Chapter 1 Wave–Particle Duality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Path Integrals in Quantum Mechanics
Path Integrals in Quantum Mechanics Dennis V. Perepelitsa MIT Department of Physics 70 Amherst Ave. Cambridge, MA 02142 Abstract We present the path integral formulation of quantum mechanics and demon- strate its equivalence to the Schr¨odinger picture. We apply the method to the free particle and quantum harmonic oscillator, investigate the Euclidean path integral, and discuss other applications. 1 Introduction A fundamental question in quantum mechanics is how does the state of a particle evolve with time? That is, the determination the time-evolution ψ(t) of some initial | i state ψ(t ) . Quantum mechanics is fully predictive [3] in the sense that initial | 0 i conditions and knowledge of the potential occupied by the particle is enough to fully specify the state of the particle for all future times.1 In the early twentieth century, Erwin Schr¨odinger derived an equation specifies how the instantaneous change in the wavefunction d ψ(t) depends on the system dt | i inhabited by the state in the form of the Hamiltonian. In this formulation, the eigenstates of the Hamiltonian play an important role, since their time-evolution is easy to calculate (i.e. they are stationary). A well-established method of solution, after the entire eigenspectrum of Hˆ is known, is to decompose the initial state into this eigenbasis, apply time evolution to each and then reassemble the eigenstates. That is, 1In the analysis below, we consider only the position of a particle, and not any other quantum property such as spin. 2 D.V. Perepelitsa n=∞ ψ(t) = exp [ iE t/~] n ψ(t ) n (1) | i − n h | 0 i| i n=0 X This (Hamiltonian) formulation works in many cases. -
The Five Common Particles
The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2. -
Wave Nature of Matter: Made Easy (Lesson 3) Matter Behaving As a Wave? Ridiculous!
Wave Nature of Matter: Made Easy (Lesson 3) Matter behaving as a wave? Ridiculous! Compiled by Dr. SuchandraChatterjee Associate Professor Department of Chemistry Surendranath College Remember? I showed you earlier how Einstein (in 1905) showed that the photoelectric effect could be understood if light were thought of as a stream of particles (photons) with energy equal to hν. I got my Nobel prize for that. Louis de Broglie (in 1923) If light can behave both as a wave and a particle, I wonder if a particle can also behave as a wave? Louis de Broglie I’ll try messing around with some of Einstein’s formulae and see what I can come up with. I can imagine a photon of light. If it had a “mass” of mp, then its momentum would be given by p = mpc where c is the speed of light. Now Einstein has a lovely formula that he discovered linking mass with energy (E = mc2) and he also used Planck’s formula E = hf. What if I put them equal to each other? mc2 = hf mc2 = hf So for my photon 2 mp = hfhf/c/c So if p = mpc = hfhf/c/c p = mpc = hf/chf/c Now using the wave equation, c = fλ (f = c/λ) So mpc = hc /λc /λc= h/λ λ = hp So you’re saying that a particle of momentum p has a wavelength equal to Planck’s constant divided by p?! Yes! λ = h/p It will be known as the de Broglie wavelength of the particle Confirmation of de Broglie’s ideas De Broglie didn’t have to wait long for his idea to be shown to be correct. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
Motion and Time Study the Goals of Motion Study
Motion and Time Study The Goals of Motion Study • Improvement • Planning / Scheduling (Cost) •Safety Know How Long to Complete Task for • Scheduling (Sequencing) • Efficiency (Best Way) • Safety (Easiest Way) How Does a Job Incumbent Spend a Day • Value Added vs. Non-Value Added The General Strategy of IE to Reduce and Control Cost • Are people productive ALL of the time ? • Which parts of job are really necessary ? • Can the job be done EASIER, SAFER and FASTER ? • Is there a sense of employee involvement? Some Techniques of Industrial Engineering •Measure – Time and Motion Study – Work Sampling • Control – Work Standards (Best Practices) – Accounting – Labor Reporting • Improve – Small group activities Time Study • Observation –Stop Watch – Computer / Interactive • Engineering Labor Standards (Bad Idea) • Job Order / Labor reporting data History • Frederick Taylor (1900’s) Studied motions of iron workers – attempted to “mechanize” motions to maximize efficiency – including proper rest, ergonomics, etc. • Frank and Lillian Gilbreth used motion picture to study worker motions – developed 17 motions called “therbligs” that describe all possible work. •GET G •PUT P • GET WEIGHT GW • PUT WEIGHT PW •REGRASP R • APPLY PRESSURE A • EYE ACTION E • FOOT ACTION F • STEP S • BEND & ARISE B • CRANK C Time Study (Stopwatch Measurement) 1. List work elements 2. Discuss with worker 3. Measure with stopwatch (running VS reset) 4. Repeat for n Observations 5. Compute mean and std dev of work station time 6. Be aware of allowances/foreign element, etc Work Sampling • Determined what is done over typical day • Random Reporting • Periodic Reporting Learning Curve • For repetitive work, worker gains skill, knowledge of product/process, etc over time • Thus we expect output to increase over time as more units are produced over time to complete task decreases as more units are produced Traditional Learning Curve Actual Curve Change, Design, Process, etc Learning Curve • Usually define learning as a percentage reduction in the time it takes to make a unit. -
A Discussion on Characteristics of the Quantum Vacuum
A Discussion on Characteristics of the Quantum Vacuum Harold \Sonny" White∗ NASA/Johnson Space Center, 2101 NASA Pkwy M/C EP411, Houston, TX (Dated: September 17, 2015) This paper will begin by considering the quantum vacuum at the cosmological scale to show that the gravitational coupling constant may be viewed as an emergent phenomenon, or rather a long wavelength consequence of the quantum vacuum. This cosmological viewpoint will be reconsidered on a microscopic scale in the presence of concentrations of \ordinary" matter to determine the impact on the energy state of the quantum vacuum. The derived relationship will be used to predict a radius of the hydrogen atom which will be compared to the Bohr radius for validation. The ramifications of this equation will be explored in the context of the predicted electron mass, the electrostatic force, and the energy density of the electric field around the hydrogen nucleus. It will finally be shown that this perturbed energy state of the quan- tum vacuum can be successfully modeled as a virtual electron-positron plasma, or the Dirac vacuum. PACS numbers: 95.30.Sf, 04.60.Bc, 95.30.Qd, 95.30.Cq, 95.36.+x I. BACKGROUND ON STANDARD MODEL OF COSMOLOGY Prior to developing the central theme of the paper, it will be useful to present the reader with an executive summary of the characteristics and mathematical relationships central to what is now commonly referred to as the standard model of Big Bang cosmology, the Friedmann-Lema^ıtre-Robertson-Walker metric. The Friedmann equations are analytic solutions of the Einstein field equations using the FLRW metric, and Equation(s) (1) show some commonly used forms that include the cosmological constant[1], Λ. -
Lecture 9, P 1 Lecture 9: Introduction to QM: Review and Examples
Lecture 9, p 1 Lecture 9: Introduction to QM: Review and Examples S1 S2 Lecture 9, p 2 Photoelectric Effect Binding KE=⋅ eV = hf −Φ energy max stop Φ The work function: 3.5 Φ is the minimum energy needed to strip 3 an electron from the metal. 2.5 2 (v) Φ is defined as positive . 1.5 stop 1 Not all electrons will leave with the maximum V f0 kinetic energy (due to losses). 0.5 0 0 5 10 15 Conclusions: f (x10 14 Hz) • Light arrives in “packets” of energy (photons ). • Ephoton = hf • Increasing the intensity increases # photons, not the photon energy. Each photon ejects (at most) one electron from the metal. Recall: For EM waves, frequency and wavelength are related by f = c/ λ. Therefore: Ephoton = hc/ λ = 1240 eV-nm/ λ Lecture 9, p 3 Photoelectric Effect Example 1. When light of wavelength λ = 400 nm shines on lithium, the stopping voltage of the electrons is Vstop = 0.21 V . What is the work function of lithium? Lecture 9, p 4 Photoelectric Effect: Solution 1. When light of wavelength λ = 400 nm shines on lithium, the stopping voltage of the electrons is Vstop = 0.21 V . What is the work function of lithium? Φ = hf - eV stop Instead of hf, use hc/ λ: 1240/400 = 3.1 eV = 3.1eV - 0.21eV For Vstop = 0.21 V, eV stop = 0.21 eV = 2.89 eV Lecture 9, p 5 Act 1 3 1. If the workfunction of the material increased, (v) 2 how would the graph change? stop a. -
Bouncing Oil Droplets, De Broglie's Quantum Thermostat And
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 August 2018 doi:10.20944/preprints201808.0475.v1 Peer-reviewed version available at Entropy 2018, 20, 780; doi:10.3390/e20100780 Article Bouncing oil droplets, de Broglie’s quantum thermostat and convergence to equilibrium Mohamed Hatifi 1, Ralph Willox 2, Samuel Colin 3 and Thomas Durt 4 1 Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249,13013 Marseille, France; hatifi[email protected] 2 Graduate School of Mathematical Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8914 Tokyo, Japan; [email protected] 3 Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150,22290-180, Rio de Janeiro – RJ, Brasil; [email protected] 4 Aix Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249,13013 Marseille, France; [email protected] Abstract: Recently, the properties of bouncing oil droplets, also known as ‘walkers’, have attracted much attention because they are thought to offer a gateway to a better understanding of quantum behaviour. They indeed constitute a macroscopic realization of wave-particle duality, in the sense that their trajectories are guided by a self-generated surrounding wave. The aim of this paper is to try to describe walker phenomenology in terms of de Broglie-Bohm dynamics and of a stochastic version thereof. In particular, we first study how a stochastic modification of the de Broglie pilot-wave theory, à la Nelson, affects the process of relaxation to quantum equilibrium, and we prove an H-theorem for the relaxation to quantum equilibrium under Nelson-type dynamics. -
Einstein and Physics Hundred Years Ago∗
Vol. 37 (2006) ACTA PHYSICA POLONICA B No 1 EINSTEIN AND PHYSICS HUNDRED YEARS AGO∗ Andrzej K. Wróblewski Physics Department, Warsaw University Hoża 69, 00-681 Warszawa, Poland [email protected] (Received November 15, 2005) In 1905 Albert Einstein published four papers which revolutionized physics. Einstein’s ideas concerning energy quanta and electrodynamics of moving bodies were received with scepticism which only very slowly went away in spite of their solid experimental confirmation. PACS numbers: 01.65.+g 1. Physics around 1900 At the turn of the XX century most scientists regarded physics as an almost completed science which was able to explain all known physical phe- nomena. It appeared to be a magnificent structure supported by the three mighty pillars: Newton’s mechanics, Maxwell’s electrodynamics, and ther- modynamics. For the celebrated French chemist Marcellin Berthelot there were no major unsolved problems left in science and the world was without mystery. Le monde est aujourd’hui sans mystère— he confidently wrote in 1885 [1]. Albert A. Michelson was of the opinion that “The more important fundamen- tal laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplanted in consequence of new discoveries is exceedingly remote . Our future dis- coveries must be looked for in the sixth place of decimals” [2]. Physics was not only effective but also perfect and beautiful. Henri Poincaré maintained that “The theory of light based on the works of Fresnel and his successors is the most perfect of all the theories of physics” [3]. -
Arxiv:0809.1003V5 [Hep-Ph] 5 Oct 2010 Htnadgaio Aslimits Mass Graviton and Photon I.Scr N Pcltv Htnms Limits Mass Photon Speculative and Secure III
October 7, 2010 Photon and Graviton Mass Limits Alfred Scharff Goldhaber∗,† and Michael Martin Nieto† ∗C. N. Yang Institute for Theoretical Physics, SUNY Stony Brook, NY 11794-3840 USA and †Theoretical Division (MS B285), Los Alamos National Laboratory, Los Alamos, NM 87545 USA Efforts to place limits on deviations from canonical formulations of electromagnetism and gravity have probed length scales increasing dramatically over time. Historically, these studies have passed through three stages: (1) Testing the power in the inverse-square laws of Newton and Coulomb, (2) Seeking a nonzero value for the rest mass of photon or graviton, (3) Considering more degrees of freedom, allowing mass while preserving explicit gauge or general-coordinate invariance. Since our previous review the lower limit on the photon Compton wavelength has improved by four orders of magnitude, to about one astronomical unit, and rapid current progress in astronomy makes further advance likely. For gravity there have been vigorous debates about even the concept of graviton rest mass. Meanwhile there are striking observations of astronomical motions that do not fit Einstein gravity with visible sources. “Cold dark matter” (slow, invisible classical particles) fits well at large scales. “Modified Newtonian dynamics” provides the best phenomenology at galactic scales. Satisfying this phenomenology is a requirement if dark matter, perhaps as invisible classical fields, could be correct here too. “Dark energy” might be explained by a graviton-mass-like effect, with associated Compton wavelength comparable to the radius of the visible universe. We summarize significant mass limits in a table. Contents B. Einstein’s general theory of relativity and beyond? 20 C. -
The Uncertainty Principle (Stanford Encyclopedia of Philosophy) Page 1 of 14
The Uncertainty Principle (Stanford Encyclopedia of Philosophy) Page 1 of 14 Open access to the SEP is made possible by a world-wide funding initiative. Please Read How You Can Help Keep the Encyclopedia Free The Uncertainty Principle First published Mon Oct 8, 2001; substantive revision Mon Jul 3, 2006 Quantum mechanics is generally regarded as the physical theory that is our best candidate for a fundamental and universal description of the physical world. The conceptual framework employed by this theory differs drastically from that of classical physics. Indeed, the transition from classical to quantum physics marks a genuine revolution in our understanding of the physical world. One striking aspect of the difference between classical and quantum physics is that whereas classical mechanics presupposes that exact simultaneous values can be assigned to all physical quantities, quantum mechanics denies this possibility, the prime example being the position and momentum of a particle. According to quantum mechanics, the more precisely the position (momentum) of a particle is given, the less precisely can one say what its momentum (position) is. This is (a simplistic and preliminary formulation of) the quantum mechanical uncertainty principle for position and momentum. The uncertainty principle played an important role in many discussions on the philosophical implications of quantum mechanics, in particular in discussions on the consistency of the so-called Copenhagen interpretation, the interpretation endorsed by the founding fathers Heisenberg and Bohr. This should not suggest that the uncertainty principle is the only aspect of the conceptual difference between classical and quantum physics: the implications of quantum mechanics for notions as (non)-locality, entanglement and identity play no less havoc with classical intuitions.