Adjustment Problems of the Resettlers of Tarbela Dam in Pakistan

Total Page:16

File Type:pdf, Size:1020Kb

Adjustment Problems of the Resettlers of Tarbela Dam in Pakistan ADJUSTMENT PROBLEMS OF THE RESETTLERS OF TARBELA DAM IN PAKISTAN By MUHAMMAD KAMRAN A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy DEPARTMENT OF SOCIAL WORK UNIVERSITY OF PESHAWAR (2018) DEPARTMENT OF SOCIAL WORK UNIVERSITY OF PESHAWAR APPROVAL SHEET This is certified that contents and format of this thesis titled, ―Adjustment problems of Resettlers of Tarbela Dam in Pakistan‖ submitted by Mr. Muhammad Kamran partial fulfillment of the requirement for the award of degree of ―Doctor of Philosophy of Social Work‖ have been approved by the supervisory committee after successful public defense. SUPERVISOR _________________________ Professor Dr. Johar Ali Dean faculty of Social Sciences University of Peshawar INTERNAL EVALUATOR/EXAMINER _________________________ Dr. Hazirullah Associate professor Chairman, Department of Sociology International Islamic University Islamabad INTERNAL EXAMINER _________________________ Dr. Aaqib Shahzad Alvi Lecturer, Department of Social Work University of Sargodha INTERNAL EXAMINER _________________________ Dr. Shahkeel Ahmad Assistant Professor Deparment of Social Work University of Peshawar COUNTERSIGNED BY _________________________ Dr. Rashid Khan Chairman Department of Social Work University of Peshawar i ABSTRACT The present ethnographic study explores the displacement of the people by the government of Pakistan‘s mega project Tarbela dam. Those affected by the project were resettled in different areas of Pakistan. The study has critically analyzed the problems faced by such resettlers after the resettlement. Therefore, the topic chosen for this study is ―adjustment problems of the resettlers of Tarbela dam in Pakistan‖. The study has found that the involuntary resettlement created many problems for the resettlers in the areas of the resettlement including problems in language, education, housing, sanitation, construction, weather conditions, employment and assimilation. While the main objective of this study is to understand the perceptions of the resettlers (both men and women) regarding their adjustment in the new areas. Previous studies from around the world have shown that people affected by such mega projects were not properly compensated. Governments usually do not do much for resettlers; they pay them nominal price and do not assist them much. The same thing happened in this case as well. The resettlers were not properly compensated and, therefore, they still feel deprived; they criticize the government‘s officials for such an action. This study, therefore, has employed qualitative methodology wherein unstructured interviews and focused group discussions (FGDs) were conducted with the respondents. The research design was ethnography wherein the researcher lived in the communities under investigation. Furthermore, the study has found that in Pakistan there is still no resettlement policy for people displaced by the government‘s decisions. In the absence of such a policy, it does not seem possible to compensate the resettlers according to the law. Apparently all mega development projects in Pakistan, involving dislocation of people have been carried out on the basis of the World Bank guidelines for resettlement. The key ii findings of the study are removal of their Hujra system which caused their non-adjustment in the new area. Secondly, loss of veiling (Pardah) for women due to displacement was yet another reason for their non-adjustment in the new area. A policy for proper assimilation and compensation of resettlers has been recommended in this research. It has also been suggested that resettlers must be involved in the planning, designing and implementation stages of resettlement plan. Furthermore, need to protect culture of resettlers and their values has been highlighted and recommended in this research iii ACKNOWLEDGEMENTS First of all, I am grateful to Allah, Almighty for giving me the vision and the potential to effectively continue with my research. This research has become possible due to the support and guidance of quite a few people in my life. I would like to express my sincere thanks to all of them. Different people have contributed to this thesis in different capacities. Firstly, the most significant and scholarly contribution was made by my supervisor Professor Johar Ali, Vice Chancellor, University of Malakand. He encouraged and guided me at every step along the way and took keen interest in my work. He always helped and assisted me during the course of my research. Secondly, I am thankful to my elder brother, Engr. Bahadur Shah, who supported me morally and financially. I am also thankful to Dr. Imran A. Sajid at the Institute of Peace and Conflict Studies and Dr. M. Ibrar at the Social Work Department, University of Peshawar who motivated and supported me to complete my research every time I thought of leaving it in the middle. I must thank Mr. Ijaz Khan, a school principal and a key informant at Kalabut Township for his time and support, and for the information he provided by arranging interviews with respondents during my field research. I am also extremely thankful to my wife, Javiaria Kamran, and to my daughters, Muskan Kamran, Hurraine Kamran, and my sons Muhammad Jibran Shah and Muhammad Ambar Shah for their tremendous patience and for helping me complete my work. I am grateful to my mother, Hussan Bano, and my brothers and sisters for their prayers and best wishes. Last but not least, I am thankful to my father-in-law, Muhammad Iqbal, my mother-in-law, and my brothers and sister-in-law for their constant support and prayers throughout my research. iv DEDICATION In the memory of my father, Ambar Shah (late), who made every effort to providing us quality education & to my Mother, Hussan Bano, whose love and care are the assets of my life. Special thanks to my wife, Javiaria Kamran, for her love and patience and for the precious time she gave to our children in my absence. I could not have completed this work without her extraordinary support & encouragement. The core credit is dedicated to my brother, Engineer Bahadur Shah, who gave me moral and financial support in completing this research. v TABLE OF CONTENTS APPROVAL SHEET -------------------------------------------------------------------------------------- II ABSTRACT -------------------------------------------------------------------------------------------------- I ACKNOWLEDGEMENTS ----------------------------------------------------------------------------- III DEDICATION --------------------------------------------------------------------------------------------- IV TABLE OF CONTENTS --------------------------------------------------------------------------------- V LIST OF TABLES AND FIGURES -------------------------------------------------------------------- X LIST OF ABBREVIATIONS --------------------------------------------------------------------------- XI CHAPTER I ------------------------------------------------------------------------------------------------ 12 INTRODUCTION ----------------------------------------------------------------------------------------- 12 1.1. BACKGROUND OF THE STUDY --------------------------------------------------------------- 12 1.2. WHAT MOTIVATED ME TO CONDUCT THIS STUDY? -------------------------------------- 13 1.3. RATIONALE OF THE STUDY ------------------------------------------------------------------ 15 1.4. SIGNIFICANCE OF THE STUDY --------------------------------------------------------------- 17 1.5. OUTLINE OF THE STUDY ---------------------------------------------------------------------- 18 CHAPTER II ----------------------------------------------------------------------------------------------- 20 THEORIZING THE CONCEPT OF DAM AND ITS IMPACT ON PEOPLE’S ADJUSTMENT -------------------------------------------------------------------------------------------- 20 2.1 PART I --------------------------------------------------------------------------------------------- 20 2.1.1. Concept of Dam --------------------------------------------------------------------------------- 20 2.1.2. Purpose of Dams -------------------------------------------------------------------------------- 22 2.1.3. Types of Dams ---------------------------------------------------------------------------------- 24 2.1.3.1. Gravity Dam--------------------------------------------------------------------------------------------- 24 2.1.3.2. Buttress Dam -------------------------------------------------------------------------------------------- 24 2.1.3.3. Embankment Dam ------------------------------------------------------------------------------------- 25 2.1.3.4. Arch Dams ----------------------------------------------------------------------------------------------- 25 PART II ------------------------------------------------------------------------------------------------------------ 26 2.2. HISTORY OF DAMS: GLOBAL AND LOCAL PERSPECTIVE ------------------------------- 26 2.2.1. History of Dams in the World ---------------------------------------------------------------- 26 2.2.2. The B.C. Period --------------------------------------------------------------------------------- 26 2.2.3. The First Millennium (A.D.) ----------------------------------------------------------------- 29 vi 2.2.4. The Middle Ages: The Period 1000 to 1600 A.D. ---------------------------------------- 30 2.2.5. The Period 1600 to 1800 A.D. --------------------------------------------------------------- 31 2.2.6. The Nineteenth Century -----------------------------------------------------------------------
Recommended publications
  • Khyber Pakhtunkhwa - Daily Flood Report Date (29 09 2011)
    Khyber Pakhtunkhwa - Daily Flood Report Date (29 09 2011) SWAT RIVER Boundary 14000 Out Flow (Cusecs) 12000 International 10000 8000 1 3 5 Provincial/FATA 6000 2 1 0 8 7 0 4000 7 2 4 0 0 2 0 3 6 2000 5 District/Agency 4 4 Chitral 0 Gilgit-Baltistan )" Gauge Location r ive Swat River l R itra Ch Kabul River Indus River KABUL RIVER 12000 Khyber Pakhtunkhwa Kurram River 10000 Out Flow (Cusecs) Kohistan 8000 Swat 0 Dir Upper Nelam River 0 0 Afghanistan 6000 r 2 0 e 0 v 0 i 1 9 4000 4 6 0 R # 9 9 5 2 2 3 6 a Dam r 3 1 3 7 0 7 3 2000 o 0 0 4 3 7 3 1 1 1 k j n ") $1 0 a Headworks P r e iv Shangla Dir L")ower R t a ¥ Barrage w Battagram S " Man")sehra Lake ") r $1 Amandara e v Palai i R Malakand # r r i e a n Buner iv h J a R n ") i p n Munda n l a u Disputed Areas a r d i S K i K ") K INDUS RIVER $1 h Mardan ia ") ") 100000 li ") Warsak Adezai ") Tarbela Out Flow (Cusecs) ") 80000 ") C")harsada # ") # Map Doc Name: 0 Naguman ") ") Swabi Abbottabad 60000 0 0 Budni ") Haripur iMMAP_PAK_KP Daily Flood Report_v01_29092011 0 0 ") 2 #Ghazi 1 40000 3 Peshawar Kabal River 9 ") r 5 wa 0 0 7 4 7 Kh 6 7 1 6 a 20000 ar Nowshera ") Khanpur r Creation Date: 29-09-2011 6 4 5 4 5 B e Riv AJK ro Projection/Datum: GCS_WGS_1984/ D_WGS_1984 0 Ghazi 2 ") #Ha # Web Resources: http://www.immap.org Isamabad Nominal Scale at A4 paper size: 1:3,500,000 #") FATA r 0 25 50 100 Kilometers Tanda e iv Kohat Kohat Toi R s Hangu u d ") In K ai Map data source(s): tu Riv ") er Punjab Hydrology Irrigation Division Peshawar Gov: KP Kurram Garhi Karak Flood Cell , UNOCHA RIVER $1") Baran " Disclaimers: KURRAM RIVER G a m ") The designations employed and the presentation of b e ¥ Kalabagh 600 Bannu la material on this map do not imply the expression of any R K Out Flow (Cusecs) iv u e r opinion whatsoever on the part of the NDMA, PDMA or r ra m iMMAP concerning the legal status of any country, R ") iv ") e K territory, city or area or of its authorities, or concerning 400 r h ") ia the delimitation of its frontiers or boundaries.
    [Show full text]
  • Islamic Republic of Pakistan Tarbela 5 Hydropower Extension Project
    Report Number 0005-PAK Date: December 9, 2016 PROJECT DOCUMENT OF THE ASIAN INFRASTRUCTURE INVESTMENT BANK Islamic Republic of Pakistan Tarbela 5 Hydropower Extension Project CURRENCY EQUIVALENTS (Exchange Rate Effective December 21, 2015) Currency Unit = Pakistan Rupees (PKR) PKR 105.00 = US$1 US$ = SDR 1 FISCAL YEAR July 1 – June 30 ABBRREVIATIONS AND ACRONYMS AF Additional Financing kV Kilovolt AIIB Asian Infrastructure Investment kWh Kilowatt hour Bank M&E Monitoring & Evaluation BP Bank Procedure (WB) MW Megawatt CSCs Construction Supervision NTDC National Transmission and Consultants Dispatch Company, Ltd. ESA Environmental and Social OP Operational Policy (WB) Assessment PM&ECs Project Management Support ESP Environmental and Social and Monitoring & Evaluation Policy Consultants ESMP Environmental and Social PMU Project Management Unit Management Plan RAP Resettlement Action Plan ESS Environmental and Social SAP Social Action Plan Standards T4HP Tarbela Fourth Extension FDI Foreign Direct Investment Hydropower Project FY Fiscal Year WAPDA Water and Power Development GAAP Governance and Accountability Authority Action Plan WB World Bank (International Bank GDP Gross Domestic Product for Reconstruction and GoP Government of Pakistan Development) GWh Gigawatt hour ii Table of Contents ABBRREVIATIONS AND ACRONYMS II I. PROJECT SUMMARY SHEET III II. STRATEGIC CONTEXT 1 A. Country Context 1 B. Sectoral Context 1 III. THE PROJECT 1 A. Rationale 1 B. Project Objectives 2 C. Project Description and Components 2 D. Cost and Financing 3 E. Implementation Arrangements 4 IV. PROJECT ASSESSMENT 7 A. Technical 7 B. Economic and Financial Analysis 7 C. Fiduciary and Governance 7 D. Environmental and Social 8 E. Risks and Mitigation Measures 12 ANNEXES 14 Annex 1: Results Framework and Monitoring 14 Annex 2: Sovereign Credit Fact Sheet – Pakistan 16 Annex 3: Coordination with World Bank 17 Annex 4: Summary of ‘Indus Waters Treaty of 1960’ 18 ii I.
    [Show full text]
  • Dasu Hydropower Project
    Public Disclosure Authorized PAKISTAN WATER AND POWER DEVELOPMENT AUTHORITY (WAPDA) Public Disclosure Authorized Dasu Hydropower Project ENVIRONMENTAL AND SOCIAL ASSESSMENT Public Disclosure Authorized EXECUTIVE SUMMARY Report by Independent Environment and Social Consultants Public Disclosure Authorized April 2014 Contents List of Acronyms .................................................................................................................iv 1. Introduction ...................................................................................................................1 1.1. Background ............................................................................................................. 1 1.2. The Proposed Project ............................................................................................... 1 1.3. The Environmental and Social Assessment ............................................................... 3 1.4. Composition of Study Team..................................................................................... 3 2. Policy, Legal and Administrative Framework ...............................................................4 2.1. Applicable Legislation and Policies in Pakistan ........................................................ 4 2.2. Environmental Procedures ....................................................................................... 5 2.3. World Bank Safeguard Policies................................................................................ 6 2.4. Compliance Status with
    [Show full text]
  • Assessment of Spatial and Temporal Flow Variability of the Indus River
    resources Article Assessment of Spatial and Temporal Flow Variability of the Indus River Muhammad Arfan 1,* , Jewell Lund 2, Daniyal Hassan 3 , Maaz Saleem 1 and Aftab Ahmad 1 1 USPCAS-W, MUET Sindh, Jamshoro 76090, Pakistan; [email protected] (M.S.); [email protected] (A.A.) 2 Department of Geography, University of Utah, Salt Lake City, UT 84112, USA; [email protected] 3 Department of Civil & Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA; [email protected] * Correspondence: [email protected]; Tel.: +92-346770908 or +1-801-815-1679 Received: 26 April 2019; Accepted: 29 May 2019; Published: 31 May 2019 Abstract: Considerable controversy exists among researchers over the behavior of glaciers in the Upper Indus Basin (UIB) with regard to climate change. Glacier monitoring studies using the Geographic Information System (GIS) and remote sensing techniques have given rise to contradictory results for various reasons. This uncertain situation deserves a thorough examination of the statistical trends of temperature and streamflow at several gauging stations, rather than relying solely on climate projections. Planning for equitable distribution of water among provinces in Pakistan requires accurate estimation of future water resources under changing flow regimes. Due to climate change, hydrological parameters are changing significantly; consequently the pattern of flows are changing. The present study assesses spatial and temporal flow variability and identifies drought and flood periods using flow data from the Indus River. Trends and variations in river flows were investigated by applying the Mann-Kendall test and Sen’s method. We divide the annual water cycle into two six-month and four three-month seasons based on the local water cycle pattern.
    [Show full text]
  • HR15D16001-Installation of Electric Poles and Wiresat Moh: Azizabad Village Panina (CO MDC Dheenda) 135,000 135,000 128,500 128
    DISTRICT Project Description BE 2018-19 Final Budget Releases Expenditure HARIPUR HR15D16001-Installation of Electric Poles and Wiresat Moh: Azizabad Village Panina (CO 135,000 135,000 128,500 128,500 MDC Dheenda) HARIPUR HR15D16002-Provision of 02 No. water bores UC BSKhan. 450,000 450,000 308,250 308,250 HARIPUR HR15D16101-pavement of street & WSS in DW Dheenda 1,015,000 1,015,000 609,086 609,086 HARIPUR HR15D16300-Boring of handpump/ pressure pumps atvillage Pind Gakhra. 150,000 150,000 111,400 111,400 HARIPUR HR15D16500-Provision of bore at KTS Sector # 3 150,000 150,000 150,000 - HARIPUR HR15D16501-"Provison of bores (3 No) at Nara (c/oArif), Alloli (c/o Rab Nawaz) & Jatti Pind 450,000 450,000 450,000 271,232 (c/o Khan Afsar)." HARIPUR HR15D16502-Provision of bore at S/Saleh. 150,000 150,000 150,000 132,375 HARIPUR HR15D16503-Provision of bore at Serikot. 150,000 150,000 150,000 143,430 HARIPUR HR15D16504-"Provision of bore at village Pindori,UC Bakka." 150,000 150,000 150,000 144,000 HARIPUR HR15D16601-Electrification work in Mohra Mohammadonear tube well (CO MDC Dheenda) 350,000 350,000 - - HARIPUR HR16D00009-WSS Moh: Qazi Sahib village Ghandian. 150,000 150,000 134,775 134,775 HARIPUR HR16D00011-WSS Moh: Dhooman village Ghandian. 149,000 149,000 101,603 101,603 HARIPUR HR16D00019-Pavement of streets/ path/ culverts/protection bund etc in different Moh: of 648,889 648,889 648,889 648,889 Kot Najibulah. HARIPUR HR16D00020-Improvement/ extension of WSS in DW KotNajibulah.
    [Show full text]
  • Dam 1 a Dam Is a Barrier That Impounds Water Or Underground Streams. Dams Generally Serve the Primary Purpose of Retaining Water
    Dam 1 Dam A dam is a barrier that impounds water or underground streams. Dams generally serve the primary purpose of retaining water, while other structures such as floodgates or levees (also known as dikes) are used to manage or prevent water flow into specific land regions. Hydropower and pumped-storage hydroelectricity are often used in conjunction with dams to generate electricity. A dam can also be used to collect water or for storage of water which can be evenly distributed between locations. Hoover Dam, a concrete arch-gravity dam in Black Canyon of the Colorado River. Lake Mead in the background is impounded by the dam. Glen Canyon Dam Dam 2 A sideview of the Lake Vyrnwy dam, in Wales, finished in 1888 History The word dam can be traced back to Middle English,[1] and before that, from Middle Dutch, as seen in the names of many old cities.[2] Early dam building took place in Mesopotamia and the Middle East. Dams were used to control the water level, for Mesopotamia's weather affected the Tigris and Euphrates rivers, and could be quite unpredictable. The earliest known dam is the Jawa Dam in Jordan, 100 kilometres (62 mi) northeast of the capital Amman. This gravity dam featured an originally 9 m (30 ft) high and The Roman dam at Cornalvo in Spain has been in use for almost two millennia. 1 m (3 ft 3 in) wide stone wall, supported by a 50 m (160 ft) wide earth rampart. The structure is dated to 3000 BC.[3][4] The Ancient Egyptian Sadd-el-Kafara Dam at Wadi Al-Garawi, located about 25 km (16 mi) south of Cairo, was 102 m (335 ft) long at its base and 87 m (285 ft) wide.
    [Show full text]
  • WATER SECTOR in PAKISTAN POLICY, POLITICS, MANAGEMENT
    IDSA Monograph Series No. 18 April 2013 WATER SECTOR in PAKISTAN POLICY, POLITICS, MANAGEMENT MEDHA BISHT WATER SECTOR IN PAKISTAN: POLICY, POLITICS, MANAGEMENT | 1 IDSA Monograph Series No. 18 April 2013 WATER SECTOR IN PAKISTAN POLICY, POLITICS, MANAGEMENT MEDHA BISHT 2 | MEDHA BISHT Institute for Defence Studies and Analyses, New Delhi. All rights reserved. No part of this publication may be reproduced, sorted in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photo-copying, recording or otherwise, without the prior permission of the Institute for Defence Studies and Analyses (IDSA). ISBN: 978-93-82169-17-8 Disclaimer: The views expressed in this Monograph are those of the author and do not necessarily reflect those of the Institute or the Government of India. First Published: April 2013 Price: Rs. 280/- Published by: Institute for Defence Studies and Analyses No.1, Development Enclave, Rao Tula Ram Marg, Delhi Cantt., New Delhi - 110 010 Tel. (91-11) 2671-7983 Fax.(91-11) 2615 4191 E-mail: [email protected] Website: http://www.idsa.in Layout & Cover by: Vaijayanti Patankar & Geeta Printed at: M/S A. M. Offsetters A-57, Sector-10, Noida-201 301 (U.P.) Mob: 09810888667 E-mail: [email protected] WATER SECTOR IN PAKISTAN: POLICY, POLITICS, MANAGEMENT | 3 CONTENTS Acknowledgements ......................................................... 5 INTRODUCTION .............................................................. 6 PART I Chapter One .................................................................
    [Show full text]
  • Data Collection Survey on Infrastructure Improvement of Energy Sector in Islamic Republic of Pakistan
    ←ボックス隠してある Pakistan by Japan International Cooperation Agency (JICA) Data Collection Survey on Infrastructure Improvement of Energy Sector in Islamic Republic of Pakistan Data Collection Survey ←文字上 / 上から 70mm on Infrastructure Improvement of Energy Sector in Pakistan by Japan International Cooperation Agency (JICA) Final Report Final Report February 2014 February 2014 ←文字上 / 下から 70mm Japan International Cooperation Agency (JICA) Nippon Koei Co., Ltd. 4R JR 14-020 ←ボックス隠してある Pakistan by Japan International Cooperation Agency (JICA) Data Collection Survey on Infrastructure Improvement of Energy Sector in Islamic Republic of Pakistan Data Collection Survey ←文字上 / 上から 70mm on Infrastructure Improvement of Energy Sector in Pakistan by Japan International Cooperation Agency (JICA) Final Report Final Report February 2014 February 2014 ←文字上 / 下から 70mm Japan International Cooperation Agency (JICA) Nippon Koei Co., Ltd. 4R JR 14-020 Data Collection Survey on Infrastructure Improvement of Energy Sector in Pakistan Final Report Location Map Islamabad Capital Territory Punjab Province Islamic Republic of Pakistan Sindh Province Source: Prepared by the JICA Survey Team based on the map on http://www.freemap.jp/. February 2014 i Nippon Koei Co., Ltd. Data Collection Survey on Infrastructure Improvement of Energy Sector in Pakistan Final Report Summary Objectives and Scope of the Survey This survey aims to collect data and information in order to explore the possibility of cooperation with Japan for the improvement of the power sector in Pakistan. The scope of the survey is: Survey on Pakistan’s current power supply situation and review of its demand forecast; Survey on the power development policy, plan, and institution of the Government of Pakistan (GOP) and its related companies; Survey on the primary energy in Pakistan; Survey on transmission/distribution and grid connection; and Survey on activities of other donors and the private sector.
    [Show full text]
  • Observations on the Wildlife of Nara Wetland Complex, Tehsil Nara, District Khairpur, Sindh with Special Reference to the Waterbirds
    Pakistan J. Zool., vol. 38(1), pp. 21-25, 2006. Observations on the Wildlife of Nara Wetland Complex, Tehsil Nara, District Khairpur, Sindh with Special Reference to the Waterbirds SYED ALI GHALIB, HAFEEZUR RAHMAN AND ABDUR RAZZAQ KHAN Zoological Survey Department, Govt. of Pakistan, Karachi Abstract.- The paper highlights the importance of the wetlands of Nara Wetland Complex (NWC) in District Khairpur, Sindh as a site containing representative, rare or unique wetland types, and as a site of international importance for conserving biodiversity and as a waterbird habitat. The area is thus a candidate Ramsar Site. It also gives the result of waterbird census on the important wetlands of the NWC during 2002 and 2004. Key words: Waterbirds, wetlands, Sindh, Pakistan. INTRODUCTION ecological value as far as the biodiversity is concerned. There is a very characteristic ecosystem having a chain of wetlands in a desert habitat. The province of Sindh is very rich in The Nara canal and a belt of land along the wetlands. It has many wetland complexes, such as canal totalling an area of 108960 ha starting from Haleji, Indus delta, Deh Akro, Nurr-ri-Jubho and Sorah to Jamrao Head is a game reserve. It was Rann of Kutch which have been designated as established in 1972. The ecosystem of the game Ramsar sites i.e. the Wetlands of International reserve is a mixture of desert and wetlands. The Importance under the Ramsar Convention. game reserve was established for the protection of There are other wetland complexes such as hog deer, gray and black partridges and the Chotiari; Drigh, Lungh and Hamal and Nara crocodiles in the canal and the dhands.
    [Show full text]
  • Table of Contents
    Environmental and Social Management Framework (ESMF) Draft Pakistan Hydro-Meteorological and DRM Services Project Pakistan Meteorological Department National Disaster Management Authority Pakistan Hydro-Meteorological and DRM Services Project Executive Summary Background Climate change is expected to have an adverse impact on Pakistan, as it ranks 7th on the climate risk index. It continues to be one of the most flood-prone countries in the South Asia Region (SAR); suffering US$18 billion in losses between 2005 and 2014 (US$10.5 billion from the 2010 floods alone), equivalent to around 6% of the federal budget. Hydromet hazards have been coupled with rapid population growth and uncontrolled urbanization, leading to a disproportionate and growing impact on the poor. To build on recent development gains, increase economic productivity, and improve climate resilience, it will be critical to improve the quality and accessibility of weather, water, and climate information services. Climate-resilient development requires stronger institutions and a higher level of observation, forecasting, and service delivery capacity; these could make a significant contribution to safety, security, and economic well-being. The Pakistan Hydro- Meteorological and DRM Services Project (PHDSP) expects to improve hydro- meteorological information and services, strengthen forecasting and early warning systems, and improve dissemination of meteorological and hydrological forecasts, warnings and advisory information to stakeholders and end-users and strengthen the existing disaster risk management (DRM) capacity and services of the National Disaster Management Authority (NDMA). Project Description The project has three main components and will be implemented over a period of five years. Component 1: Hydro-Meteorological and Climate Services The objective of this component is to improve the capability and thereby performance of the PMD to understand and make use of meteorological and hydrological information for decision making.
    [Show full text]
  • WETLANDS in PAKISTAN: WHAT IS HAPPENING to THEM? By: Abdul Aleem Chaudhry Ph.D
    World Environment Day – June 2010 49 WETLANDS IN PAKISTAN: WHAT IS HAPPENING TO THEM? By: Abdul Aleem Chaudhry Ph.D. Director General Wildlife and Parks Punjab (Retired) Abstract Pakistan, despite having an arid climate, supports over 780,000 ha of wetlands covering 9.7% of the total land area, with 225 nationally significant wetlands, of which 19 have been recognised as Ramsar sites of global significance. Wetland types represent the passage of the Indus River from the glaciers and high alpine lakes, through riverine and freshwater lakes to the coastal wetlands of the Indus Delta. These wetlands provide often unrecognised benefits and services, such as provisioning - food and fibre production - regulating services such as water balance, groundwater recharge, flood mitigation and storm protection; cultural and social functions such as sacred and religious importance; providing recreation and tourism opportunities; and supporting functions such as soil formation and sediment retention. Main threats to wetlands include shortages of water to maintain the wetlands, poor water quality from increasing pollution, change in land use, encroachment and over- exploitation of natural resources, such as fish and wildlife. Most often the over- exploitation is driven by the lack of alternative livelihoods so that poor communities may have no option. The underlying causes of these direct threats are related to the perception that wetland natural resources are part of an open- access system. Management of the natural resources, if it exists at all, is usually ineffective and penalties for illegal or inappropriate resource-use are often not significant enough to be prohibitive. These inappropriate practices generally stem from policy shortcomings, legal gaps and inconsistencies, failure to enforce regulations, and institutional overlap of responsibilities for management of wetlands and lack of coordination.
    [Show full text]
  • Pakistan - Flood Risk Assessment 2015
    PAKISTAN - FLOOD RISK ASSESSMENT 2015 62°0'0"E 64°0'0"E 66°0'0"E 68°0'0"E 70°0'0"E 72°0'0"E 74°0'0"E 76°0'0"E 78°0'0"E 80°0'0"E 0 30 Riverine Flood - At Risk Districts and Union Councils by Province 330 Vehari 19 9 Dera Ismail Khan 18 9 C H I N A 20 60 Toba Tek Singh 7 4 300 Sanghar Swabi 32 54 0 7 Sialkot 15 HUNZA 52 NAGAR Thatta 22 Peshawar 45 1 4 Sheikhupura 24 GHIZER 90 23 CHITRAL 270 82 Tando Muhammad Khan 6 Nowshera Sargodha 5 3 19 +92.51.282.0449/835.9288|[email protected] All rights Reserved - Copyright 2015 11 Gilgit Baltistan Sahiwal 48 18 Mardan www.alhasan.com 36°0'0"N Sukkur Creation Date: May 11, 2015 36°0'0"N 10 6 0 GILGIT Projection/Datum: WGS 84 Geographic 56 1 Khyber Rawalpindi 22 Lakki Marwat A0 24 Shikarpur 0 Pakhtunkhwa Page Size: 6 SKARDU 22 ISBN (Paper): 978-969-638-075-7 Rajanpur 5 978-969-638-076-4 6 Kohat DIAMIR ISBN (Digital): ¯ Shaheed Benazir Abad 17 4 UPPER 31 5 KOHISTAN Pakpattan 5 UPPER Karak 2 DIR SWAT Scale1:2,000,000 45 GHANCHE 58 Rahim Yar Khan 0 Okara 10 LOWER 9 KOHISTAN ASTORE Haripur 11 Narowal 25 Naushahro Feroze 26 2 8 10 SHANGLA BATAGRAM NEELUM 0 125 250 25 BAJAUR 85 Charsadda AGENCY Muzaffargarh 22 Matiari 14 14 KHYBER PAKHTUNKHWA KHYBER MALAKAND 4 MANSEHRA Kilometers PROTECTED 53 1 TORDHER Multan 12 Buner AREA BUNER Larkana 29 0 22 6 MUZAFFARABAD Mianwali 0 10 20 30 40 50 60 Warsak Tarbela 20 Dam Dam HATTIAN SINDH 26 !.
    [Show full text]