Communication Systems for Building Automation and Control

Total Page:16

File Type:pdf, Size:1020Kb

Communication Systems for Building Automation and Control Communication Systems for Building Automation and Control WOLFGANG KASTNER, GEORG NEUGSCHWANDTNER, STEFAN SOUCEK, AND H. MICHAEL NEWMAN Invited Paper Building automation systems (BAS) provide automatic control of well as large distributed complexes of smaller installations the conditions of indoor environments. The historical root and still such as retail chains or gas stations. These types of build- core domain of BAS is the automation of heating, ventilation and ings are especially interesting since their size, scale, and air-conditioning systems in large functional buildings. Their pri- mary goal is to realize significant savings in energy and reduce complexity hold considerable potential for optimization, but cost. Yet the reach of BAS has extended to include information from also challenges. all kinds of building systems, working toward the goal of “intelli- The key driver of the building automation market is the gent buildings.” Since these systems are diverse by tradition, inte- promise of increased user comfort at reduced operation cost. gration issues are of particular importance. When compared with the field of industrial automation, building automation exhibits spe- To this end, building automation systems (BAS) make use cific, differing characteristics. The present paper introduces the task of optimized control schemes for heating, ventilation, and of building automation and the systems and communications infra- air-conditioning (HVAC) systems, lighting, and shading. Im- structure necessary to address it. Basic requirements are covered provements in energy efficiency will also contribute to en- as well as standard application models and typical services. An vironmental protection. For this reason, related regulations overview of relevant standards is given, including BACnet, Lon- Works and EIB/KNX as open systems of key significance in the sometimes mandate the use of BAS. building automation domain. Costs can further be reduced by providing access to all Keywords—Automation, building management systems, dis- building service systems in a centralized monitoring and con- tributed control, field buses, networks, standards. trol center. This allows abnormal or faulty conditions to be detected, localized and corrected at an early stage and with minimum personnel effort. This is especially true when ac- I. INTRODUCTION cess to the site is offered through a remote connection. A Home and building automation systems are—in the unified visualization scheme for all systems further eases the broadest sense—concerned with improving interaction with task of the operator. Direct access to BAS data from the cor- and between devices typically found in an indoor habitat. porate management level eases data acquisition for facility As such, they provide a topic with many facets and range management tasks such as cost allocation and accounting. from small networks with only a handful of devices to Besides the immediate savings, indirect benefits may be very large installations with thousands of devices. This expected due to higher expected workforce productivity or paper, however, narrows its focus on the automation of large by the increased perceived value of the automated building functional buildings, which in the following will be referred (the “prestige factor,” for both building owner and tenant). to as “buildings” for simplicity. Examples include office Although investment in building automation systems will buildings, hospitals, warehouses, or department stores as result in higher construction cost, their use is mostly eco- nomically feasible as soon as the entire building life cycle Manuscript received January 19, 2005; revised March 17, 2005. is considered. Typically, the operational cost of a building W. Kastner and G. Neugschwandtner are with the Automation Systems over its lifetime is about seven times the initial investment for Group, Institute of Automation, Vienna University of Technology, Vienna 1040, Austria (e-mail: [email protected]; [email protected]). construction. Therefore, it is important to choose a building S. Soucek is with LOYTEC Electronics GmbH, Vienna 1080, Austria concept that ensures optimal life-cycle cost, not minimum in- (e-mail: [email protected]). vestment cost. The considerable number of available perfor- H. M. Newman is with the Utilities Computer Section, Cornell University, Ithaca, NY 14850 USA (e-mail: [email protected]). mance contracting offers strongly emphasizes that advanced Digital Object Identifier 10.1109/JPROC.2005.849726 BAS are indeed economical. In these models, the contractor 0018-9219/$20.00 © 2005 IEEE 1178 PROCEEDINGS OF THE IEEE, VOL. 93, NO. 6, JUNE 2005 takes the financial risk that prospective savings will offset the The DDC concept and its associated design methodology is, investment within a given time. e.g., covered in [1]. Benefits both in terms of (life-cycle) cost and functionality The oil price shock of the early 1970s1 triggered interest in will be maximized as more systems are combined. This re- the energy savings potential of automated systems, whereas quires that expertise from different fields is brought together. only comfort criteria had been considered before. As a con- Integrating fire alarm and security functions is particularly sequence, the term “energy management system” (EMS) ap- challenging due to the high demands made on their depend- peared, which highlights automation functionality related to ability. Engineers and consultants who used to work sepa- power-saving operation, like optimum start and stop control.2 rately are forced to collaborate with each other and the design Further, supervisory control and data acquisition engineer as a team. (SCADA) systems for buildings, referred to as central Integration is obviously far easier when systems that control and monitoring systems (CCMS), were introduced. shall be joined talk the same language. For example, unified They extended the operator’s reach from having to handle presentation is achieved at no additional engineering effort each piece of equipment locally over a whole building or this way, potentially reducing investment cost. Especially complex, allowing the detection of abnormal conditions large corporations with hundreds or thousands of establish- without being on-site. Besides environmental parameters, ments spread out over large distances certainly would want such conditions include technical alarms indicating the need to harmonize their building network infrastructure by using for repair and maintenance. a certain standard technology throughout. Yet this goal is Also, the service of accumulating historical operational effectively out of reach as long as different manufacturers’ data was added. This aids in assessing the cost of opera- systems use proprietary communication interfaces, with no tion and in scheduling maintenance. Trend logs provide valu- manufacturer covering the entire spectrum of applications. able information for improving control strategies as well. Here, open standards try to close the gap, which step into Often, BA systems with these capabilities were referred to the breach, which moreover help avoid vendor lock-in as building management systems (BMS). situations. Other building service systems benefit from automation In the past years LAN technologies have been pushing as well. For example, demand control of lighting systems down the network hierarchy from the management level can significantly contribute to energy saving. Recognizing while fieldbus technologies are pushing upwards. This battle the head start of the BA systems of the HVAC domain with is still not over but what has already emerged from this regard to control and presentation, they provided the natural rivalry is a new trend of combining fieldbus protocols with base for the successive integration of other systems (some- LAN technologies to better utilize an existing LAN infra- times then termed “integrated BMS” (IBMS) [2]). structure. Most approaches follow the principle of running Today’s comprehensive automation systems generally the upper protocol layers of the fieldbus protocol over the go by the all-encompassing name of BAS, although EMS, lower layers of a typical LAN protocol such as IP over building EMS (BEMS), and BMS/IBMS are still in use, Ethernet. The synergies arising out of this very attractive sometimes intentionally to refer to specific functional as- combination are manifold. pects, but often by habit. Fig. 1 illustrates these different For example, most corporations have established their own dimensions. The relevant international standard [3] chooses Intranet and are now able to leverage this infrastructure for building automation and control systems (BACS) as an managing their buildings. Still, all the device profiles de- umbrella term. veloped with great effort over many years can be reused. Comprehensive automation is instrumental to the demands Also, technicians trained on particular tools for many years of an intelligent building. This buzzword has been associ- do not find their existing knowledge rendered worthless de- ated with various concepts over the past 25 years ([4] pro- spite the switch to IP-based building automation networks. vides a comprehensive review). Although there is still no IP-based communication also opens up new dimensions in canonical definition, the current notion of intelligent build- remote management and remote maintenance. ings targets the demands of users and investors alike. Build- ings should provide a productive and attractive environment II. BUILDING SERVICES,AUTOMATION
Recommended publications
  • Supervisory Control and Data Acquisition (Scada)
    TM 5-601 TECHNICAL MANUAL SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA) SYSTEMS FOR COMMAND, CONTROL, COMMUNICATIONS, COMPUTER, INTELLIGENCE, SURVEILLANCE, AND RECONNAISSANCE (C4ISR) FACILITIES APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED HEADQUARTERS, DEPARTMENT OF THE ARMY 21 JANUARY 2006 TM 5-601 REPRODUCTION AUTHORIZATION/RESTRICTIONS This manual has been prepared by or for the Government and, except to the extent indicated below, is public property and not subject to copyright. Reprint or republication of this manual should include a credit substantially as follows: "Department of the Army, TM 5-601, Supervisory Control and Data Acquisition (SCADA) Systems for Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) Facilities, 21 January 2006." Table 3-1 Safety integrity levels – low demand operation and table 3-2 Safety integrity levels – continuous operation are reprinted with permission from the International Electrotechnical Commission (IEC) publication International Standard IEC 61508-1, tables 2 and 3 from subclause 7.2.6.9. “The author thanks the IEC for permission to reproduce information from its International Standard IEC 61508-1: (1998). All such extracts are copyright of IEC, Geneva, Switzerland. All right reserved. Further information on the IEC is available from www.iec.ch. IEC has no responsibility for the placement and context in which the extracts and contents are reproduced by the author, nor is IEC in any way responsible for the other content or accuracy therein.” TM 5-601 Technical Manual HEADQUARTERS No. 5-601 DEPARTMENT OF THE ARMY Washington, DC, 21 January 2006 APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA) SYSTEMS FOR COMMAND, CONTROL, COMMUNICATIONS, COMPUTER, INTELLIGENCE, SURVEILLANCE, AND RECONNAISSANCE (C4ISR) FACILITIES CONTENTS Paragraph Page CHAPTER 1.
    [Show full text]
  • MASTER SPECIFICATIONS Division 25 – INTEGRATED AUTOMATION
    MASTER SPECIFICATIONS Division 25 – INTEGRATED AUTOMATION AND HVAC CONTROL Release 1.0 [March] 2017 Released by: Northwestern University Facilities Management Operations 2020 Ridge Avenue, Suite 200 Evanston, IL 60208-4301 All information within this Document is considered CONFIDENTIAL and PROPRIETARY. By receipt and use of this Document, the recipient agrees not to divulge any of the information herein and attached hereto to persons other than those within the recipients’ organization that have specific need to know for the purposes of reviewing and referencing this information. Recipient also agrees not to use this information in any manner detrimental to the interests of Northwestern University. Northwestern University Master Specifications Copyright © 2017 By Northwestern University These Specifications, or parts thereof, may not be reproduced in any form without the permission of the Northwestern University. NORTHWESTERN UNIVERSITY PROJECT NAME ____________ FOR: ___________ JOB # ________ ISSUED: 03/29/2017 MASTER SPECIFICATIONS: DIVISION 25 – INTEGRATED AUTOMATION AND HVAC CONTROL SECTION # TITLE 25 0000 INTEGRATED AUTOMATION AND HVAC TEMPERATURE CONTROL 25 0800 COMMISSIONING OF INTEGRATED AUTOMATION ** End of List ** NORTHWESTERN UNIVERSITY PROJECT NAME ____________ FOR: ___________ JOB # ________ ISSUED: 03/29/2017 SECTION 25 0000 - INTEGRATED AUTOMATION AND HVAC TEMPERATURE CONTROL PART 1 - GENERAL 1.1 SUMMARY AND RESPONSIBILITIES A. The work covered under this Division 25 of the project specifications is basically for: 1. Providing fully functioning facility/project HVAC system DDC controls. 2. Controlling systems locally, with communication up to the Tridium integration platform for remote monitoring, trending, control, troubleshooting and adjustment by NU Engineering and Maintenance personnel. 3. Tying specified systems to the Northwestern University (NU) integration platform for remote monitoring, trending, control, management, troubleshooting and adjustment by NU Engineering and Maintenance personnel.
    [Show full text]
  • STANDARD Building Management Systems
    STANDARD Building Management Systems Original Issue: January 22, 2008 Last Update: August 24, 2020 PAGE INTENTIONALLY LEFT BLANK E&M Standard: Building Management Systems TABLE OF CONTENTS 1. PURPOSE AND INTENT 1 2. APPROVED MANUFACTURERS 1 3. GENERAL REQUIREMENTS 1 4. EXISTING SYSTEMS 2 5. DIRECT DIGITAL CONTROL SYSTEM 2 6. SYSTEM ARCHITECTURE 2 7. OPERATING ENVIRONMENT 3 8. DIRECT DIGITAL CONTROL UNITS 3 9. COMPUTERS, HANDHELDS AND ACCESS DEVICES 4 10. SYSTEM COMMUNICATIONS 4 11. NETWORK COMPUTER SOFTWARE 4 12. GRAPHICS 4 13. LABORATORY FLOW CONTROL SYSTEM (WITH OR WITHOUT FUME HOODS) 6 14. INSTRUMENTATION 6 15. AUTOMATIC CONTROL VALVES 9 16. AUTOMATIC CONTROL AND AUTOMATIC SMOKE DAMPERS 9 17. POWER REQUIREMENTS 10 18. DESCRIPTION OF CONTROL OPERATION 10 19. INSTALLATION REQUIREMENTS 11 20. TESTING, CALIBRATION AND COMMISSIONING 12 21. INSTRUCTION OF OPERATING PERSONNEL 13 22. SERVICING AND MAINTENANCE REQUIREMENTS 13 APPENDIX 1: EQUIPMENT IDENTIFICATION AND BMS POINT NAMES 1 APPENDIX 2: SAMPLE GRAPHICS 1 APPENDIX 3: STANDARD BMS POINT LISTS 1 E&M STANDARD: BUILDING MANAGEMENT SYSTEMS 1. PURPOSE AND INTENT 1.1 This document provides both general and specific requirements for the installation and modification of Building Management Systems at Weill Cornell Medicine. It should be used when building or renovating any WCM space. 2. APPROVED MANUFACTURERS 2.1 The following manufacturers are approved for providing BMS Systems within WCM space: a. Automated Logic Controls b. Schneider Controls (formerly Andover) c. Siemens Building Technologies Note: Siemens Desigo Platform only. Apogee Platform is no longer accepted. 2.2 Where specific manufacturers or products are specified herein, substitutions are not allowed unless specifically approved for a specific project by WCM’s Department of Engineering and Maintenance.
    [Show full text]
  • Section 230923
    NORTHWESTERN UNIVERSITY PROJECT NAME ____________ FOR: ___________ JOB # ________ ISSUED: 03/29/2017 SECTION 25 0000 - INTEGRATED AUTOMATION AND HVAC TEMPERATURE CONTROL PART 1 - GENERAL 1.1 SUMMARY AND RESPONSIBILITIES A. The work covered under this Division 25 of the project specifications is basically for: 1. Providing fully functioning facility/project HVAC system DDC controls. 2. Controlling systems locally, with communication up to the Tridium integration platform for remote monitoring, trending, control, troubleshooting and adjustment by NU Engineering and Maintenance personnel. 3. Tying specified systems to the Northwestern University (NU) integration platform for remote monitoring, trending, control, management, troubleshooting and adjustment by NU Engineering and Maintenance personnel. 4. The Division 25 controls contractor to (subcontractor to the GC and also referred to herein as the DDC/BASC Contractor) provide a complete DDC Control and Building Automation system, which interfaces with the NU Tridium Integration platform through the University’s Ethernet infrastructure.. The Owners' normal day to day interface will be with the Tridium system. The configuration of graphics, trends, alarms, etc. for the Tridium system will be done by the System Integrator. [For this project, the System Integrator is to be hired by the University/General Contractor/Commissioning Authority, as determined during project design and finalized herein this section by the project AE. See Section 1.4]. The Division 25 Contractor is responsible for coordinating with the System Integrator to verify all points are properly integrated into the Tridium platform including alarm values and links to trend files. The Division 25 contractor is to provide sufficient manpower to work with the System Integrator to do a point to point test of alarms, trending, setpoint overrides, etc.
    [Show full text]
  • PLC & Fieldbus Control Systems Automation Guidebook – Part 4
    PDHonline Course E448 (9 PDH) ______________________________________________________________________________ PLC & Fieldbus Control Systems Automation Guidebook – Part 4 Instructor: Jurandir Primo, PE 2014 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course E448 www.PDHonline.org PLC & FIELDBUS CONTROL SYSTEMS AUTOMATION GUIDEBOOK – PART 4 CONTENTS: 1. PLC HISTORY 2. INTRODUCTION 3. INPUT/OUTPUT (I/O) CAPABILITIES 4. LADDER LOGIC PROGRAMS 5. HUMAN-MACHINE INTERFACE (HMI) 6. HOW THE PLCs WORK 7. FIELDBUS CONTROL SYSTEMS 8. DCS AND FIELDBUS DEVELOPMENT 9. FIELDBUS MODELS AND NETWORK STRUCTURE 10. DIAGNOSTICS & COMMUNICATION INTERFACES 11. BASIC COMMUNICATION STANDARDS 12. REFERENCES & LINKS ©2014 Jurandir Primo Page 1 of 101 www.PDHcenter.com PDHonline Course E448 www.PDHonline.org 1. PLC HISTORY The early history of the PLC (Programmable Logic Controller) goes back to the 1960’s when control systems were still handled using relay control. During this time the control rooms consisted of sev- eral walls containing many relays, terminal blocks and mass of wires. In 1968 Bill Stone, who was part of a group of engineers at the Hydramatic Division of General Mo- tors Corporation, presented a paper at the Westinghouse Conference outlining their problems with reliability and documentation for the machines at this plant. He also presented a design criteria de- veloped by the GM engineers for a “standard machine controller”, to eliminate costly scrapping of assembly-line relays. These specifications along with a proposal request to build a prototype were given to four control builders: • Allen-Bradley, by way of Michigan-based Information Instruments, Inc.
    [Show full text]
  • Lighting Answers: Controlling Lighting with Building Automation Systems
    Answers Controlling Lighting with Building Automation Systems . Volume 4 Number 1 May 1997 Introduction • The ability to monitor and control lighting throughout a building or even throughout The potential for substantial energy savings a multi-building facility has made the use of automated lighting • The ability to minimize peak demand, controls such as timers, occupancy sensors, thereby reducing energy costs where and photosensors commonplace in modern utility rate structures are based on peak buildings. Similarly, building automation demand and real-time pricing systems that control heating, ventilation, and air-conditioning (HVAC) have become com- Conventional lighting control systems mon in new construction and are now in- often control equipment in a single room or cluded as part of many retrofit projects; more over a limited area, because they are cen- than half the large commercial buildings tralized control systems, which means that all (averaging 200,000 sq ft) surveyed by the the controlled circuits must be wired to a Wisconsin Center for Demand-Side Research single control panel. The computers used (WCDSR 1995) included a building automa- by these systems are typically dedicated tion system. microprocessors that perform only lighting Building automation systems can also control functions. be used to control lighting; however, high By comparison, modern building automa- initial and maintenance costs, the apparent tion systems are distributed control systems, complexity of these systems, and concerns which means that their computing hardware about the interoperability* of lighting sys- and software are distributed as a network tems and other building systems have lim- that comprises microprocessor-based control ited such applications.
    [Show full text]
  • Bacnet Building Automation System Direct Digital Controls Guide Specification
    University of Houston Master Construction Specifications Insert Project Name BACNET BUILDING AUTOMATION SYSTEM DIRECT DIGITAL CONTROLS GUIDE SPECIFICATION CONTENTS SECTION HEADERS ARE HOT‐LINKABLE. CTRL + CLICK TO FOLLOW HYPERLINKS PART 1 ‐ GENERAL 1.1 System Description 1.2 Work Included 1.3 System Requirements 1.4 Basic System Architecture 1.5 Material Furnished Under This Section But Installed Under Other Sections 1.6 Related Sections 1.7 Quality Assurance 1.8 System Performance 1.9 Submittals 1.10 Calibration, Commissioning, Demonstration & Acceptance 1.11 Training 1.12 Warranty, Maintenance, Normal & Emergency Service PART2 ‐ PRODUCTS 2.1 Acceptable Manufacturers 2.2 Web Server Hardware 2.3 Web Enabled Application Software 2.4 Operators Workstation Platform (B‐OWS) 2.5 Control System Operators Workstation Application Software (B‐OWS) 2.6 Service Tools 2.7 BACnet Protocol Verification Software 2.8 Building Controllers (B‐BC) 2.9 Advanced Application Controllers (B‐AAC) 2.10 Space Mounted/Local Display Advanced Application Controllers (B‐AAC) 2.11 Application Specific Controllers (B‐ASC) 2.12 Networked Communicating Smart Space Sensors 2.13 Temperature Control Panels (TCP), Enclosures & Sub‐Panels 2.14 Interconnecting Wire & Cable 2.15 Field Devices 2.16 Analog Sensors 2.17 Switching Sensors & Thermostats 2.18 Automatic Control Valves 2.19 Automatic Control Valve Actuators 2.20 Automatic Control Dampers 2.21 Automatic Control Damper Actuators AE Project Number: Building Control and Automation (BCAS) 23 06 00 – 1 Revision Date: 1/29/2014
    [Show full text]
  • DDC/BMS/EMS & Integration Back to Basics
    7/08/2012 Back to Basics – DDC/BMS/EMS & Integration Back to Basics – DDC/BMS/EMS & Integration Presented by: The views and opinions expressed in this presentation are from my experiences in Thomas McIlhatton, Distributor Manager the industryyy over 20 years. These are not explicit views of Innotech directly and may differ between people and manufacturers. Innotech Control Systems Australia Airah, 11th July 2012 Agenda • Terminology • Direct Digital Controls (DDC) • Building Management Systems (BMS) • Energy Management Systems (EMS) • Proprietary Systems • Interoperable Systems • Misinterpretations of “Open Technology” • Looking after the Clients best interests (Initially and ongoing) • Engineering Practices and Serviceability • Integration Demonstration with multiple vendors 1 7/08/2012 System Terminology System Terminology • DDC System - Direct Digital Control System • Bus – The physical communications platform used for inter-device communications and connection to the BMS computer. This does not define the • BMS - Building Management System protocol used. Types of Bus include: • RS485 communications – Over specific cable • EMS - Energy Management System • Ethernet – Over a computer Network • I/O - Inputs/Outputs • Proprietary - A defined protocol that is unique to an individual or company. The raw code is not in the public domain • Hardware - Physical devices used to make decisions for controlled outputs, based on changgpes in input conditions • Oppgyen Technology - A solution based on uniformityypy and interoperability. A philosophy used to ensure competitive pricing and client focussed benefits • HMI – Human Machine Interface (A controller or network display) • Integration - The process of translating from one protocol to another • Software - The computer interface for the hardware, or separate utilities to perform value-added tasks • Interoperability - The ability to integrate with other vendors equipment • HLI- High Level Interface.
    [Show full text]
  • Green Building & Controls Glossary
    GREEN BUILDING & CONTROLS GLOSSARY kmccontrols.com Read First: Top Tips on Using this Glossary These tips are for optimizing your use of the Adobe Acrobat PDF version of this document. For the fastest finding of terms, click on the appropriate bookmarks and/or cross-references. Alternately, use Acro- bat’s search function to look up terms. Bookmarks, at the left of the screen, are hyperlinks to document pages. From any page in this document, you can use book- marks to jump to any section heading. To jump to a bookmarked section, point to the bookmark name, and when the arrow be- comes a pointing hand, click on the name. Cross-references (in blue italics) at the end of glossary entries are hyperlinked to those topics. Click on the cross-reference to go instantly to that page. If printing pages, select from the print dialog box (Acrobat 7 and later) Page scal- ing > Multiple pages per sheet, Pages per sheet > 4. (Auto-Rotate Pages should also be checked.) This minimizes the number of sheets printed, and it still prints at nearly full size. (A commercially printed booklet version can also be ordered from KMC Controls.) 2 Green Building & Controls Glossary 19476 Industrial Drive New Paris, IN 46553, U.S.A. 877.444.5622 (574.831.5250) www.kmccontrols.com [email protected] KMC Controls,® KMDigital,® CommTalk,® ControlSet ®, Incontrol,® NetView,® NetSensor,® WinControl,® and “building your comfort zone®” are all registered trademarks of KMC Controls. KMC Conquest,™ KMC Commander,™ KMC CommanderBX™, KMC Con- nect,™ KMC Connect Lite,™ KMC Converge,™ FlexStat,™ TotalCon- trol,™ WebLite,™ LANLite,™ FirstWatch,™ BACstage,™ FullBAC,™ and BUILDING GENIUSES™ are all trademarks of KMC Controls.
    [Show full text]
  • UFC 3-410-02 Direct Digital Control for HVAC and Other Building
    UFC 3-410-02 18 July 2018 Change 2, 12 April 2021 UNIFIED FACILITIES CRITERIA (UFC) DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 1 UFC 3-410-02 18 July 2018 Change 2, 12 April 2021 UNIFIED FACILITIES CRITERIA (UFC) DIRECT DIGITAL CONTROL FOR HVAC AND OTHER BUILDING CONTROL SYSTEMS Any copyrighted material included in this UFC is identified at its point of use. Use of the copyrighted material apart from this UFC must have the permission of the copyright holder. Indicate the preparing activity beside the Service responsible for preparing the document. U.S. ARMY CORPS OF ENGINEERS \1\ (Preparing Activity) /1/ NAVAL FACILITIES ENGINEERING COMMAND \1\ /1/ AIR FORCE CIVIL ENGINEER CENTER Record of Changes (changes are indicated by \1\ ... /1/) Change No. Date Location 1 2 March 2020 Changed Preparing Activity from Navy to Army. Added paragraph 2-4 USE OF PROPRIETARY NETWORKS, to accommodate new requirements for an exception to the use of open protocols within specific system types when certain criteria are met. 2 1 April 2021 Changed “UFC 3-401-01” to UFC 3-470-01” in paragraphs 1-2.1.3 and 1-3.2.3. Changed “APPENDIX A” to “APPENDIX D” in paragraph 5-4.2. Deleted first sentence of paragraph 6-6.1. This UFC supersedes UFC 3-410-02, dated 5 2012. 2 UFC 3-410-02 18 July 2018 Change 2, 12 April 2021 FOREWORD The Unified Facilities Criteria (UFC) system is prescribed by MIL-STD 3007 and provides planning, design, construction, sustainment, restoration, and modernization criteria, and applies to the Military Departments, the Defense Agencies, and the DoD Field Activities in accordance with USD (AT&L) Memorandum dated 29 May 2002.
    [Show full text]
  • TM 5-601 Supervisory Control and Data Acquisition (Scada)
    TM 5-601 TECHNICAL MANUAL SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA) SYSTEMS FOR COMMAND, CONTROL, COMMUNICATIONS, COMPUTER, INTELLIGENCE, SURVEILLANCE, AND RECONNAISSANCE (C4ISR) FACILITIES APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED HEADQUARTERS, DEPARTMENT OF THE ARMY 21 JANUARY 2006 TM 5-601 REPRODUCTION AUTHORIZATION/RESTRICTIONS This manual has been prepared by or for the Government and, except to the extent indicated below, is public property and not subject to copyright. Reprint or republication of this manual should include a credit substantially as follows: "Department of the Army, TM 5-601, Supervisory Control and Data Acquisition (SCADA) Systems for Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) Facilities, 21 January 2006." Table 3-1 Safety integrity levels – low demand operation and table 3-2 Safety integrity levels – continuous operation are reprinted with permission from the International Electrotechnical Commission (IEC) publication International Standard IEC 61508-1, tables 2 and 3 from subclause 7.2.6.9. “The author thanks the IEC for permission to reproduce information from its International Standard IEC 61508-1: (1998). All such extracts are copyright of IEC, Geneva, Switzerland. All right reserved. Further information on the IEC is available from www.iec.ch. IEC has no responsibility for the placement and context in which the extracts and contents are reproduced by the author, nor is IEC in any way responsible for the other content or accuracy therein.” TM 5-601 Technical Manual HEADQUARTERS No. 5-601 DEPARTMENT OF THE ARMY Washington, DC, 21 January 2006 APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS UNLIMITED SUPERVISORY CONTROL AND DATA ACQUISITION (SCADA) SYSTEMS FOR COMMAND, CONTROL, COMMUNICATIONS, COMPUTER, INTELLIGENCE, SURVEILLANCE, AND RECONNAISSANCE (C4ISR) FACILITIES CONTENTS Paragraph Page CHAPTER 1.
    [Show full text]
  • Programmable Logic Controllers and Direct Digital Controls in Buildings
    Programmable logic controllers and Direct digital controls in Buildings Item Type Article Authors Khalid, Yousaf Citation Khalid, Y. (2018). Programmable logic controllers and Direct digital controls in Buildings. Journal of Computing and Management Studies (JCMS), 2(3). Journal Journal of Computing and Management Studies Download date 30/09/2021 11:54:24 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/10034/621934 Programmable Logic Controllers and Direct Digital Controls in Buildings Khalid. Y Electronic and Electrical Engineering University of Chester, UK Email: [email protected] Abstract 2. Building Energy Management Systems (BEMS) The concept of programmable logic controller (PLC) originated over the last century that has BEMS is a high technology control system revolutionised the industrial sector. In the last few installed on buildings which performs the overall decades PLC in the form of DDC has been control and monitoring functions for some or all of commonly used in Building Energy Management the building's plant and systems (mechanical and Systems (BEMS). The contribution of this work is electrical equipment such as air handling, cooling to analyse PLC/DDC role in the ongoing BEMS plant systems, lighting and power systems etc.). advancements in the building sector. Currently DDC are not understood by building design and In modern buildings, BEMS is implemented as a simulation engineers who assess the controllability networked direct digital control system (shown of the building in practice. This paper would below) consisting of both software and hardware enhance the understanding of integrating DDC in (PLCs), display terminals with user interface for buildings and influence creation of better system scheduling and control.
    [Show full text]