10 Sep 2002 19:54 AR AR170-CB18-03.tex AR170-CB18-03.sgm LaTeX2e(2002/01/18) P1: IBC 10.1146/annurev.cellbio.18.020402.140619 Annu. Rev. Cell Dev. Biol. 2002. 18:53–80 doi: 10.1146/annurev.cellbio.18.020402.140619 Copyright c 2002 by Annual Reviews. All rights reserved First published online as a Review in Advance on June 6, 2002 GENE CO-OPTION IN PHYSIOLOGICAL AND MORPHOLOGICAL EVOLUTION John R. True Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, New York 11794-5245, e-mail:
[email protected] Sean B. Carroll Laboratory of Molecular Biology and Howard Hughes Medical Institute, University of Wisconsin, Madison, 1525 Linden Drive, Madison, Wisconsin 53706, e-mail:
[email protected] Key Words morphogenetic novelty, modularity, regulatory evolution, adaptation, gene duplication, evolvability ■ Abstract Co-option occurs when natural selection finds new uses for existing traits, including genes, organs, and other body structures. Genes can be co-opted to generate developmental and physiological novelties by changing their patterns of reg- ulation, by changing the functions of the proteins they encode, or both. This often involves gene duplication followed by specialization of the resulting paralogous genes into particular functions. A major role for gene co-option in the evolution of develop- ment has long been assumed, and many recent comparative developmental and genomic studies have lent support to this idea. Although there is relatively less known about the molecular basis of co-option events involving developmental pathways, much can be drawn from well-studied examples of the co-option of structural proteins.