10.1515/dna-2015-0018 the last decades is posing serious threats to Indonesian Received December 12, 2014; accepted September 29, 2015 biodiversity. Indonesia, however, is one of the major sources of export for the international ornamental trade Abstract: With 1172 native species, the Indonesian and home of several species of high value in aquaculture. ichthyofauna is among the world’s most speciose. Despite The development of new tools for species identification that the inventory of the Indonesian ichthyofauna started is urgently needed to improve the sustainability of the during the eighteen century, the numerous species exploitation of the Indonesian ichthyofauna. With the descriptions during the last decades highlight that the aim to build comprehensive DNA barcode libraries, the taxonomic knowledge is still fragmentary. Meanwhile, co-authors have started a collective effort to DNA barcode the fast increase of anthropogenic perturbations during all Indonesian freshwater fishes. The aims of this review are: (1) to produce an overview of the ichthyological *Corresponding author: Nicolas Hubert, Institut de Recherche pour le researches conducted so far in Indonesia, (2) to present Développement (IRD), UMR226 ISE-M, Bât. 22 - CC065, Place Eugène an updated checklist of the freshwater fishes reported Bataillon, 34095 Montpellier cedex 5, France, E-mail: nicolas.hubert@ to date from Indonesia’s inland waters, (3) to highlight ird.fr the challenges associated with its conservation and Domenico Caruso, Laurent Pouyaud, Jean-Christophe Avarre, Institut de Recherche pour le Développement (IRD), UMR226 ISE-M, management, (4) to present the benefits of developing Bât.
    [Show full text]
  • DNA Barcoding Indonesian Freshwater Fishes: Challenges and Prospects
    DNA Barcodes 2015; 3: 144–169 Review Open Access Nicolas Hubert*, Kadarusman, Arif Wibowo, Frédéric Busson, Domenico Caruso, Sri Sulandari, Nuna Nafiqoh, Laurent Pouyaud, Lukas Rüber, Jean-Christophe Avarre, Fabian Herder, Robert Hanner, Philippe Keith, Renny K. Hadiaty DNA Barcoding Indonesian freshwater fishes: challenges and prospects DOI 10.1515/dna-2015-0018 the last decades is posing serious threats to Indonesian Received December 12, 2014; accepted September 29, 2015 biodiversity. Indonesia, however, is one of the major sources of export for the international ornamental trade Abstract: With 1172 native species, the Indonesian and home of several species of high value in aquaculture. ichthyofauna is among the world’s most speciose. Despite The development of new tools for species identification that the inventory of the Indonesian ichthyofauna started is urgently needed to improve the sustainability of the during the eighteen century, the numerous species exploitation of the Indonesian ichthyofauna. With the descriptions during the last decades highlight that the aim to build comprehensive DNA barcode libraries, the taxonomic knowledge is still fragmentary. Meanwhile, co-authors have started a collective effort to DNA barcode the fast increase of anthropogenic perturbations during all Indonesian freshwater fishes. The aims of this review are: (1) to produce an overview of the ichthyological *Corresponding author: Nicolas Hubert, Institut de Recherche pour le researches conducted so far in Indonesia, (2) to present Développement (IRD), UMR226 ISE-M, Bât. 22 - CC065, Place Eugène an updated checklist of the freshwater fishes reported Bataillon, 34095 Montpellier cedex 5, France, E-mail: nicolas.hubert@ to date from Indonesia’s inland waters, (3) to highlight ird.fr the challenges associated with its conservation and Domenico Caruso, Laurent Pouyaud, Jean-Christophe Avarre, Institut de Recherche pour le Développement (IRD), UMR226 ISE-M, management, (4) to present the benefits of developing Bât.
    [Show full text]
  • New Sicydiinae Phylogeny (Teleostei: Gobioidei)
    Molecular Phylogenetics and Evolution 70 (2014) 260–271 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev New Sicydiinae phylogeny (Teleostei: Gobioidei) inferred from mitochondrial and nuclear genes: Insights on systematics and ancestral areas ⇑ Laura Taillebois a,b, , Magalie Castelin a,c, Clara Lord a, Ryan Chabarria d, Agnès Dettaï e, Philippe Keith a a Milieux et Peuplements Aquatiques, Muséum National d’Histoire naturelle – UMR BOREA 7208 (CNRS-IRD-MNHN-UPMC), 57 rue Cuvier CP026, 75231 Paris Cedex 05, France b Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin 0909, NT, Australia c Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada d College of Science and Engineering, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412-5806, USA e Service de Systématique Moléculaire, Muséum National d’Histoire naturelle – UMR 7138, 57 rue Cuvier CP026, 75231 Paris Cedex 05, France article info abstract Article history: The Sicydiinae subfamily (Teleostei: Gobioidei) is the biggest contributor to the diversity of fish commu- Received 22 January 2013 nities in river systems of tropical islands. These species are found in the Indo-Pacific area, the Caribbean Revised 20 September 2013 region and West Africa. They spawn in freshwater, their planktotrophic larvae drift downstream to the Accepted 27 September 2013 sea where they develop, before returning to the rivers to grow and reproduce. Hence, they are called Available online 11 October 2013 amphidromous. Their phylogeny has been explored using a total of 3545 sites from 5 molecular markers (mitochondrial DNA: 16S rDNA, cytochrome oxidase I, cytochrome b; nuclear DNA: rhodopsin gene and a Keywords: nuclear marker specially developed for this study, the interferon regulatory factor 2 binding protein Molecular phylogeny 1-IRF2PB1).
    [Show full text]
  • Canadian Society of Zoologists Société Canadienne De Zoologie
    Canadian Society of Zoologists Advancing the study of animals and their environment Société Canadienne de Zoologie Favoriser l'étude des animaux et de leur environnement Spring 2017/Printemps 2017 Volume 48 No. 2 IETY OF OC ZO S O N L IA O D G I A S N T A S C S O E I C G I E O T L E O C O A Z OFFICERS OF CSZ 2016-2017 CONSEIL DE LA SCZ N E ADIENNE D President - Président: Lucy Lee Univ. of the Fraser Valley, Faculty of Science, 33844 King Rd., Abbotsford, BC V2C 7M8 Ph: 604-851-6346, [email protected] First Vice President -Premier vice-président: Colin Brauner Univ. of British Columbia, Zoology, 6270 University Blvd. Vancouver, BC V6T1Z4 Ph: 604-822-3372, [email protected] Second Vice President - Deuxième vice-président: Brent Sinclair Western University, Biology, 1151 Richmond St. London, ON N6A5B8 Ph: 519-661-2111, [email protected] Past President- Président antérieur: James Staples Western University, Biology, 1151 Richmond St., London, ON N6A 5B8 Ph: 519-661-4057, [email protected] Secretary – Secrétaire: Helga Guderley Université Laval, Département de biologie Tél : 902-820-2979, [email protected] Treasurer – Trésorier: Keith B. Tierney Univ. Alberta, Biological Sciences, CW405 Biological Sciences Building, Edmonton, AB T6G 2E9 Ph: 780-492-5339, [email protected] Councillors – Conseillers 2014 - 2017 Bill Milsom, Univ. British Columbia, Zoology, [email protected] Michael Wilkie, Wilfrid Laurier Univ., Biology, [email protected] Barbara Zielinski, University of Windsor, Biology, [email protected] 2015 - 2018 Carol Bucking, York University, Biology, [email protected] Tamara Franz-Odendaal, Mt.
    [Show full text]
  • Supporting Information
    Supporting Information Nakamura et al. 10.1073/pnas.1302051110 SI Materials and Methods strand cDNA was synthesized by using a SMART cDNA Library Taxonomy and Choice of Specimen of the Tuna. Taxonomic Construction Kit (Clontech Laboratories) with the following classification. modifications: The primer used for first-strand cDNA synthesis was a modified oligo-dT primer (AAGCAGTGGTATCAACG- Kingdom: Animalia CAGAGTCGCAGTCGGTACTTTTTTCTTTTTTV), and the fi “ ” Phylum: Chordata cDNA was ampli ed by using the CAP primer (AAGC- AGTGGTATCAACGCAGAGT). Amplified cDNA was puri- Subphylum: Vertebrata fied with a Chromaspin-400 column (Clontech Laboratories) and Superclass: Osteichthyes (bony fishes) normalized by using a Trimmer-Direct cDNA Normalization Kit (Evrogen) according to the manufacturer’s instructions. The fi fi Class: Actinopterygii (ray- nned shes) normalized cDNA was amplified and purified as described above. Infraclass: Teleostei Approximately 5 μg of cDNA was sheared by nebulization and used for 454 sequencing. Division: Euteleostei cDNA contigs, isotigs, and isogroups. Reads by 454 were assembled Superorder: Acanthopterygii by using Newbler (Version 2.5). We obtained 180,512 contigs, of which 5,741 have both 5′ and 3′ adaptor sequences and are re- Order: Perciformes garded as full-length (Table S3). Suborder: Scombroidei Repeat masking. To obtain a tuna repeat sequence library, RepeatModeler(Version1.0.4)(4)wasperformedto16,801 Family: Scombridae scaffold sequences (a mitochondrial genome sequence is sub- Subfamily: Scombrinae Bonaparte 1831 tracted from 16,802 scaffolds), and 981 repeat families were predicted. By using the repeat library, the scaffold sequences Tribe: Thunnini Starks 1910 were subsequently masked by RepeatMasker (Version 3.2.9) (5). Genus: Thunnus South 1845 Gene inventory.
    [Show full text]