Use of Genomic Approaches in Understanding the Role of Actinomycetes As

Total Page:16

File Type:pdf, Size:1020Kb

Use of Genomic Approaches in Understanding the Role of Actinomycetes As Use of Genomic Approaches in Understanding the Role 16 of Actinomycetes as PGP in Grain Legumes Mamta Sharma, Avijit Tarafdar, and Raju Ghosh Abstract The advancement in molecular technologies has given a breakthrough to explore the untapped and novel microbial isolates for characterization in every aspect as we can consider microbes as an important primary natural store house for key secondary metabolites and enzymes. Actinomycetes are the most fruitful source of microorganisms for all types of bioactive second- ary metabolites, including agroactive-antibiotic molecules that are best recognized and most valuable for their role in agriculture and industries. In agriculture, actinomycetes are used as biocontrol agents against some pests and pathogenic organisms as well as plant growth-promoting (PGP) agents for crops. Use of different molecular methods, e.g., metagenomics, metatranscriptomics, genetic fingerprinting, proteogenomics, and metaproteomics, are more significant for classifying and discovering the immense diversity in microbial population and for understanding their interactions with other abiotic and biotic environmental elements. The opportunity of accessing inexpensive sequencing techniques has led to the assemblies of copious genomic data for actinomycetes, such as Streptomy- ces and related species, with the goal of discovering novel bioactive meta- bolic and their utility as PGP; however, the use of actinomycetes in agriculture using genomic approaches is in its initial stages. Keywords Actinomycetes • Plant growth-promotion • Grain legumes • Whole genome sequence • Molecular technologies 16.1 Introduction M. Sharma (*) • A. Tarafdar • R. Ghosh International Crops Research Institute for the Semi-Arid The analysis of microbial communities with Tropics (ICRISAT), Hyderabad, Telengana 502 324, the recent advances in culture-independent India molecular techniques, including sequencing e-mail: [email protected] # Springer Science+Business Media Singapore 2016 249 G. Subramaniam et al. (eds.), Plant Growth Promoting Actinobacteria, DOI 10.1007/978-981-10-0707-1_16 250 M. Sharma et al. technologies and genomics information, has 16.2 Role of Molecular Approaches begun a new era of microbial ecology. Multiple for Identification techniques in molecular approaches based on of Actinomycetes direct analysis of lipids, proteins, and nucleic acids from environmental samples have uncov- For identification and characterization of any ered structural and functional information about biological organism, nucleic acid-based molecu- microbial communities. Molecular techniques, lar approach is considered the most powerful such as genetic fingerprinting and whole genome approach and provides significant information sequencing (WGS), are important tools for dis- about the organisms and the relationship with covering, characterizing the diversified microbial others (Kumar et al. 2014a). In past decades, population, and understanding their chemistry classification and identification of organisms by with other abiotic and biotic factors in environs. approach of molecular systematics was based on Molecular and advanced technologies have a nucleic acid hybridization studies. Gradual intro- massive role in investigating the knowledge by duction of nucleic acid-based sequencing exploring the actinomycetes across the microbial techniques in molecular systematics has been world. Advancement of WGS has made a scien- proved to be authentic (O’Donnell et al. 1993). tific breakthrough, which unchains the under- Following the polymerase chain reaction standing of latent biochemical and molecular (PCR) technology, for better separation of the topographies of uncultured microbe present in PCR products in polyacrylamide matrix, urea- composite environs. The tactic of WGS of formamide denaturing gradient gel electrophore- microbes bare the chemistry of the cryptic sis (DGGE) (Myers et al. 1985) and temperature clusters of biosynthetic-related genes that are gradient gel electrophoresis (TGGE) (Riesner sometimes present but hidden, because those et al. 1989) were well adapted in the laboratory are not well recognized for producing any bioac- for studying microbial ecology. Later, for getting tive secondary metabolites (Fraser et al. 2002). In a sequence-based DNA fingerprint of microbial recent days, a total number of six genera of populations, temperature gradient gels were actinomycetes viz. Corynebacterium, Mycobac- found to be quite promising (Muyzer 1999). terium, Arthrobacter, Frankia, Rhodococcus, Heuer et al. (1997) used DGGE and TGGE to and Streptomyces have enough information study the genetic diversity of actinomycetes in about complete genome sequences to extempo- different soils and to monitor shifts in their rize the core analysis of potential secondary abundances in the potato rhizosphere. They metabolite and gene diversity (James and used actinomycetes group-specific primers for William 2013). Utilizing inexpensive sequencing the direct amplification of 16S rDNA and an techniques has led to the gathering of enormous indirect nested PCR approach using a forward genome sequencing data for Streptomyces and actinomycetes group-specific primer and a related species (Liu et al. 2013) with the goal of reverse bacterial primer, followed by PCR with discovering novel bioactive metabolites. This two bacterial primers. Use of DGGE or TGGE of chapter summarizes recent progress in the poten- the products obtained with the nested PCR made tial applications of actinomycetes using genomic it possible to estimate the abundance of the approaches in agriculture. How they can be com- actinomycetes populations relative to the abun- bined for a comprehensive evaluation of dance of the other bacteria present in the soil. actinomycetes has been illustrated with example Sequence of 16S rDNA in systematic as well studies. as phylogenetic studies of actinomycetes and 16 Use of Genomic Approaches in Understanding the Role of Actinomycetes as... 251 other bacteria is another most commonly used 16.3 Utility of Advanced Genomic approach. Primarily, the study of identification Approaches in Actinomycetes and evolution of actinomycetes based on 16S rDNA has been initiated by amplifying the 16S The genomic technologies are promising tools to rRNA gene implying PCR strategy and followed explore the untapped and novel microbial by direct sequencing of amplified DNA fragments isolates for characterization in all aspects as we (Shiva 2001). Generally, thereafter, the obtained can consider its significance as natural store sequences are further explored in global database house of excellent enzymes and bioactive sec- using bioinformatics tools to find out the identity ondary metabolites. Fluorescence-activated cell and genetic information of query sequence if sorting (FACS) technology is a quick method for available, followed by analysis of phylogenetic separating the cells in a suspension on the basis correlation which reveals the identification of the of fluorescence and cell size. This technology actinomycetes up to the genus level and an over- can be performed for isolation of actinomycetes view on evolutionary aspect. cell from a complex microbial population. Gel In a study by Intra et al. (2011), 16S rRNA gene MicroDrop technology is an efficient enzyme- sequences were used to identify the diversified fluorescence technology, basically used for actinomycetes groups exists in a collection of detection of positive clones by capturing of emit- environmental samples. Detailed comparison of ted fluorescence from catalytic broke down of 16S rRNA gene of 30 actinomycetes isolates biotinylated substrate by specific top articular determined that majority of the isolates (87 %) enzymes present in the positive clone (Short within the environmental samples belong to the et al. 2003). genus Streptomyces spp., whereas one each Recently, high throughput screening (HTS) belongs to Saccharopolyspora and Nocardiopsis technique is considered to be rapid and economi- and two to Nocardia. However, 16S rRNA cal for classifying of any microbial population by sequencing does not always give clear resolution enzymatic characterization, but it is extended to distinguish between closely related genera very little for actinomycetes. HTS consists of (Girard et al. 2013). To order the actinomycetes, drop-based microfluid platform and gives an they presented a novel method based on the array data of insoluble substrates specific for conserved sequence of genes SsgAandSsgB the desired enzymes (Chang et al. 2013). Com- proteins. The wide conserve feature between pared with all HTS-based methods, currently the members of the same genus in amino acid proteomics approach is well accepted in the way (aa) sequence of the SsgB, e.g., only one aa varia- of discovering new microbial flora and fauna. tion was found in between all the SsgB Wang et al. (2012a) first reported on Streptomy- orthologues of identified in Streptomyces,whereas ces sp. products α-glucosidase inhibitor miglitol it has low sequence identity as 40–50 % even using HTS method. They considered 12 actino- between genera of closely related morphologically mycete strains as to be producers of complex actinomycetes, provides concrete data α-glucosidase inhibitors in which strain PW409 for better resolution in classification systems. showed effective inhibitory and was used for Recently, real-time PCR (RT-PCR) technology is fermentation and separation of bioactive com- being used for the specific detection and quantifi- pound using HPLC. In mass spectrometry, two
Recommended publications
  • Streptomyces Sannurensis Sp. Nov., a New Alkaliphilic Member of the Genus Streptomyces Isolated from Wadi Sannur in Egypt
    African Journal of Microbiology Research Vol. 5(11), pp. 1329-1334, 4 June, 2011 Available online http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR11.200 ISSN 1996-0808 ©2011 Academic Journals Full Length Research Paper Streptomyces sannurensis sp. nov., a new alkaliphilic member of the genus Streptomyces isolated from Wadi Sannur in Egypt Wael N. Hozzein1,2*, Mohammed I. A. Ali3, Ola Hammouda2, Ahmed S. Mousa2 and Michael Goodfellow4 1Chair of Advanced Proteomics and Cytomics Research, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia. 2Botany Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt. 3Botany Department, Faculty of Science, Cairo University, Giza, Egypt. 4School of Biology, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK. Accepted 19 April, 2011 The taxonomic position of an actinomycete isolated from a soil sample collected from Wadi Sannur in Egypt was established using a polyphasic approach. The isolate, which was designated WS 51T, was shown to have chemical and morphological properties typical of streptomycetes. An almost complete 16S rDNAgene sequence of the strain was generated and compared with corresponding sequences of representative streptomycetes. The resultant data confirmed the classification of the strain in the genus Streptomyces but also showed that it formed a distinct phyletic line within the 16S rDNAStreptomyces gene tree. The organism was most closely associated to the type strains of Streptomyces hygroscopicus, Streptomyces malaysiensis and Streptomyces yatensis but was readily separated from them using a range of phenotypic properties. It is proposed that strain WS 51T (= CCTCC 001032T = DSM 41834T) be classified in the genus Streptomyces as Streptomyces sannurensis sp.
    [Show full text]
  • Improved Taxonomy of the Genus Streptomyces
    UNIVERSITEIT GENT Faculteit Wetenschappen Vakgroep Biochemie, Fysiologie & Microbiologie Laboratorium voor Microbiologie Improved taxonomy of the genus Streptomyces Benjamin LANOOT Scriptie voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen (Biochemie) Promotor: Prof. Dr. ir. J. Swings Co-promotor: Dr. M. Vancanneyt Academiejaar 2004-2005 FACULTY OF SCIENCES ____________________________________________________________ DEPARTMENT OF BIOCHEMISTRY, PHYSIOLOGY AND MICROBIOLOGY UNIVERSITEIT LABORATORY OF MICROBIOLOGY GENT IMPROVED TAXONOMY OF THE GENUS STREPTOMYCES DISSERTATION Submitted in fulfilment of the requirements for the degree of Doctor (Ph D) in Sciences, Biochemistry December 2004 Benjamin LANOOT Promotor: Prof. Dr. ir. J. SWINGS Co-promotor: Dr. M. VANCANNEYT 1: Aerial mycelium of a Streptomyces sp. © Michel Cavatta, Academy de Lyon, France 1 2 2: Streptomyces coelicolor colonies © John Innes Centre 3: Blue haloes surrounding Streptomyces coelicolor colonies are secreted 3 4 actinorhodin (an antibiotic) © John Innes Centre 4: Antibiotic droplet secreted by Streptomyces coelicolor © John Innes Centre PhD thesis, Faculty of Sciences, Ghent University, Ghent, Belgium. Publicly defended in Ghent, December 9th, 2004. Examination Commission PROF. DR. J. VAN BEEUMEN (ACTING CHAIRMAN) Faculty of Sciences, University of Ghent PROF. DR. IR. J. SWINGS (PROMOTOR) Faculty of Sciences, University of Ghent DR. M. VANCANNEYT (CO-PROMOTOR) Faculty of Sciences, University of Ghent PROF. DR. M. GOODFELLOW Department of Agricultural & Environmental Science University of Newcastle, UK PROF. Z. LIU Institute of Microbiology Chinese Academy of Sciences, Beijing, P.R. China DR. D. LABEDA United States Department of Agriculture National Center for Agricultural Utilization Research Peoria, IL, USA PROF. DR. R.M. KROPPENSTEDT Deutsche Sammlung von Mikroorganismen & Zellkulturen (DSMZ) Braunschweig, Germany DR.
    [Show full text]
  • Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces Spp
    microorganisms Article Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. 1, 2, 3 1 Zhenlong Cheng y, Sean McCann y, Nicoletta Faraone , Jody-Ann Clarke , E. Abbie Hudson 2, Kevin Cloonan 2, N. Kirk Hillier 2,* and Kapil Tahlan 1,* 1 Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; [email protected] (Z.C.); [email protected] (J.-A.C.) 2 Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; [email protected] (S.M.); [email protected] (E.A.H.); [email protected] (K.C.) 3 Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada; [email protected] * Correspondence: [email protected] (N.K.H.); [email protected] (K.T.) These authors contributed equally. y Received: 13 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp.
    [Show full text]
  • Distribution of Epsilon-Polylysine Synthetases in Coryneform Bacteria
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.220772; this version posted July 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Observation 2 Distribution of Epsilon-Polylysine Synthetases in Coryneform 3 Bacteria Isolated from Cheese and Human Skin 4 Xinglin Jianga, Yulia Radkoa, Tetiana Grena, Emilia Palazzottoa, Tue Sparholt Jørgensena, Tao Chengb, Mo 5 Xianb, Tilmann Webera*, Sang Yup Leea,c* 6 aThe Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark 7 bQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China 8 cMetabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering 9 (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of 10 Science and Technology (KAIST), Daejeon 34141, Republic of Korea 11 *Correspondence: SYL: [email protected], TW: [email protected] 12 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.24.220772; this version posted July 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 13 ABSTRACT Epsilon-polylysine (ε-PL) is an antimicrobial commercially produced by 14 Streptomyces fermentation and widely used in Asian countries for food preservation.
    [Show full text]
  • Epsilon‐Poly‐L‐Lysine Produced by S. Albulus
    Epsilon‐Poly‐L‐Lysine Produced by S. albulus A Major Qualifying Project Report Submitted to the Faculty Of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science by Maureen E. Ryder 2010 Approved: _________________________________________ Michael A. Buckholt _________________________________________ Allison Hunter Contents Abstract.......................................................................................................................................................... 3 1 What is ε‐Poly‐L‐Lysine?................................................................................................................. 4 1.1 Uses of ε‐Poly‐L‐Lysine........................................................................................................... 4 1.2 Structure and Properties of ε‐Poly‐L‐Lysine................................................................. 6 2 Bacteria Used....................................................................................................................................... 7 2.1 Streptomyces albulus ................................................................................................................ 7 2.2 Pediococcus acidilactici............................................................................................................ 8 3 Goals ........................................................................................................................................................ 8 4 Methods and Materials
    [Show full text]
  • Chapter 2 Isolation of Actinobacteria from Sea Sand, Dam Mud and Mountain Soil
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Actinomycete biodiversity assessed by culture-based and metagenomic investigations of three distinct samples in Cape Town, South Africa Town by Cape of Muhammad Saeed Davids University Thesis submitted in fulfilment of the requirements for the degree of Master of Science in the Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, South Africa February 2011 1 Town Cape of University 2 Contents Acknowledgments 5 Abstract 6 Chapter 1: Introduction 1.1 Actinomycetes 10 1.2 Characteristics of selected actinomycete genera 1.2.1 The genus Streptomyces 13 1.2.2 The genus Amycolatopsis 14 1.2.3 The genus Micromonospora 14 1.3 Culture-independent technique (Metagenomics) Town 15 1.4 Drug resistance and tuberculosis (TB) 18 1.5 Aims of the study 18 1.6 References Cape 19 of Chapter 2: Isolation of actinobacteria from sea sand, dam mud and mountain soil 2.1 Abstract 24 2.2 Introduction 24 2.3 Materials and Methods 2.3.1 Sample collection, treatment and media 25 2.3.2 AntimicrobialUniversity activity determination 28 2.3.3 DNA extraction 29 2.3.4 16S-rRNA gene PCR amplification 29 2.3.5 Restriction endonuclease digestions (Rapid Identification
    [Show full text]
  • 4 Lasso Peptides Biosynthesis from a Marine Streptomyces Strain
    marine drugs Article Identification, Cloning and Heterologous Expression of the Gene Cluster Directing RES-701-3, -4 Lasso Peptides Biosynthesis from a Marine Streptomyces Strain Daniel Oves-Costales *, Marina Sánchez-Hidalgo , Jesús Martín and Olga Genilloud Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016 Armilla (Granada), Spain; [email protected] (M.S.-H.); [email protected] (J.M.); [email protected] (O.G.) * Correspondence: [email protected]; Tel.: + 34-958-993-965 Received: 17 March 2020; Accepted: 22 April 2020; Published: 1 May 2020 Abstract: RES-701-3 and RES-701-4 are two class II lasso peptides originally identified in the fermentation broth of Streptomyces sp. RE-896, which have been described as selective endothelin type B receptor antagonists. These two lasso peptides only differ in the identity of the C-terminal residue (tryptophan in RES-701-3, 7-hydroxy-tryptophan in RES-701-4), thus raising an intriguing question about the mechanism behind the modification of the tryptophan residue. In this study, we describe the identification of their biosynthetic gene cluster through the genome mining of the marine actinomycete Streptomyces caniferus CA-271066, its cloning and heterologous expression, and show that the seven open reading frames (ORFs) encoded within the gene cluster are sufficient for the biosynthesis of both lasso peptides. We propose that ResE, a protein lacking known putatively conserved domains, is likely to play a key role in the post-translational modification of the C-terminal tryptophan of RES-701-3 that affords RES-701-4.
    [Show full text]
  • Characterization of Streptomyces Species Causing Common Scab Disease in Newfoundland Agriculture Research Initiative Project
    Dawn Bignell Memorial University [email protected] Characterization of Streptomyces species causing common scab disease in Newfoundland Agriculture Research Initiative Project #ARI-1314-005 FINAL REPORT Submitted by Dr. Dawn R. D. Bignell March 31, 2014 Page 1 of 34 Dawn Bignell Memorial University [email protected] Executive Summary Potato common scab is an important disease in Newfoundland and Labrador and is characterized by the presence of unsightly lesions on the potato tuber surface. Such lesions reduce the quality and market value of both fresh market and seed potatoes and lead to significant economic losses to potato growers. Currently, there are no control strategies available to farmers that can consistently and effectively manage scab disease. Common scab is caused by different Streptomyces bacteria that are naturally present in the soil. Most of these organisms are known to produce a plant toxin called thaxtomin A, which contributes to disease development. Among the new scab control strategies that are currently being proposed are those aimed at reducing or eliminating the production of thaxtomin A by these bacteria in soils. However, such strategies require a thorough knowledge of the types of pathogenic Streptomyces bacteria that are prevalent in the soil and whether such pathogens have the ability to produce this toxic metabolite. Currently, no such information exists for the scab-causing pathogens that are present in the soils of Newfoundland. This project entitled “Characterization of Streptomyces species causing common scab disease in Newfoundland” is the first study that provides information on the types of pathogenic Streptomyces species that are present in the province and the virulence factors that are used by these microbes to induce the scab disease symptoms.
    [Show full text]
  • Genomic Insights Into the Evolution of Hybrid Isoprenoid Biosynthetic Gene Clusters in the MAR4 Marine Streptomycete Clade
    UC San Diego UC San Diego Previously Published Works Title Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade. Permalink https://escholarship.org/uc/item/9944f7t4 Journal BMC genomics, 16(1) ISSN 1471-2164 Authors Gallagher, Kelley A Jensen, Paul R Publication Date 2015-11-17 DOI 10.1186/s12864-015-2110-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Gallagher and Jensen BMC Genomics (2015) 16:960 DOI 10.1186/s12864-015-2110-3 RESEARCH ARTICLE Open Access Genomic insights into the evolution of hybrid isoprenoid biosynthetic gene clusters in the MAR4 marine streptomycete clade Kelley A. Gallagher and Paul R. Jensen* Abstract Background: Considerable advances have been made in our understanding of the molecular genetics of secondary metabolite biosynthesis. Coupled with increased access to genome sequence data, new insight can be gained into the diversity and distributions of secondary metabolite biosynthetic gene clusters and the evolutionary processes that generate them. Here we examine the distribution of gene clusters predicted to encode the biosynthesis of a structurally diverse class of molecules called hybrid isoprenoids (HIs) in the genus Streptomyces. These compounds are derived from a mixed biosynthetic origin that is characterized by the incorporation of a terpene moiety onto a variety of chemical scaffolds and include many potent antibiotic and cytotoxic agents. Results: One hundred and twenty Streptomyces genomes were searched for HI biosynthetic gene clusters using ABBA prenyltransferases (PTases) as queries. These enzymes are responsible for a key step in HI biosynthesis. The strains included 12 that belong to the ‘MAR4’ clade, a largely marine-derived lineage linked to the production of diverse HI secondary metabolites.
    [Show full text]
  • Vast Diversity of Prokaryotic Virus Genomes Encoding Double Jelly-Roll
    Yutin et al. Virology Journal (2018) 15:67 https://doi.org/10.1186/s12985-018-0974-y RESEARCH Open Access Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis Natalya Yutin1, Disa Bäckström2, Thijs J. G. Ettema2, Mart Krupovic3 and Eugene V. Koonin1* Abstract Background: Analysis of metagenomic sequences has become the principal approach for the study of the diversity of viruses. Many recent, extensive metagenomic studies on several classes of viruses have dramatically expanded the visible part of the virosphere, showing that previously undetected viruses, or those that have been considered rare, actually are important components of the global virome. Results: We investigated the provenance of viruses related to tail-less bacteriophages of the family Tectiviridae by searching genomic and metagenomics sequence databases for distant homologs of the tectivirus-like Double Jelly- Roll major capsid proteins (DJR MCP). These searches resulted in the identification of numerous genomes of virus- like elements that are similar in size to tectiviruses (10–15 kilobases) and have diverse gene compositions. By comparison of the gene repertoires, the DJR MCP-encoding genomes were classified into 6 distinct groups that can be predicted to differ in reproduction strategies and host ranges. Only the DJR MCP gene that is present by design is shared by all these genomes, and most also encode a predicted DNA-packaging ATPase; the rest of the genes are present only in subgroups of this unexpectedly diverse collection of DJR MCP-encoding genomes. Only a minority encode a DNA polymerase which is a hallmark of the family Tectiviridae and the putative family "Autolykiviridae".
    [Show full text]
  • Phylogenetic Study of the Species Within the Family Streptomycetaceae
    Antonie van Leeuwenhoek DOI 10.1007/s10482-011-9656-0 ORIGINAL PAPER Phylogenetic study of the species within the family Streptomycetaceae D. P. Labeda • M. Goodfellow • R. Brown • A. C. Ward • B. Lanoot • M. Vanncanneyt • J. Swings • S.-B. Kim • Z. Liu • J. Chun • T. Tamura • A. Oguchi • T. Kikuchi • H. Kikuchi • T. Nishii • K. Tsuji • Y. Yamaguchi • A. Tase • M. Takahashi • T. Sakane • K. I. Suzuki • K. Hatano Received: 7 September 2011 / Accepted: 7 October 2011 Ó Springer Science+Business Media B.V. (outside the USA) 2011 Abstract Species of the genus Streptomyces, which any other microbial genus, resulting from academic constitute the vast majority of taxa within the family and industrial activities. The methods used for char- Streptomycetaceae, are a predominant component of acterization have evolved through several phases over the microbial population in soils throughout the world the years from those based largely on morphological and have been the subject of extensive isolation and observations, to subsequent classifications based on screening efforts over the years because they are a numerical taxonomic analyses of standardized sets of major source of commercially and medically impor- phenotypic characters and, most recently, to the use of tant secondary metabolites. Taxonomic characteriza- molecular phylogenetic analyses of gene sequences. tion of Streptomyces strains has been a challenge due The present phylogenetic study examines almost all to the large number of described species, greater than described species (615 taxa) within the family Strep- tomycetaceae based on 16S rRNA gene sequences Electronic supplementary material The online version and illustrates the species diversity within this family, of this article (doi:10.1007/s10482-011-9656-0) contains which is observed to contain 130 statistically supplementary material, which is available to authorized users.
    [Show full text]
  • Metagenomics and Metatranscriptomics of Lake Erie Ice
    METAGENOMICS AND METATRANSCRIPTOMICS OF LAKE ERIE ICE Opeoluwa F. Iwaloye A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2021 Committee: Scott Rogers, Advisor Paul Morris Vipaporn Phuntumart © 2021 Opeoluwa Iwaloye All Rights Reserved iii ABSTRACT Scott Rogers, Lake Erie is one of the five Laurentian Great Lakes, that includes three basins. The central basin is the largest, with a mean volume of 305 km2, covering an area of 16,138 km2. The ice used for this research was collected from the central basin in the winter of 2010. DNA and RNA were extracted from this ice. cDNA was synthesized from the extracted RNA, followed by the ligation of EcoRI (NotI) adapters onto the ends of the nucleic acids. These were subjected to fractionation, and the resulting nucleic acids were amplified by PCR with EcoRI (NotI) primers. The resulting amplified nucleic acids were subject to PCR amplification using 454 primers, and then were sequenced. The sequences were analyzed using BLAST, and taxonomic affiliations were determined. Information about the taxonomic affiliations, important metabolic capabilities, habitat, and special functions were compiled. With a watershed of 78,000 km2, Lake Erie is used for agricultural, forest, recreational, transportation, and industrial purposes. Among the five great lakes, it has the largest input from human activities, has a long history of eutrophication, and serves as a water source for millions of people. These anthropogenic activities have significant influences on the biological community. Multiple studies have found diverse microbial communities in Lake Erie water and sediments, including large numbers of species from the Verrucomicrobia, Proteobacteria, Bacteroidetes, and Cyanobacteria, as well as a diverse set of eukaryotic taxa.
    [Show full text]