On New Allotropes and Nanostructures of Carbon Nitrides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Facile Synthesis of Potassium Poly(Heptazine Imide) (PHIK)
Subscriber access provided by CORNELL UNIVERSITY LIBRARY Article Facile synthesis of potassium poly(heptazine imide) (PHIK) / Ti-based Metal- Organic Framework (MIL-125-NH2) composites for photocatalytic applications Nicolás Artemio Rodríguez, Aleksandr Savateev, Maria Alejandra Grela, and Dariya Dontsova ACS Appl. Mater. Interfaces, Just Accepted Manuscript • Publication Date (Web): 13 Jun 2017 Downloaded from http://pubs.acs.org on June 14, 2017 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts. -
Solar Energy Harvesting with Carbon Nitrides: Do We Understand The
Solar energy harvesting with carbon nitrides: Do we understand the mechanism? Wolfgang Domcke1, Johannes Ehrmaier1 and Andrzej L. Sobolewski2 1 Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany 2 Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland Email: [email protected] (Wolfgang Domcke) Abstract The photocatalytic splitting of water into molecular hydrogen and molecular oxygen with sunlight is the dream reaction for solar energy conversion. Since decades, transition-metal- oxide semiconductors and supramolecular organometallic structures have been extensively explored as photocatalysts for solar water splitting. More recently, polymeric carbon nitride materials consisting of triazine or heptazine building blocks have attracted considerable attention as hydrogen-evolution photocatalysts. The mechanism of hydrogen evolution with polymeric carbon nitrides is discussed throughout the current literature in terms of the familiar concepts developed for photoelectrochemical water splitting with semiconductors since the 1970s. We discuss in this perspective an alternative mechanistic paradigm for photoinduced water splitting with carbon nitrides, which focusses on the specific features of the photochemistry of aromatic N-heterocycles in aqueous environments. It is shown that a water molecule which is hydrogen-bonded to an N-heterocycle can be decomposed into hydrogen and hydroxyl radicals by two simple sequential photochemical reactions. This concept is illustrated by first-principles calculations of excited-state reaction paths and their energy profiles for hydrogen-bonded complexes of pyridine, triazine and heptazine with a water molecule. It is shown that the excited-state hydrogen-transfer and hydrogen-detachment reactions are essentially barrierless, in sharp contrast to water oxidation in the electronic ground state, where high barriers prevail. -
Geometric and Electronic Properties of Graphene-Related Systems: Chemical Bondings Arxiv:1702.02031V2 [Physics.Chem-Ph] 13
Geometric and electronic properties of graphene-related systems: Chemical bondings Ngoc Thanh Thuy Trana, Shih-Yang Lina;∗, Chiun-Yan Lina, Ming-Fa Lina;∗ aDepartment of Physics, National Cheng Kung University, Tainan 701, Taiwan February 14, 2017 Abstract This work presents a systematic review of the feature-rich essential properties in graphene-related systems using the first-principles method. The geometric and electronic properties are greatly diversified by the number of layers, the stacking con- figurations, the sliding-created configuration transformation, the rippled structures, and the distinct adatom adsorptions. The top-site adsorptions can induce the signif- icantly buckled structures, especially for hydrogen and fluorine adatoms. The elec- tronic structures consist of the carbon-, adatom- and (carbon, adatom)-dominated energy bands. There exist the linear, parabolic, partially flat, sombrero-shaped and oscillatory band, accompanied with various kinds of critical points. The semi-metallic or semiconducting behaviors of graphene systems are dramatically changed by the multi- or single-orbital chemical bondings between carbons and adatoms. Graphene oxides and hydrogenated graphenes possess the tunable energy gaps. Fluorinated graphenes might be semiconductors or hole-doped metals, while other halogenated systems belong to the latter. Alkali- and Al-doped graphenes exhibit the high-density free electrons in the preserved Dirac cones. The ferromagnetic spin configuration is revealed in hydrogenated and halogenated graphenes under certain distributions. Specifically, Bi nano-structures are formed by the interactions between monolayer arXiv:1702.02031v2 [physics.chem-ph] 13 Feb 2017 graphene and buffer layer. Structure- and adatom-enriched essential properties are compared with the measured results, and potential applications are also discussed. -
Photo-Induced Phenomena from the Quantum Chemist Point of View Tangui Le Bahers
Photo-Induced Phenomena from the Quantum Chemist Point of View Tangui Le Bahers To cite this version: Tangui Le Bahers. Photo-Induced Phenomena from the Quantum Chemist Point of View. Theoretical and/or physical chemistry. Université Claude Bernard Lyon 1, 2018. tel-02073756 HAL Id: tel-02073756 https://hal.archives-ouvertes.fr/tel-02073756 Submitted on 22 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MEMOIRE En vue de l’obtention du diplôme national de l’ Habilitation à diriger des recherches, délivré par l’Université Claude Bernard Lyon 1 Discipline : Chimie Laboratoire de Chimie de l’ENS Lyon Présenté publiquement le 14 Juin 2018 Par Monsieur Tangui LE BAHERS Photo-Induced Phenomena from the Quantum Chemist Point of View Devant le jury composé de : Dr. Valérie Keller CNRS / Université de Strasbourg Pr. Mario Barbatti Université d’Aix-Marseille Dr. Pascal Raybaud IFP Energies Nouvelles Dr. Filippo De Angelis CNR Perugia / Italy Pr. Christophe Morell Université Claude Bernard Lyon 1 Dr. Chantal Andraud CNRS / ENS Lyon Remerciements Voilà maintenant 7 ans que j’ai soutenu ma thèse. Ce manuscrit vient retracer les travaux scientifiques que j’ai réalisés depuis. -
Taming Dinitramide Anions Within an Energetic Metal–Organic Framework
Article pubs.acs.org/cm Taming Dinitramide Anions within an Energetic Metal−Organic Framework: A New Strategy for Synthesis and Tunable Properties of High Energy Materials † † † † ‡ † † Jichuan Zhang, Yao Du, Kai Dong, Hui Su, Shaowen Zhang, Shenghua Li,*, and Siping Pang*, † School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China ‡ School of Chemistry, Beijing Institute of Technology, Beijing 100081, P. R. China *S Supporting Information ABSTRACT: Energetic polynitro anions, such as dinitramide − fi fi ion [N(NO2)2 ], have attracted signi cant interest in the eld of energetic materials due to their high densities and rich oxygen contents; however, most of them usually suffer from low stability. Conveniently stabilizing energetic polynitro anions to develop new high energy materials as well as tuning their energetic properties still represent significant challenges. To address these challenges, we herein propose a novel strategy that energetic polynitro anions are encapsulated within energetic cationic metal−organic frameworks (MOFs). We − present N(NO2)2 encapsulated within a three-dimensional (3D) energetic cationic MOF through simple anion exchange. The resultant inclusion complex exhibits a remarkable thermal stability with the onset decomposition temperature of 221 °C, which is, to our knowledge, the highest value known for all dinitramide-based compounds. In addition, it possesses good energetic properties, which can be conveniently tuned by changing the mole ratio of the starting materials. The encapsulated anion can also be released in a controlled fashion without disrupting the framework. This work may shed new insights into the stabilization, storage, and release of labile energetic anions under ambient conditions, while providing a simple and convenient approach for the preparation of new energetic MOFs and the modulation of their energetic properties. -
(Title of the Thesis)*
Rationally Engineering Porous Carbon-Based Metal Nanocomposites for Efficient and Durable Electrocatalysis Applications by Zhen Zhang A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Chemical Engineering Waterloo, Ontario, Canada, 2021 © Zhen Zhang 2021 Examining Committee Membership The following served on the Examining Committee for this thesis. The decision of the Examining Committee is by majority vote. External Examiner Dr. Feng Jiao Associate Professor Supervisor Dr. Zhongwei Chen Professor Internal Member Dr. Ali Elkamel Professor Internal Member Dr. Jeff Gostick Associate Professor Internal-external Member Dr. Zhongchao (Chao) Tan Professor ii Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. iii Statement of Contributions The body of this thesis is based upon a combination of published works. Various chapters are adapted from the following list of publications. Chapter 2 of this thesis consist of a review paper that was co-authored by myself, my supervisor, Dr. Zachary Paul Cano, Dr. Dan Luo, Dr. Haozhen Dou, Dr. Aiping Yu. I am the first author of this paper. I conceptualized study design, and performed data collection and manuscript writing. My coauthors reviewed the manuscript and provided feedback on draft manuscript. “Rational Design of Tailored Porous Carbon-Based Materials for CO2 Capture”, Journal of Materials Chemistry A, 2019, 7 (37), 20985-21003. -
Graphitic Carbon Nitride: a Highly Electroactive Nanomaterial for Environmental and Clinical Sensing
sensors Review Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing Azeez O. Idris * , Ekemena O. Oseghe, Titus A. M. Msagati , Alex T. Kuvarega, Usisipho Feleni and Bhekie Mamba Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; [email protected] (E.O.O.); [email protected] (T.A.M.M.); [email protected] (A.T.K.); [email protected] (U.F.); [email protected] (B.M.) * Correspondence: [email protected] Received: 12 August 2020; Accepted: 23 September 2020; Published: 10 October 2020 Abstract: Graphitic carbon nitride (g-C3N4) is a two-dimensional conjugated polymer that has attracted the interest of researchers and industrial communities owing to its outstanding analytical merits such as low-cost synthesis, high stability, unique electronic properties, catalytic ability, high quantum yield, nontoxicity, metal-free, low bandgap energy, and electron-rich properties. Notably, graphitic carbon nitride (g-C3N4) is the most stable allotrope of carbon nitrides. It has been explored in various analytical fields due to its excellent biocompatibility properties, including ease of surface functionalization and hydrogen-bonding. Graphitic carbon nitride (g-C3N4) acts as a nanomediator and serves as an immobilization layer to detect various biomolecules. Numerous reports have been presented in the literature on applying graphitic carbon nitride (g-C3N4) for the construction of electrochemical sensors and biosensors. Different electrochemical techniques such as cyclic voltammetry, electrochemiluminescence, electrochemical impedance spectroscopy, square wave anodic stripping voltammetry, and amperometry techniques have been extensively used for the detection of biologic molecules and heavy metals, with high sensitivity and good selectivity. -
Graphitic Carbon Nitride (G-C3N4), an Organic Semiconductor That Proved a Suitable Photocatalyst for Hydrogen Production from Water
METAL LOADED G-C₃N₄ FOR VISIBLE LIGHT-DRIVEN H₂ PRODUCTION Federica Fina A Thesis Submitted for the Degree of PhD at the University of St Andrews 2014 Full metadata for this item is available in St Andrews Research Repository at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6322 This item is protected by original copyright This item is licensed under a Creative Commons Licence Metal loaded g-C3N4 for visible light-driven H2 production by Federica Fina A thesis submitted in partial fulfilment for the degree of PhD at the University of St Andrews 2014 I, Federica Fina hereby certify that this thesis, which is approximately 50,000 words in length, has been written by me, and that it is the record of work carried out by me and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in January 2011 and as a candidate for the degree of Doctor of Philosophy in August 2014; the higher study for which this is a record was carried out in the University of St Andrews between 2011 and 2014. Date …………….………….. Signature of candidate …………….………….. I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of Doctor of Philosophy in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree. Date …………….………….. Signature of supervisor …………….………….. In submitting this thesis to the University of St Andrews I understand that I am giving permission for it to be made available for use in accordance with the regulations of the University Library for the time being in force, subject to any copyright vested in the work not being affected thereby. -
Formation of Carbon Nanoscrolls from Graphene Sheet: a Molecular Dynamics Study
Journal of Molecular Structure 1125 (2016) 282e287 Contents lists available at ScienceDirect Journal of Molecular Structure journal homepage: http://www.elsevier.com/locate/molstruc Formation of carbon nanoscrolls from graphene sheet: A molecular dynamics study * Danhui Zhang a, b, , Houbo Yang a a College of Mechanical Engineering, Linyi University, Linyi 276005, China b Key Laboratory of Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China article info abstract Article history: In recent year, carbon nanoscrolls have attracted intensive attention both in theory and experiments for Received 19 May 2016 their unique and excellent fundamental properties and the wide range of potential applications. In this Received in revised form paper, the fabrication of carbon nanoscrolls using graphene and carbon nanotubes has been studied by 26 June 2016 molecular dynamics (MD) method. The formation mechanism of carbon nanoscrolls has been presented Accepted 29 June 2016 convincing explanations. Furthermore, the position and number of carbon nanotubes also influence the Available online 1 July 2016 formation of carbon nanoscrolls. Our theoretical results will provide researchers a powerful guide and helpful assistance in designing better targeted programs in experiments. Keywords: © Graphehe 2016 Elsevier B.V. All rights reserved. Carbon nanoscroll Molecular dynamics Carbon nanotubes 1. Introduction nanopharmacology, nanobiology and nanofluidic manipulation. In order to fabricate the carbon nanostructures, using forced-field- Graphene(GN), a new two-dimensional thin film material and based molecular dynamics simulations, we proposed a feasible firstly exfoliated from the bulk graphite, has received intensive method to obtain the carbon nanostructures through self-scrolling attention due to its unique electrical and mechanical properties [1]. -
Nanoparticle Catalytic Enhancement of Carbon Dioxide Reforming of Methane for Hydrogen Production Nicholas Groden
Louisiana Tech University Louisiana Tech Digital Commons Doctoral Dissertations Graduate School Fall 11-17-2018 Nanoparticle Catalytic Enhancement of Carbon Dioxide Reforming of Methane for Hydrogen Production Nicholas Groden Follow this and additional works at: https://digitalcommons.latech.edu/dissertations Part of the Nanoscience and Nanotechnology Commons, Other Chemical Engineering Commons, and the Other Materials Science and Engineering Commons Recommended Citation Groden, Nicholas, "" (2018). Dissertation. 3. https://digitalcommons.latech.edu/dissertations/3 This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. NANOPARTICLE CATALYTIC ENHANCEMENT OF CARBON DIOXIDE REFORMING OF METHANE FOR HYDROGEN PRODUCTION by Nicholas Groden, M.S., B.S. A Dissertation Presented in Partial Fulfillment of the Requirements of the Degree Doctor of Philosophy COLLEGE OF ENGINEERING AND SCIENCE LOUISIANA TECH UNIVERSITY November 2018 LOUISIANA TECH UNIVERSITY THE GRADUATE SCHOOL JUNE 16, 2018 Date We hereby recommend that the dissertation prepared under our supervision by xxxxxxxxxxxxxxx Nicholas Groden, M.S., B.S. entitled Nanoparticle Catalytic Enhancement of Carbon Dioxide Reforming of Carbon Dioxide Reforming of Methane for Hydrogen Production be accepted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Engineering Micro and Nanoscale Systems Supervisor of Dissertation Research Head of Department Department Recommendation concurred in: _____________________________ _____________________________ Advisory Committee _____________________________ _____________________________ Approved: Approved: __________________________________ ______________________________ Director of Graduate Studies Dean of the Graduate School __________________________________ Dean of the College GS Form 13 (8/10) ABSTRACT The U.S. -
1997-11-12 Cyanide Compounds As Federal Hazardous Air Pollutant
CYANIDE COMPOUNDS Cyanide compounds are federal hazardous air pollutant and were identified as toxic air contaminants in April 1993 under AB 2728. CAS Registry Numbers: cyanide 57-12-5 CN hydrocyanic acid 74-90-8 HCN Molecular Formulas: CN- HCN The cyanide ion (CN-) combines with other chemicals and exhibits many characteristics that are similar to those of the halogen and azide ions. The molecular weight of cyanide is 26.02. It has an unusually strong tendency to form complex ions with metal ions which may be easily oxidized and thermally unstable. Cyanides are flammable by chemical reaction with heat, moisture, and acid. Many cyanides easily release the very toxic hydrocyanic acid (HCN) which has the odor of bitter almonds. Hydrocyanic acid (hydrogen cyanide) is a liquid at temperatures below 26.5 oC, and its boiling point is so close to room temperature that evaporation of liquid HCN evolves to vapor. Liquid or gaseous HCN is extremely soluble in water. Hydrocyanic acid is miscible with alcohol and slightly soluble in ether. Many organic nitriles can be very reactive under the right conditions and when heated to decomposition or on contact with acid, acid fumes, water or steam, toxic and flammable vapors of CN- are emitted (HSDB, 1991). Physical Properties of Hydrocyanic Acid Synonyms for cyanide: carbon nitride ion (CN1-); cyanide anion; isocyanide Synonyms for hydrocyanic acid: hydrogen cyanide; anammonide; formonitrile; cyclon; prussic acid Hydrocyanic acid Molecular Weight 27.03 Boiling Point: 25.6 oC Melting Point: -13.4 oC Density (liquid): 0.699 at 22 oC Density (gas): 0.901 at 22 oC Vapor Density: 0.94 (air = 1) Vapor Pressure: 630 mm Hg at 20 oC Heat of Fusion: 74.38 Log Octanol/Water Partition Coefficient: 1.07 Conversion Factor (HCN): 1 ppm = 1.1 mg/m3 (HSDB, 1991; Merck, 1989; Sax, 1989; U.S. -
Carbon Nanostructures Produced by Liquid Phase Exfoliation of Graphite in the Presence of Small Organic Molecules
Mesoporous Biomater. 2016; 3:76–82 Research Article Open Access Jesús I. Tapia and Mildred Quintana* Carbon Nanostructures Produced by Liquid Phase Exfoliation of Graphite in the Presence of Small Organic Molecules DOI 10.1515/mesbi-2016-0010 namely diamond, graphite, amorphous carbon and nanos- Received June 23, 2016; revised October 19, 2016; accepted Novem- tructures such as fullerenes, carbon nanotubes (CNTs) ber 12, 2016 and graphene [1]. During recent years, the production Abstract: We report on the formation of different car- of graphene by micromechanical cleavage [2] has trig- bon nanostructures by ultrasonication of graphite in DMF gered enormous experimental activity demonstrating that upon the addition of 3 different small molecules: fer- graphene monolayers possesses novel structural, [3] elec- rocene carboxylic acid, dimethylamino methyl-ferrocene, trical [4] and mechanical [5] properties. Additionally, and benzyl aldehyde. Our results confirm that acous- graphene is a 2D building material for other carbon tic cavitation in organic solvents generates free radi- nanostructures of all dimensionalities. Graphene can be cals which enable or are involved in secondary reac- wrapped up into 0D buckyballs, rolled into 1D nanotubes tions. During the ultrasonication process, the addition of or stacked into 3D graphite crystals [6]. For example, in small molecules induces the formation of different car- situ transmission electron microscopy (TEM) experiments bon nanostructures mainly depending on the chemical na- demonstrated the direct