Carbon Nitride As a Ligand: Synthesis, Characterisation and Application
Total Page:16
File Type:pdf, Size:1020Kb
Carbon Nitride as a Ligand: Synthesis, Characterisation and Application Ben Arthur Coulson Doctor of Philosophy University of York Chemistry September 2018 Abstract Carbon nitride’s properties can be tuned through the coordination of metal atoms, which can lead to enhanced catalytic activity. However, to date, there are few reported examples of inner-sphere coordination of metal complex fragments to carbon nitride. Therefore, the effects of coordination of metal complex fragments to carbon nitride haves been investigated. Reaction of the rhenium carbonyl complex, [ReCl(CO)5] with the surface of urea-derived carbon nitride (UCN) results in [ReCl(CO)3(UCN)], with a rhenium concentration of 0.39 mmol g-1. The synthesis of the manganese analogue resulted in manganese oxidation leading to [Mn(UCN)] ([Mn] = 0.24 mmol g-1). Infrared spectroscopy, along with crystal structures of molecular analogues, 2 [MCl(CO)3(DMNA-κ N, N’)] (M = Re, Mn) was used to gain insight into the coordination of metals complex fragments to carbon nitride. Two morphologies of carbon nitride, unstructured urea-derived carbon nitride (UCN) and porous cyanamide derived carbon nitride (CCN), were then decorated with 2+ [Ru(bpy)2] fragments. The carbon nitride structure affected metal loading, as -1 [Ru(bpy)2(UCN)](PF6)2 ([Ru] = 0.016 mmol g ) showed lower metal loading compared -1 to [Ru(bpy)2(CCN)](PF6)2 ([Ru] = 0.076 mmol g ). [Ru(bpy)2(DMNA-κ2N, N’)](PF6)2 was synthesised as a molecular analogue to gain insight into the coordination mode. The photocatalytic activities of [Ru(bpy)2(UCN)](PF6)2 and [Ru(bpy)2(UCN)](PF6)2 were completely inhibited compared to the undecorated materials. EPR and photoluminescence suggested the presence of rapid, efficient quenching of excited states in ruthenium decorated carbon nitride. -1 [IrCl2Cp*(UCN)] ([Ir] = 0.069 mmol g ) was synthesised to design a novel, recyclable hydrogenation catalyst. Direct hydrogenation reactions were carried out using hexane as a solvent, and despite low activity, [IrCl2Cp*(UCN)] showed good selectivity toward terminal alkenes and over 80% of catalytic activity was retained after 5 catalytic runs. Direct coordination of metal complex fragments to carbon nitride is shown to be a viable route to tuning the properties of carbon nitride and developing recyclable novel catalysts. 2 Table of Contents Abstract ................................................................................................................... 2 Table of Contents .................................................................................................... 3 Table of Figures ..................................................................................................... 11 Table of Tables ...................................................................................................... 17 Table of Schemes .................................................................................................. 20 Acknowledgements ................................................................................................ 21 Declaration ............................................................................................................ 22 1 Introduction ..................................................................................................... 23 Heterogeneous Catalysis and Carbon Nitride .......................................... 23 The Structure and Properties of Carbon Nitride Materials ........................ 24 1.2.1 The Structure of Carbon Nitride ........................................................ 24 1.2.2 Photophysical Properties of Carbon Nitride ...................................... 26 1.2.3 Mechanism of Carbon Nitride formation by Thermal Condensation .. 26 1.2.4 The effect of synthesis conditions on properties of carbon nitride ..... 27 1.2.5 Physical Post-modification of Carbon Nitride .................................... 28 Modification of Carbon Nitride with Transition Metals ............................... 29 1.3.1 The effect of metal doping on carbon nitride ..................................... 29 1.3.2 The Coordination Sphere of Metal Atoms in Metal-doped Carbon Nitride 31 1.3.3 Application of Carbon Nitride as a Support for Single Atom Catalysts 33 Decoration of Carbon Nitride with Transition Metal Complexes ............... 34 1.4.1 Coordination through the outer sphere ............................................. 34 Coordination of metal complexes to carbon nitride through the inner sphere 36 Conclusions ............................................................................................. 38 Aims ........................................................................................................ 38 3 2 Synthesis and Characterisation of Metal Carbonyl Decorated Carbon Nitride . 39 Introduction .............................................................................................. 39 2.1.1 Objectives ......................................................................................... 42 Synthesis and Characterisation of Carbon Nitride .................................... 43 2.2.1 Synthesis of UCN and CCN .............................................................. 43 2.2.2 Elemental Analysis (CHN) of UCN and CCN .................................... 43 2.2.3 Infrared Spectroscopy of UCN and CCN .......................................... 44 2.2.4 Diffuse Reflectance Spectroscopy (DRS) of UCN and CCN ............. 45 2.2.5 Powder X-ray Diffraction of UCN and CCN ....................................... 46 2.2.6 Brunauer-Emmett-Teller (BET) Analysis of UCN and CCN ............... 47 2.2.7 Comparison of UCN and CCN .......................................................... 48 Effect of Base-treatment on UCN............................................................. 48 2.3.1 Zeta-potential measurements of UCN ............................................... 48 2.3.2 Effect of Base Species on the Catalytic Activity of UCN .................... 49 2.3.3 Acid Site Analysis ............................................................................. 50 Decoration of UCN with Metal Carbonyl Fragments ................................. 52 2.4.1 Synthesis of [Mn(UCN)] and [ReCl(CO)3(UCN)] ............................... 52 2.4.2 Quantification of metal content in [Mn(UCN)] and [ReCl(CO)3(UCN)] by ICP-MS 53 2.4.3 Powder X-ray Diffraction of [Mn(UCN)] and [ReCl(CO)3(UCN)]......... 53 2 Synthesis and Characterisation of [MCl(CO)3(DMNA-κ N,N’)] ................. 54 2 2.5.1 X-ray Crystal Structure of [MCl(CO)3(DMNA-κ N, N’)] (M = Re, Mn) . 55 2 Comparison of [MCl(CO)3(DMNA-κ N, N’)] to [Mn(UCN)] and [ReCl(CO)3(UCN)] .............................................................................................. 58 2 2.6.1 Infrared Spectroscopy of [MCl(CO)3(DMNA-κ N, N’)] ........................ 58 2.6.2 Infrared Spectroscopy of [Mn(UCN)] and [ReCl(CO)3(UCN)] ............ 59 2.6.3 Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) of [ReCl(CO)3(UCN)] and UCN ....................................................................... 60 2 2.6.4 Comparison of [ReCl(CO)3(DMNA-κ N, N’)] to [ReCl(CO)3(UCN)] .... 61 2.6.5 Solid-State 13C CP-MAS NMR Spectroscopy .................................... 62 4 2.6.6 X-ray Photoelectron Spectroscopy (XPS) of UCN and [ReCl(CO)3(UCN)] .......................................................................................... 63 2.6.7 The Structure of [ReCl(CO)3(UCN)] .................................................. 67 Solution Stability of [ReCl(CO)3(UCN)] .................................................... 67 2.7.1 ATR-IR of [ReCl(CO)3(UCN)] after solvent soaking .......................... 68 2.7.2 Solution IR of filtrate after [ReCl(CO)3(UCN)] soaking ...................... 69 Photophysical Behaviour of [ReCl(CO)3(UCN)] ........................................ 71 2.8.1 Ground state optical spectroscopy of [ReCl(CO)3(UCN)], UCN and [ReCl(CO)3(DMNA)] ........................................................................................ 71 2.8.2 Steady-State Luminescence Behaviour of UCN, [ReCl(CO)3(UCN)] and ReCl(CO)3(DMNA)] ......................................................................................... 72 2.8.3 Time Resolved Luminescence Behaviour of [ReCl(CO)3(UCN)] ....... 74 2.8.4 Proposed Photophysical Processes Occuring in [ReCl(CO)3(UCN)] . 76 Conclusions ............................................................................................. 79 3 Ruthenium Decorated Carbon Nitride: Synthesis, Characterisation and Photophysics ......................................................................................................... 80 Introduction .............................................................................................. 80 3.1.1 Aims ................................................................................................. 83 Synthesis of UCN and CCN ..................................................................... 84 Synthesis of [Ru(bpy)2(CCN)](PF6)2 and [Ru(bpy)2(UCN)](PF6)2 .............. 84 Bulk Characterisation of Ruthenium-Decorated Carbon Nitrides .............. 85 3.4.1 Elemental Analysis (ICP-MS) ............................................................ 85 3.4.2 Powder X-Ray Diffraction (PXRD) .................................................... 86 3.4.3 Scanning Electron Microscopy (SEM) ............................................... 87 3.4.4 Brunauer-Emmett-Teller (BET) Analysis ........................................... 88 3.4.5 Dynamic