Wave-Particle Duality Relation with a Quantum Which-Path Detector
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Quantum Field Theory*
Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement. -
The Concept of Quantum State : New Views on Old Phenomena Michel Paty
The concept of quantum state : new views on old phenomena Michel Paty To cite this version: Michel Paty. The concept of quantum state : new views on old phenomena. Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner. Revisiting the Founda- tions of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, p. 451-478, 2003. halshs-00189410 HAL Id: halshs-00189410 https://halshs.archives-ouvertes.fr/halshs-00189410 Submitted on 20 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « The concept of quantum state: new views on old phenomena », in Ashtekar, Abhay, Cohen, Robert S., Howard, Don, Renn, Jürgen, Sarkar, Sahotra & Shimony, Abner (eds.), Revisiting the Foundations of Relativistic Physics : Festschrift in Honor of John Stachel, Boston Studies in the Philosophy and History of Science, Dordrecht: Kluwer Academic Publishers, 451-478. , 2003 The concept of quantum state : new views on old phenomena par Michel PATY* ABSTRACT. Recent developments in the area of the knowledge of quantum systems have led to consider as physical facts statements that appeared formerly to be more related to interpretation, with free options. -
Light and Matter Diffraction from the Unified Viewpoint of Feynman's
European J of Physics Education Volume 8 Issue 2 1309-7202 Arlego & Fanaro Light and Matter Diffraction from the Unified Viewpoint of Feynman’s Sum of All Paths Marcelo Arlego* Maria de los Angeles Fanaro** Universidad Nacional del Centro de la Provincia de Buenos Aires CONICET, Argentine *[email protected] **[email protected] (Received: 05.04.2018, Accepted: 22.05.2017) Abstract In this work, we present a pedagogical strategy to describe the diffraction phenomenon based on a didactic adaptation of the Feynman’s path integrals method, which uses only high school mathematics. The advantage of our approach is that it allows to describe the diffraction in a fully quantum context, where superposition and probabilistic aspects emerge naturally. Our method is based on a time-independent formulation, which allows modelling the phenomenon in geometric terms and trajectories in real space, which is an advantage from the didactic point of view. A distinctive aspect of our work is the description of the series of transformations and didactic transpositions of the fundamental equations that give rise to a common quantum framework for light and matter. This is something that is usually masked by the common use, and that to our knowledge has not been emphasized enough in a unified way. Finally, the role of the superposition of non-classical paths and their didactic potential are briefly mentioned. Keywords: quantum mechanics, light and matter diffraction, Feynman’s Sum of all Paths, high education INTRODUCTION This work promotes the teaching of quantum mechanics at the basic level of secondary school, where the students have not the necessary mathematics to deal with canonical models that uses Schrodinger equation. -
Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function
Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function Shuming Wen ( [email protected] ) Faculty of Land and Resources Engineering, Kunming University of Science and Technology. Research Article Keywords: probability origin, wave-function collapse, uncertainty principle, quantum tunnelling, double-slit and single-slit experiments Posted Date: November 16th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-95171/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Origin of Probability in Quantum Mechanics and the Physical Interpretation of the Wave Function Shuming Wen Faculty of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093 Abstract The theoretical calculation of quantum mechanics has been accurately verified by experiments, but Copenhagen interpretation with probability is still controversial. To find the source of the probability, we revised the definition of the energy quantum and reconstructed the wave function of the physical particle. Here, we found that the energy quantum ê is 6.62606896 ×10-34J instead of hν as proposed by Planck. Additionally, the value of the quality quantum ô is 7.372496 × 10-51 kg. This discontinuity of energy leads to a periodic non-uniform spatial distribution of the particles that transmit energy. A quantum objective system (QOS) consists of many physical particles whose wave function is the superposition of the wave functions of all physical particles. The probability of quantum mechanics originates from the distribution rate of the particles in the QOS per unit volume at time t and near position r. Based on the revision of the energy quantum assumption and the origin of the probability, we proposed new certainty and uncertainty relationships, explained the physical mechanism of wave-function collapse and the quantum tunnelling effect, derived the quantum theoretical expression of double-slit and single-slit experiments. -
Testing the Limits of Quantum Mechanics the Physics Underlying
Testing the limits of quantum mechanics The physics underlying non-relativistic quantum mechanics can be summed up in two postulates. Postulate 1 is very precise, and says that the wave function of a quantum system evolves according to the Schrodinger equation, which is a linear and deterministic equation. Postulate 2 has an entirely different flavor, and can be roughly stated as follows: when the quantum system interacts with a classical measuring apparatus, its wave function collapses, from being in a superposition of the eigenstates of the measured observable, to being in just one of the eigenstates. The outcome of the measurement is random and cannot be predicted; the quantum system collapses to one or the other eigenstates, with a probability that is proportional to the squared modulus of the wave function for that eigenstate. This is the Born probability rule. Since quantum theory is extremely successful, and not contradicted by any experiment to date, one can simply accept the 2nd postulate as such, and let things be. On the other hand, ever since the birth of quantum theory, some physicists have been bothered by this postulate. The following troubling questions arise. How exactly is a classical measuring apparatus defined? How large must a quantum system be, before it can be called classical? The Schrodinger equation, which in principle is supposed to apply to all physical systems, whether large or small, does not answer this question. In particular, the equation does not explain why the measuring apparatus, say a pointer, is never seen in a quantum superposition of the two states `pointer to the left’ and `pointer to the right’? And if the equation does apply to the (quantum system + apparatus) as a whole, why are the outcomes random? Why does collapse, which apparently violates linear superposition, take place? Where have the probabilities come from, in a deterministic equation (with precise initial conditions), and why do they obey the Born rule? This set of questions generally goes under the name `the quantum measurement problem’. -
Research-Based Interactive Simulations to Support Quantum Mechanics Learning and Teaching
Research-based interactive simulations to support quantum mechanics learning and teaching Antje Kohnle School of Physics and Astronomy, University of St Andrews Abstract Quantum mechanics holds a fascination for many students, but its mathematical complexity can present a major barrier. Traditional approaches to introductory quantum mechanics have been found to decrease student interest. Topics which enthuse students such as quantum information are often only covered in advanced courses. The QuVis Quantum Mechanics Visualization project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Some simulations allow students to collect data to see how quantum-mechanical quantities are determined experimentally. Through text explanations, simulations aim to be self-contained instructional tools. Simulations are research-based, and evaluation with students informs all stages of the development process. Simulations and activities are iteratively refined using individual student observation sessions, where students freely explore a simulation and then work on the associated activity, as well as in-class trials using student surveys, pre- and post-tests and student responses to activities. A recent collection of QuVis simulations is embedded in the UK Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. -
Defense Primer: Quantum Technology
Updated June 7, 2021 Defense Primer: Quantum Technology Quantum technology translates the principles of quantum Successful development and deployment of such sensors physics into technological applications. In general, quantum could lead to significant improvements in submarine technology has not yet reached maturity; however, it could detection and, in turn, compromise the survivability of sea- hold significant implications for the future of military based nuclear deterrents. Quantum sensors could also sensing, encryption, and communications, as well as for enable military personnel to detect underground structures congressional oversight, authorizations, and appropriations. or nuclear materials due to their expected “extreme sensitivity to environmental disturbances.” The sensitivity Key Concepts in Quantum Technology of quantum sensors could similarly potentially enable Quantum applications rely on a number of key concepts, militaries to detect electromagnetic emissions, thus including superposition, quantum bits (qubits), and enhancing electronic warfare capabilities and potentially entanglement. Superposition refers to the ability of quantum assisting in locating concealed adversary forces. systems to exist in two or more states simultaneously. A qubit is a computing unit that leverages the principle of The DSB concluded that quantum radar, hypothesized to be superposition to encode information. (A classical computer capable of identifying the performance characteristics (e.g., encodes information in bits that can represent binary -
Zero-Point Energy and Interstellar Travel by Josh Williams
;;;;;;;;;;;;;;;;;;;;;; itself comes from the conversion of electromagnetic Zero-Point Energy and radiation energy into electrical energy, or more speciÞcally, the conversion of an extremely high Interstellar Travel frequency bandwidth of the electromagnetic spectrum (beyond Gamma rays) now known as the zero-point by Josh Williams spectrum. ÒEre many generations pass, our machinery will be driven by power obtainable at any point in the universeÉ it is a mere question of time when men will succeed in attaching their machinery to the very wheel work of nature.Ó ÐNikola Tesla, 1892 Some call it the ultimate free lunch. Others call it absolutely useless. But as our world civilization is quickly coming upon a terrifying energy crisis with As you can see, the wavelengths from this part of little hope at the moment, radical new ideas of usable the spectrum are incredibly small, literally atomic and energy will be coming to the forefront and zero-point sub-atomic in size. And since the wavelength is so energy is one that is currently on its way. small, it follows that the frequency is quite high. The importance of this is that the intensity of the energy So, what the hell is it? derived for zero-point energy has been reported to be Zero-point energy is a type of energy that equal to the cube (the third power) of the frequency. exists in molecules and atoms even at near absolute So obviously, since weÕre already talking about zero temperatures (-273¡C or 0 K) in a vacuum. some pretty high frequencies with this portion of At even fractions of a Kelvin above absolute zero, the electromagnetic spectrum, weÕre talking about helium still remains a liquid, and this is said to be some really high energy intensities. -
The Concept of the Photon—Revisited
The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser. -
The Elitzur-Vaidman Experiment Violates the Leggett-Garg Inequality
Atomic “bomb testing”: the Elitzur-Vaidman experiment violates the Leggett-Garg inequality Carsten Robens,1 Wolfgang Alt,1 Clive Emary,2 Dieter Meschede,1 and Andrea Alberti1, ∗ 1Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, D-53115 Bonn, Germany 2Joint Quantum Centre Durham-Newcastle, Newcastle University, Newcastle upon Tyne NE1 7RU, UK (Dated: September 21, 2016) Abstract. Elitzur and Vaidman have proposed a measurement scheme that, based on the quantum super- position principle, allows one to detect the presence of an object in a dramatic scenario, a bomb without interacting with it. It was pointed out by Ghirardi that this interaction-free measurement scheme can be put in direct relation with falsification tests of the macro-realistic worldview. Here we have implemented the “bomb test” with a single atom trapped in a spin-dependent optical lattice to show explicitly a violation of the Leggett-Garg inequality a quantitative criterion fulfilled by macro-realistic physical theories. To perform interaction-free measurements, we have implemented a novel measurement method that correlates spin and position of the atom. This method, which quantum mechanically entangles spin and position, finds general application for spin measurements, thereby avoiding the shortcomings inherent in the widely used push-out technique. Allowing decoherence to dominate the evolution of our system causes a transition from quantum to classical behavior in fulfillment of the Leggett-Garg inequality. I. INTRODUCTION scopically distinct states. In a macro-realistic world- view, it is plausible to assume that a negative out- Measuring physical properties of an object whether come of a measurement cannot affect the evolution of macroscopic or microscopic is in most cases associated a macroscopic system, meaning that negative measure- with an interaction. -
Non-Relativistic Quantum Mechanics Lecture Notes – FYS 4110
Non-Relativistic Quantum Mechanics Lecture notes – FYS 4110 Jon Magne Leinaas Department of Physics, University of Oslo September 2004 2 Preface These notes are prepared for the physics course FYS 4110, Non-relativistic Quantum Me- chanics, which is a second level course in quantum mechanics at the Physics Department in Oslo. The course was first lectured in the fall semester of 2003, and the intention with this new course was to bring in more ”modern aspects” in the teaching of quantum physics. The lecture notes have been developed parallel with my teaching of the course. They are still in the process of being modified and extended. I apologize for misprints that have still survived and welcome feedback from students concerning misprints as well as opinions on the contents and presentation. Department of Physics, University of Oslo, August 2004. Jon Magne Leinaas Contents 1 Quantum formalism 5 1.1 Summary of quantum states and observables . 5 1.1.1 Classical and quantum states . 5 1.1.2 The fundamental postulates . 8 1.1.3 Coordinate representation and wave functions . 11 1.1.4 Spin-half system and the Stern Gerlach experiment . 12 1.2 Quantum Dynamics . 14 1.2.1 The Schrodinger¨ and Heisenberg pictures . 14 1.2.2 Path integrals . 18 1.2.3 Path integral for a free particle . 21 1.2.4 The classical theory as a limit of the path integral . 23 1.2.5 A semiclassical approximation . 24 1.2.6 The double slit experiment revisited . 25 1.3 Two-level system and harmonic oscillator . 27 1.3.1 The two-level system .