<<

11

Regulation of Expression in Bacteria and Their Viruses

WORKING WITH THE FIGURES

1. Compare the structure of IPTG shown in Figure 11-7 with the structure of shown in Figure 11-5. Why is IPTG bound by the lac but not broken down by -galactosidase?

Answer: The sulfur atom in IPTG prevents hydrolysis by the beta-galactosidase .

2. Looking at Figure 11-9, why were partial diploids essential for establishing the trans-acting nature of the ? Could one distinguish cis-acting from transacting in haploids?

Answer: Partial diploids were essential for distinguishing cis-acting from trans- acting mutants, because by definition one must introduce a second copy of the locus in trans to test this property of the mutants.

3. Why do mutations cluster at positions –10 and –35 as shown in Figure 11-11?

Answer: Promoter mutations cluster around the –10 and –35 positions because these are the DNA sequences recognized and bound by the sigma subunit of the . Alterations to these sequences will affect the ability of the RNA polymerase holoenzyme to recognize the promoter.

4. Looking at Figure 11-16, how large is the overlap between the operator and the lac unit?

Answer: The operator sequence overlaps the lac transcription unit by 24 base pairs.

314 Chapter Eleven

5. Examining Figure 11-21, what effect do you predict trpA mutations will have on levels?

Answer: Mutations that inactivate the trpA gene will block the synthesis of tryptophan in the cells, resulting in trp auxotrophs.

6. Examining Figure 11-21, what effect do you predict trpA mutations have on trp mRNA expression?

Answer: Because the trpA gene is the last to be transcribed, mutations in the trpA would not be predicted to affect transcription of the operon.

BASIC PROBLEMS

7. Explain why I– alleles in the lac system are normally recessive to I+ alleles and why I+ alleles are recessive to IS alleles.

Answer: The I gene determines the synthesis of a repressor molecule, which blocks expression of the and which is inactivated by the . The presence of the repressor I+ will be dominant to the absence of a repressor I–. Is mutants are unresponsive to an inducer. For this reason, the gene product cannot be stopped from interacting with the operator and blocking the lac operon. Therefore, Is is dominant to I+.

8. What do we mean when we say that OC mutations in the lac system are cis- acting?

Answer: Oc mutants are changes in the DNA sequence of the operator that impair the binding of the lac repressor. Therefore, the lac operon associated with the Oc operator cannot be turned off. Because an operator controls only the genes on the same DNA strand, it is cis (on the same strand) and dominant (cannot be turned off).

Unpacking the Problem

9. The genes shown in the following table are from the lac operon system of E. coli. The symbols a, b, and c represent the repressor (I) gene, the operator (O) region, and the (Z) for -galactosidase, although not necessarily in that order. Furthermore, the order in which the symbols are written in the genotypes is not necessarily the actual sequence in the lac operon.

Activity (+) or inactivity (–) of Z gene

Chapter Eleven 315

Genotype Inducer absent Inducer present a– b+ c+ + + a+ b+ c– + + a+ b– c– – – a+ b– c+/a– b+ c– + + a+ b+ c+/a– b– c– – + a+ b+ c–/a– b– c+ – + a– b+ c+/a+ b– c– + +

a. State which symbol (a, b, or c) represents each of the lac genes I, O, and Z. b. In the table, a superscript minus sign on a gene symbol merely indicates a mutant, but you know that some mutant behaviors in this system are given special mutant designations. Use the conventional gene symbols for the lac operon to designate each genotype in the table.

(Problem 9 is from J. Kuspira and G. W. Walker, Genetics: Questions and Problems. Copyright 1973 by McGraw-Hill.)

Answer: a. You are told that a, b, and c represent lacI, lacO, and lacZ, but you do not know which is which. Both a– and c– have constitutive (lines 1 and 2) and therefore must represent mutations in either the operator (lacO) or the repressor (lacI). b– (line 3) shows no ß-gal activity and by elimination must represent the lacZ gene.

Mutations in the operator will be cis-dominant and will cause constitutive expression of the lacZ gene only if it’s on the same chromosome. Line 6 has c– on the same chromosome as b+ but the is still inducible (owing to c+ in trans). Line 7 has a– on the same chromosome as b+ and is constitutive even though the other chromosome is a+. Therefore a is lacO, c is lacI, and b is lacZ.

b. Another way of labeling mutants of the operator is to denote that they lead to a constitutive phenotype; lacO– (or a–) can also be written as lacOC. There are also mutations of the repressor that fail to bind inducer () as opposed to fail to bind DNA. These two classes have quite different phenotypes and are distinguished by lacIS (fails to bind allolactose and leads to a dominant uninducible phenotype in the presence of a wild-type operator) and lacI– (fails to bind DNA and is recessive). It is possible that line 3, line 4, and line 7 have lacIS mutations (because cannot be ascertained in a that is also lacOC), but the other c– alleles must be lacI–.

10. The map of the lac operon is

POZY

316 Chapter Eleven

The promoter (P) region is the start site of transcription through the binding of the RNA polymerase molecule before actual mRNA production. Mutationally altered promoters (P–) apparently cannot bind the RNA polymerase molecule. Certain predictions can be made about the effect of P– mutations. Use your predictions and your knowledge of the system to complete the following table. Insert a “+” where an enzyme is produced and a “–” where no enzyme is produced. The first one has been done as an example.

-Galactosidase Permease Genotype No lactose Lactose No lactose Lactose I+ P+ O+ Z+ Y+/I+ P+ O+ Z+ Y+ – + – + a. I– P+ OC Z+ Y–/ I+ P+ O+ Z– Y+ b. I+ P– OC Z– Y+/I– P+ OC Z+ Y– c. IS P+ O+ Z+ Y–/I+ P+ O+ Z– Y+ d. IS P+ O+ Z+ Y+/I– P+ O+ Z+ Y+ e. I– P+ OC Z+ Y–/I– P+ O+ Z– Y+ f. I– P– O+ Z+ Y+/I– P+ OC Z+ Y– g. I+ P+ O+ Z– Y+/I– P+ O+ Z+ Y–

Answer: ß-Galactosidase Permease Part No lactose Lactose No lactose Lactose a + + – + b + + – – c – – – – d – – – – e + + + + f + + – – g – + – +

a. The OC mutation leads to the constitutive synthesis of ß-galactosidase because it is cis to a lacZ+ gene, but the permease is inducible because the lacY+ gene is cis to a wild-type operator.

b. The lacP– mutation prevents transcription so only the genes cis to lacP+ will be transcribed. These genes are also cis to OC so the lacZ+ gene is transcribed constitutively.

c. The lacIs is a trans-dominant mutation and prevents transcription from either operon.

d. Same as part c.

e. There is no functional repressor made (and one operator is mutant as well). Chapter Eleven 317

f. Same as part b.

g. Both operators are wild type and the one functional copy of lacI will direct the synthesis of enough repressor to control both .

11. Explain the fundamental differences between negative control and positive control.

Answer: A gene is turned off or inactivated by the “modulator” (usually called a repressor) in negative control, and the repressor must be removed for transcription to occur. A gene is turned on by the “modulator” (usually called an ) in positive control, and the activator must be added or converted to an active form for transcription to occur.

12. Mutants that are lacY– retain the capacity to synthesize -galactosidase. However, even though the lacI gene is still intact, -galactosidase can no longer be induced by adding lactose to the medium. Explain.

Answer: The lacY gene produces a permease that transports lactose into the cell. A cell containing a lacY– mutation cannot transport lactose into the cell, so ß-galactosidase will not be induced. (In wild-type cells, even when the repressor is present, there is still a small amount of transcription. This allows a small amount of baseline permease (and β-gal) expression. It is this low level of permease that allows trace amounts of lactose to enter the cell and initiate induction of the lac operon.)

13. What are the analogies between the mechanisms controlling the lac operon and those controlling phage  genetic switches?

Answer: Both the lac operon and phase  genetic switches can be interpreted as a simple switch between two states. For , there is competition between Cro and cI binding at an operator to control the choice between the lysogenic and lytic cycles. For the lac operon, a repressor binds at the operator to prevent transcription of the structural genes in the absence of lactose. Both also are capable of interpreting their environments and directing an “appropriate” response. The lac operon responds to the presence or absence of lactose and . For , if resources are abundant, or the bacterial cell sustains DNA damage, the lytic cycle prevails, but if resources are not abundant,  will enter the lysogenic cycle.

14. Compare the arrangement of cis-acting sites in the control regions of the lac operon and phage . 318 Chapter Eleven

Answer: In the lac operon, the promoter is located between the CAP binding site and the repressor binding site (the operator). The lac repressor binds at the operator and blocks transcription, and CAP binds at its binding site and activates transcription. Complete induction of the lac structural genes requires the binding of CAP and the absence of binding of repressor. The  genetic switch consists of an operator (with three binding sites for  repressor (cI) and Cro) that overlaps two promoters, PR and PRM. PR promotes transcription of lytic genes and PRM promotes transcription of the cI gene. When repressor is bound, transcription from PR is blocked, but when Cro is bound, transcription from PRM is blocked.

CHALLENGING PROBLEMS

15. An interesting mutation in lacI results in with 110-fold increased binding to both operator and nonoperator DNA. These repressors display a “reverse” induction curve, allowing -galactosidase synthesis in the absence of an inducer (IPTG) but partly repressing -galactosidase expression in the presence of IPTG. How can you explain this? (Note that, when IPTG binds a repressor, it does not completely destroy operator affinity, but rather it reduces affinity 1100-fold. Additionally, as cells divide and new operators are generated by the synthesis of daughter strands, the repressor must find the new operators by searching along the DNA, rapidly binding to nonoperator sequences and dissociating from them.)

Answer: Normally, the repressor searches for the operator by rapidly binding and dissociating from nonoperator sequences. Even for sequences that mimic the true operator, the dissociation time is only a few seconds or less. Therefore, it is easy for the repressor to find new operators as new strands of DNA are synthesized. However, when the affinity of the repressor for DNA and operator is increased, it takes too long for the repressor to dissociate from sequences on the chromosome that mimic the true operator, and as the cell divides and new operators are synthesized, the repressor never quite finds all of them in time, leading to a partial synthesis of ß-galactosidase. This explains why, in the absence of IPTG, there is some elevated ß-galactosidase synthesis. When IPTG binds to the repressors with increased affinity, it lowers the affinity back to that of the normal repressor (without IPTG bound). Then, the repressor can rapidly dissociate from sequences in the chromosome that mimic the operator and find the true operator. Thus, ß-galactosidase is repressed in the presence of IPTG in strains with repressors that have greatly increased affinity for operator. In summary, because of a kinetic phenomenon, we see a reverse induction curve.

16. In Neurospora, all mutants affecting the carbamyl phosphate synthetase and aspartate transcarbamylase map at the pyr-3 locus. If you induce pyr-3 mutations by ICR-170 (a chemical mutagen), you find that either both enzyme functions are lacking or only the transcarbamylase function is lacking; Chapter Eleven 319

in no case is the synthetase activity lacking when the transcarbamylase activity is present. (ICR-170 is assumed to induce frameshifts.) Interpret these results in regard to a possible operon.

Answer: If there is an operon governing both genes, then a frameshift mutation could cause the stop codon separating the two genes to be read as a sense codon. Therefore, the second gene product will be incorrect for almost all amino acids. However, there are no known polycistronic messages in . The alternative, and better, explanation is that both enzymatic functions are performed by the same gene product. Here, a frameshift mutation beyond the first function, carbamyl phosphate synthetase, will result in the second half of the molecule being nonfunctional.

17. Certain lacI mutations eliminate operator binding by the lac repressor but do not affect the aggregation of subunits to make a tetramer, the active form of the repressor. These mutations are partly dominant over wild type. Can you explain the partly dominant I– phenotype of the I–/I+ heterodiploids?

Answer: Because very small amounts of the repressor are made, the system as a whole is quite responsive to changes in repressor concentration. In the heterodiploids, repressor heterotetramers may form by association of polypeptides encoded by both I– and I+. Only homotetramers of I+ work properly, and their concentration will be reduced by the various heterotetramer combinations of I– and I+. This will result in some expression of the lac genes in the absence of lactose.

18. You are examining the regulation of the lactose operon in the bacterium . You isolate seven new independent mutant strains that lack the products of all three structural genes. You suspect that some of these mutations are lacIS mutations and that other mutations are alterations that prevent the binding of RNA polymerase to the promoter region. Using whatever haploid and partial diploid genotypes that you think are necessary, describe a set of genotypes that will permit you to distinguish between the lacI and lacP classes of uninducible mutations.

Answer: The key to this question is to remember that lacI mutations will be trans-acting as they produce a protein product, and that lacP mutations (like lacO mutations) will be cis-acting as they are affecting a binding site for RNA polymerase. For the purposes of this problem, designate the uninducible lacI mutations as iu mutations, and the uninducible lacP mutations as pu mutations. There are quite a number of satisfactory genotypes which can serve to distinguish between the iu and pu mutations. Here are a few examples:

320 Chapter Eleven

Enzyme activity Genotype ß-galactosidase Permease 1 iu p+ o+ z+ y+ absent absent 2 i+ pu o+ z+ y+ absent absent 3 iu p+ o+ z+ y– / i+ p+ o+ z– y+ absent absent 4 i+ pu o+ z+ y– / i+ p+ o+ z– y+ absent inducible 5 iu p+ oc z+ y– / i+ p+ o+ z– y+ constitutive absent 6 i+ pu oc z+ y– / i+ p+ o+ z– y+ absent inducible

Genotypes 1 and 2 are simply symbolic restatements of the phenotypes of the uninducible mutations. Genotypes 3 and 4 are straightforward tests to distinguish the cis-acting pu mutations from the trans-acting iu lesions. The results of genotype 3 reflect the expectation that iu mutations would be trans- acting and dominant to i+. This is expected because the iu-encoded repressor protein molecules would be incapable of being inactivated by binding to inducer; the presence or absence of normal repressor protein is irrelevant. The results of genotype 4, on the other hand, reflect the expectation that pu mutations would only be cis-acting. Hence, any genes in cis to the pu allele would be inactive, while any genes in cis to the normal p+ allele would potentially be transcribed normally (if all other regulatory functions were normal). In a similar fashion, genotypes 5 and 6 distinguish the cis versus trans action of iu and pu mutations. In genotype 5, iu remains trans-dominant to i+, but this dominance is overcome by the cis-acting oc mutation (compare genotypes 3 and 5). In genotype 6, the presence of oc is irrelevant, as it is in a lac operon that contains the pu mutation preventing RNA polymerase binding (compare genotypes 4 and 6).

19. You are studying the properties of a new kind of regulatory mutation of the lactose operon. This mutation, called S, leads to the complete repression of the lacZ, lacY, and lacA genes, regardless of whether inducer (lactose) is present. The results of studies of this mutation in partial diploids demonstrate that this mutation is completely dominant over wild type. When you treat bacteria of the S mutant strain with a mutagen and select for mutant bacteria that can express the enzymes encoded by lacZ, lacY, and lacA genes in the presence of lactose, some of the mutations map to the lac operator region and others to the lac repressor gene. On the basis of your knowledge of the lactose operon, provide a molecular genetic explanation for all these properties of the S mutation. Include an explanation of the constitutive nature of the “reverse mutations.”

Answer: The S mutation is an alteration in lacI such that the repressor protein binds to the operator, regardless of whether inducer is present or not. In other words, it is a mutation that inactivates the allosteric site which binds to inducer, while not affecting the ability of the repressor to bind to the operator site. The dominance of the S mutation is due to the binding of the mutant repressor, even under circumstances when normal repressor does not bind to DNA (that is, in the presence of inducer). The constitutive reverse mutations that map to lacI are Chapter Eleven 321

mutational events which inactivate the ability of this repressor to bind to the operator. The constitutive reverse mutations that map to the operator alter the operator DNA sequence such that it will not permit binding to any repressor molecules (wild-type or mutant repressor).

20. The in E. coli encodes enzymes essential for the biosynthesis of tryptophan. The general mechanism for controlling the trp operon is similar to that observed with the lac operon: when the repressor binds to the operator, transcription is prevented; when the repressor does not bind the operator, transcription proceeds. The regulation of the trp operon differs from the regulation of the lac operon in the following way: the enzymes encoded by the trp opoeron are not synthesized when tryptophan is present but rather when it is absent. In the trp operon, the repressor has two binding sites: one for DNA and the other for the molecule, tryptophan. The trp repressor must first bind to a molecule of tryptophan before it can bind effectively to the trp operator.

a. Draw a map of the tryptophan operon, indicating the promoter (P), the operator (O), and the first structural gene of the tryptothan operon (trpA). In your drawing, indicate where on the DNA the repressor protein binds when it is bound to tryptophan.

b. The trpR gene encodes the repressor; trpO is the operator; trpA encodes the enzyme tryptophan synthetase. A trpR2 repressor cannot bind tryptophan, a trpO2 operator cannot be bound by the repressor, and the enzyme encoded by a trpA2 mutant gene is completely inactive. Do you expect to find active tryptophan synthetase in each of the following mutant strains when the cells are grown in the presence of tryptophan? In its absence?

i. R+ O+ A+ (wild type) ii. R– O+ A+/R+ O+ A– iii. R+ O– A+/R+ O+ A–

Answer: a.

b. i. trpA is not synthesized in the presence of tryptophan; it is synthesized in the absence of tryptophan.

ii. trpA is not synthesized in the presence of tryptophan; it is synthesizedin the absence of tryptophan. The second operon contains a trpA– mutation and is unable to make any active tryptophan synthetase enzyme. However, this operon contains a wild-type trpR gene, which encodes a functional repressor molecule. 322 Chapter Eleven

Because this gene product is a diffusible molecule (trans-acting), it will act on the other DNA molecule containing the mutant trpR– gene and bind to the operator on that molecule. Thus, trpA will be repressed when tryptophan binds the repressor, causing the repressor to bind the operator. In the absence of tryptophan, the repressor will not bind to either operator, and transcription will proceed.

iii. trpA is synthesized both in the presence and in the absence of tryptophan. Because the second operon contains a mutant trpA– gene, no functional tryptophan synthetase enzyme will be made from this DNA molecule. The first operon contains a wild-type trpA gene and will be responsible for the intracellular supply of tryptophan synthetase and ultimately, tryptophan. However, this operon contains a mutant (trpO–) operator region that cannot be bound by the repressor molecules. Because the operator region is cis- acting and does not encode a diffusible gene product, the wild-type trpO gene on the other DNA molecule cannot substitute for the mutant operator. Therefore, the trpA gene will always be transcribed (constitutive) regardless of the levels of tryptophan in the cell.

21. The activity of the enzyme -galactosidase produced by wild-type cells grown in media supplemented with different carbon sources is measured. In relative units, the following levels of activity are found:

Glucose Lactose Lactose + glucose 0 100 1

Predict the relative levels of -galactosidase activity in cells grown under similar conditions when the cells are lacI–, lacIS, lacO, and crp–.

Answer:

Glucose Lactose Lactose + glucose wild-type 0 100 1 lacI– 1 100 1 lacIs 0 0 0 lacO– 1 100 1 crp– 0 1 1

lacI– —leads to absence of negative control by repressor binding but still under the positive control of CAP-cAMP binding

lacIs —because the repressor does not bind lactose but still binds DNA, transcription will be blocked under all conditions

lacO– —leads to absence of negative control by repressor binding but still under the positive control of CAP-cAMP binding Chapter Eleven 323

crp– —leads to absence of positive control by CAP-cAMP binding but still under the negative control of repressor binding

22. A bacteriophage  is found that is able to lysogenize its E. coli host at 30°C but not at 42°C. What genes may be mutant in this phage?

Answer: Mutations in cI, cII, cIII would all effect lysogeny. cI encodes the repressor, cII encodes an activator of PRE, and cIII encodes a protein that protects cII from degradation. Mutations in N (an antiterminator) would also effect lysogeny as its function is required for transcription of the cII and cIII genes, but it is also necessary for genes involved in lysis. Mutations in the gene encoding the integrase (int) would also effect the ability of a mutant phage to lysogenize.

23. What would happen to the ability of bacteriophage  to lyse a host cell if it acquired a mutation in the OR binding site for the Cro protein? Why?

Answer: A mutation that prevents Cro binding to OR would prevent the lytic cycle. cI binding would still allow lysogeny. Cro binding is necessary to block the maintenance of cI transcription and allow transcription of genes for the lytic cycle.

24. Contrast the effects of mutations in genes encoding sporulation-specific  factors with mutations in the –35 and –10 regions of the promoters of genes in their .

a. Would functional mutations in the -factor genes or in the individual promoters have the greater effect on sporulation? b. On the basis of the sequences shown in Figure 11-30b, would you expect all point mutations in –35 or –10 regions to affect gene expression?

Answer: a. Sporulation-specific  factors control many genes. For example, E binds to at least 121 promoters, within 34 operons and 87 individual genes, to regulate more than 250 genes. A loss of this  factor would prevent the proper transcription of all of these more than 250 genes. The loss of any one of the 121 promoters controlled by this  factor would only affect the operon or individual gene of that promoter.

b. If you look carefully at the −35 and −10 sequences shown in Figure 11-30b, you will observe that there are differences in these sequences among the genes controlled by the same  factor. For example, the −35 region of the promoter for the ybaN gene is TTATATT, but the same region for the ydcA 324 Chapter Eleven

gene is TACTATT, yet both still function correctly. When comparing all promoters regulated by a particular  factor, a “consensus” sequence can be determined, but there will be variations observed as well. Given this, you would not expect all point mutations in this region to effect gene expression. Some variation is possible.